A Biostimulant Based on Protein Hydrolysates Promotes the Growth of Young Olive Trees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Application of the Biostimulant to Young Potted Olive Trees
2.2. Application of the Biostimulant to Young Olive Trees in the Field
2.3. Statistical Analysis
3. Results
3.1. Application of the Biostimulant to Young Potted Olive Trees
3.2. Application of the Biostimulant to Young Olive Trees in the Field
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation (review). Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Vernì, M.A.; Ciavatta, C. Fertilizzanti: Commodities e nuove tipologie. In Fertilizzazione Sostenibile—Principi, Tecnologie ed Esempi Operativi; Grignani, C., Ed.; Edagricole—Edizioni Agricole di New Business Media: Milano, Italy, 2016; pp. 9–56. [Google Scholar]
- Faheed, F.A.; Abd-El Fattah, Z. Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. J. Agric. Soc. Sci. 2018, 4, 165–169. [Google Scholar]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic. 2015, 31, 1–17. [Google Scholar] [CrossRef]
- Brown, P.; Saa, S. Biostimulants in agriculture. Front. Plant Sci. 2015, 6, 671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, E.F.; Hassan, F.A.S.; Elgimabi, M. Improving the growth, yield and volatile oil content of Pelargonium graveolens L. Herit by foliar application with moringa leaf extract through motivating physiological and biochemical parameters. S. Afr. J. Bot. 2018, 119, 383–389. [Google Scholar] [CrossRef]
- Ali, A.H.; Aboohanah, M.A.; Abdulhussein, M.A. Impact of foliar application with dry yeast suspension and amino acid on vegetative growth, yield and quality characteristics of olive. Kufa J. Agric. Sci. 2019, 11, 33–42. [Google Scholar]
- Molina Soria, C. Olive Tree (Olea europaea L.) Response to the Application of Biostimulants; Centre International de Hautes Etudes Agronomiques Méditerranéennes: Zaragoza, Spain, 2006. [Google Scholar]
- Saour, G. Morphological assessment of olive seedlings treated with kaolin-based particle film and biostimulant. Adv. Hort. Sci. 2005, 19, 193–197. [Google Scholar]
- Chouliaras, V.; Tasioula, M.; Chatzissavvidis, C.; Therios, I.; Tsabolatidou, E. The effects of a seaweed extract in addition to nitrogen and boron fertilization on productivity, fruit maturation, leaf nutritional status and oil quality of the olive (Olea europaea L.) cultivar Koroneiki. J. Sci. Food Agric. 2009, 89, 984–988. [Google Scholar] [CrossRef]
- Hernández-Hernandez, G.; Salazar, D.M.; Martínez-Tomé, J.; López-Cortés, I. The use of biostimulants in high-density olive growing: Quality and production. Asian J. Adv. Agric. Res. 2019, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zouari, I.; Mechri, B.; Tekaya, M.; Dabbaghi, O.; Cheraief, I.; Mguidiche, A.; Annabi, K.; Laabidi, F.; Attia, F.; Hammami, M.; et al. Olive oil quality influenced by biostimulant foliar fertilizers. Braz. J. Biol. Sci. 2020, 7, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Rallo, L.; Barranco, D.; Castro-Garcia, S.; Connor, D.J.; Gómez del Campo, M.; Rallo, P. High-density olive plantations. Hortic. Rev. 2013, 41, 303–383. [Google Scholar] [CrossRef]
- Caruso, T.; Campisi, G.; Marra, F.P.; Camposeo, S.; Vivaldi, G.A.; Proietti, P.; Nasini, L. Growth and yields of ‘arbequina’ high-density planting systems in three different olive growing areas in Italy. Acta Hortic. 2014, 1057, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Rosati, A.; Paoletti, A.; Al Hariri, R.; Morelli, A.; Famiani, F. Resource investments in reproductive growth proportionately limit investments in whole-tree vegetative growth in young olive trees with varying crop loads. Tree Physiol. 2018, 38, 1267–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosati, A.; Paoletti, A.; Al Hariri, R.; Famiani, F. Fruit production and branching density affect shoot and whole-tree wood to leaf biomass ratio in olive. Tree Physiol. 2018, 38, 1278–1285. [Google Scholar] [CrossRef]
- Di Vaio, C.; Marallo, N.; Marino, G.; Caruso, T. Effect of water stress on dry matter accumulation and partitioning in pot-grown olive trees (cv Leccino and Racioppella). Sci. Hortic. 2013, 164, 172–177. [Google Scholar] [CrossRef]
- Di Vaio, C.; Marra, F.M.; Scaglione, G.; La Mantia, M.; Caruso, T. The effect of different vigour olive clones on growth, dry matter partitioning and gas exchange under water deficit. Sci. Hortic. 2012, 134, 72–78. [Google Scholar] [CrossRef]
- Beltran, G.; Uceda, M.; Hermoso, M.; Frias, L. Ripening. In Olive Growing; Barranco, D., Fernández-Escobar, R., Rallo, L., Eds.; Junta de Andalucia Consejería de Agricultura y Pesca and Ediciones Mundi-Prensa: Madrid, Spain, 2010; pp. 147–170. [Google Scholar]
- Camposeo, S.; Vivaldi, G.A.; Gattullo, C.E. Ripening indices and harvesting times of different olive cultivars for continuous harvest. Sci. Hortic. 2013, 151, 1–10. [Google Scholar] [CrossRef]
- Kauffman, G.L.; Kneivel, D.P.; Watschke, T.L. Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop. Sci. 2007, 47, 261–267. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulation of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 2014, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Rosati, A.; Paoletti, A.; Pannelli, G.; Famiani, F. Partitioning of dry matter into fruit explains cultivar differences in vigor in young olive (Olea europaea L.) trees. HortScience 2018, 53, 491–495. [Google Scholar] [CrossRef] [Green Version]
- Rosati, A.; Paoletti, A.; Pannelli, G.; Famiani, F. Growth is inversely correlated with yield efficiency across cultivars in young olive (Olea europaea L.) trees. HortScience 2017, 52, 1525–1529. [Google Scholar] [CrossRef] [Green Version]
- Famiani, F.; Farinelli, D.; Gardi, T.; Rosati, A. The cost of flowering in olive (Olea europaea L.). Sci. Hortic. 2019, 252, 268–273. [Google Scholar] [CrossRef]
- Sahain, M.F.; Abd El Motty, E.Z.; El-Shiekh, M.H.; Hagagg, L.F. Effect of some biostimulant on growth and fruiting of Anna apple trees in newly reclaimed areas. Res. J. Agric. Biol. Sci. 2007, 3, 422–429. [Google Scholar]
- Ferrara, G.; Brunetti, G. Effects of the times of application of a soil humic acid on berry quality of table grape (Vitis vinifera L.) cv Italia. Span. J. Agric. Res. 2010, 3, 817–822. [Google Scholar] [CrossRef] [Green Version]
- Parađiković, N.; Vinković, T.; Vinković Vrček, I.; Žuntar, I.; Bojić, M.; Medić-Šarić, M. Effect of natural biostimulants on yield and nutritional quality: An example of sweet yellow pepper (Capsicum annuum L.) plants. J. Sci. Food Agric. 2011, 91, 2146–2152. [Google Scholar] [CrossRef]
- Laila, F.H.; Shahin, M.F.M.; Merwad, M.A.; Khalil, F.H.; El-Hady, E.S. Improving fruit quality and quantity of “Aggizi” olive trees by application of humic acid during full bloom and fruit set stages. Middle East J. Agric. Res. 2013, 2, 44–50. [Google Scholar]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- El-Boray, M.S.; Mostafa, M.F.M.; Salem, S.E.; El-Sawwah, O.A.O. Improving yield and fruit quality of Washington navel orange using foliar applications of some natural biostimulants. J. Plant Prod. Mansoura Univ. 2015, 6, 1317–1332. [Google Scholar] [CrossRef] [Green Version]
- Graziani, G.; Ritieni, A.; Cirillo, A.; Cice, D.; Di Vaio, C. Effects of biostimulants on Annurca fruit quality and potential nutraceutical compounds at harvest and during storage. Plants 2020, 9, 775. [Google Scholar] [CrossRef]
- Szabó, V.; Hrotkó, K. Preliminary results of biostimulator treatments on Crataegus and Prunus stockplants. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 2009, 66, 223–228. [Google Scholar] [CrossRef]
- Abbas, S.M. The influence of biostimulants on the growth and on the biochemical composition of Vicia faba CV. Giza 3 beans. Rom. Biotechnol. Lett. 2013, 18, 8061–8068. [Google Scholar]
- Kaluzewicz, A.; Krzesinski, W.; Spizewski, T.; Zaworska, A. Effect of biostimulants on several physiological characteristics and chlorophyll content in broccoli under drought stress and re-watering. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 45, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Castel, J.R.; Fereres, E. Responses of young almond trees to two drought periods in the field. J. Hortic. Sci. 1982, 57, 175–187. [Google Scholar] [CrossRef]
- Lakso, A.N. Apple. In Handbook of Environmental Physiology of Fruit Crops—Volume I: Temperate Crops; Shaffer, B., Andersen, P.C., Eds.; CRC Press Inc.: Boca Raton, FL, USA, 1994; pp. 3–42. [Google Scholar]
- Romero, P.; Navarro, J.M.; García, F.; Botía Ordaz, P. Effects of regulated deficit irrigation during the pre-harvest period on gas exchange, leaf development and crop yield of mature almond trees. Tree Physiol. 2004, 24, 303–321. [Google Scholar] [CrossRef] [Green Version]
- Rosati, A.; Esparza, G.; DeJong, T.M.; Pearcy, R.W. Influence of canopy light environment and nitrogen availability on leaf photosynthetic characteristics and photosynthetic nitrogen-use efficiency of field-grown nectarine trees. Tree Physiol. 1999, 19, 173–180. [Google Scholar] [CrossRef]
- Famiani, F.; Proietti, P.; Palliotti, A.; Ferranti, F.; Antognozzi, E. Effects of leaf to fruit ratios on fruit growth in chestnut. Sci. Hortic. 2000, 85, 145–152. [Google Scholar] [CrossRef]
- Proietti, P.; Nasini, L.; Famiani, F. Effect of different leaf-to-fruit ratios on photosynthesis and fruit growth in olive (Olea europaea L.). Photosynthetica 2006, 44, 275–285. [Google Scholar] [CrossRef]
Treatment | Yield (g olives/tree) | Yield (g oil/tree) | Yield Efficiency (g olives/mm2) | Yield Efficiency (g oil/mm2) |
---|---|---|---|---|
Control | 514 a | 123 a | 0.52 a | 0.124 a |
Biostimulant | 636 a | 165 a | 0.56 a | 0.146 a |
Treatment | Fresh Weight (g) | Pigmentation Index (0–7) | Water Content (%) | Oil Content (% F.W.) | Oil Content (% D.W.) |
---|---|---|---|---|---|
Control | 2.2 a | 4.6 a | 53.2 a | 24.1 a | 51.5 a |
Biostimulant | 2.3 a | 4.3 a | 52.1 a | 26.1 a | 54.5 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almadi, L.; Paoletti, A.; Cinosi, N.; Daher, E.; Rosati, A.; Di Vaio, C.; Famiani, F. A Biostimulant Based on Protein Hydrolysates Promotes the Growth of Young Olive Trees. Agriculture 2020, 10, 618. https://doi.org/10.3390/agriculture10120618
Almadi L, Paoletti A, Cinosi N, Daher E, Rosati A, Di Vaio C, Famiani F. A Biostimulant Based on Protein Hydrolysates Promotes the Growth of Young Olive Trees. Agriculture. 2020; 10(12):618. https://doi.org/10.3390/agriculture10120618
Chicago/Turabian StyleAlmadi, Leen, Andrea Paoletti, Nicola Cinosi, Elissa Daher, Adolfo Rosati, Claudio Di Vaio, and Franco Famiani. 2020. "A Biostimulant Based on Protein Hydrolysates Promotes the Growth of Young Olive Trees" Agriculture 10, no. 12: 618. https://doi.org/10.3390/agriculture10120618
APA StyleAlmadi, L., Paoletti, A., Cinosi, N., Daher, E., Rosati, A., Di Vaio, C., & Famiani, F. (2020). A Biostimulant Based on Protein Hydrolysates Promotes the Growth of Young Olive Trees. Agriculture, 10(12), 618. https://doi.org/10.3390/agriculture10120618