Effects of Climate on Fruit Growth and Development on Olive Oil Quality in Cultivar Carolea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites and Plant Materials
2.2. Climate Parameters
2.3. Phenological Parameters
2.4. Sampling and Olive Measurements
2.5. Olive oil Extraction and Chemical Analyses of Olive Oils
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mafrica, R.; Piscopo, A.; De Bruno, A.; Pellegrino, P.; Zappia, A.; Zappia, R.; Poiana, M. Integrated study of qualitative olive and oil production from three important varieties grown in Calabria (Southern Italy). Eur. J. Lipid Sci. Technol. 2019, 121, 190014. [Google Scholar] [CrossRef]
- Yorulmaz, A.; Erinç, H.; Tekin, A. Changes in Olive and Olive Oil Characteristics During Maturation. J. Am. Oil Chem. Soc. 2013, 90, 647–658. [Google Scholar] [CrossRef]
- Beltrán, G.; del Río, C.; Sánchez, S.; Martínez, L. Seasonal changes in olive fruit characteristics and oil accumulation during ripening process. J. Sci. Food Agric. 2004, 84, 1783–1790. [Google Scholar] [CrossRef]
- Roshani, M.; Sahari, M.A.; Amirkaveei, S.; Ardabili, A.S. Effect of Edaphoclimatic Region and Fruit Ripening Stage on Fatty Acid Profile of Tree Olive Oil Cultivars. Curr. Nutr. Food Sci. 2016, 12, 212–219. [Google Scholar] [CrossRef]
- Di Vaio, C.; Nocerino, S.; Paduano, A.; Sacchi, R. Influence of some environmental factors on drupe maturation and olive oil composition. J. Sci. Food Agric. 2013, 93, 1134–1139. [Google Scholar] [CrossRef]
- Issaoui, M.; Flamini, G.; Brahmi, F.; Dabbou, S.; Hassine, K.B.; Taamali, A.; Chehab, H.; Ellouz, M.; Zarrouk, M.; Hammami, M. Effect of the growing area conditions on differentiation between Chemlali and Chétoui olive oils. Food Chem. 2010, 119, 220–225. [Google Scholar] [CrossRef]
- Toker, C.; Aksoyb, U.; Ertaş, H. The effect of fruit ripening, altitude and harvest year on volatile compounds of virgin olive oil obtained from the Ayvalık variety. Flavour Fragr. J. 2016, 31, 195–205. [Google Scholar] [CrossRef]
- Mousa, Y.M.; Gerasopoulos, D.; Metzidakis, I.; Kiritsakis, A. Effect of altitude on fruit and oil quality characteristics of‘Mastoides’ olives. J. Sci. Food Agric. 1996, 71, 345–350. [Google Scholar] [CrossRef]
- Motilva, M.J.; Tovar, M.J.; Romero, M.P.; Alegre, S.; Girona, J. Influence of Regulated Irrigation Strategies Applied to Olive Trees (Arbequina cultivar) on Oil Yield and Composition during the Fruit Ripening Period. J. Sci. Food Agric. 2000, 80, 2037–2043. [Google Scholar] [CrossRef]
- Fernandes-Silva, A.; Gouveia, J.B.; Vasconcelos, P.; Ferreira, T.C.; Villalobos, F.J. Effect of different irrigation regimes on the quality attributes of monovarietal virgin olive oil from cv. “Cobrançosa”. Grasas Y Aceites 2013, 64, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Servili, M.; Esposto, S.; Lodolini, E.M.; Selvaggini, R.; Taticchi, A.; Urbani, S.; Montedoro, G.; Serravalle, M.; Gucci, R. Irrigation effects on quality, phenolic composition, and selected volatiles of virgin olive oils cv. Leccino. J. Agric. Food Chem. 2007, 55, 6609–6618. [Google Scholar] [CrossRef] [PubMed]
- Stefanoudaki, E.; Williams, M.; Chartzoulakis, K.; Harwood, J. Effect of Irrigation on Quality Attributes of Olive Oil. J. Agric. Food Chem. 2009, 57, 7048–7055. [Google Scholar] [CrossRef]
- Ismail, A.S.; Stavroulakis, G.; Metzidakis, J. Effect of irrigation on the quality characteristics of organic olive oil. Acta Hortic. 1999, 474, 687–690. [Google Scholar] [CrossRef]
- Marra, F.P.; Caruso, T.; Costa, F.; Di Vaio, C.; Mafrica, R.; Marchese, A. Genetic relationships, structure and parentage simulation among the olive tree (Olea europaea L. subsp. europaea) cultivated in Southern Italy revealed by SSR markers. Tree Genet. Genomes 2013, 9, 961–973. [Google Scholar] [CrossRef]
- Marra, F.P.; Marchese, A.; Campisi, G.; Guzzetta, G.; Caruso, T.; Mafrica, R.; Pangallo, S. Intra-cultivar diversity in Southern Italy olive cultivars depicted by morphological traits and ssr markers. Acta Hortic. 2014, 1057, 571–576. [Google Scholar] [CrossRef] [Green Version]
- Piscopo, A.; De Bruno, A.; Zappia, A.; Ventre, C.; Poiana, M. Characterization of monovarietal olive oils obtained from mills of Calabria region (Southern Italy). Food Chem. 2016, 213, 313–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piscopo, A.; De Bruno, A.; Zappia, A.; Gioffrè, G.; Grillone, N.; Mafrica, R.; Poiana, M. Effect of olive storage temperature on the quality of Carolea and Ottobratica oils. Emir. J. Food Agric. 2018, 30, 563–572. [Google Scholar] [CrossRef]
- Piscopo, A.; Zappia, A.; De Bruno, A.; Poiana, M. Effect of the Harvesting Time on the Quality of Olive Oils Produced in Calabria. Eur. J. Lipid Sci. Technol. 2018, 120, 1700304. [Google Scholar] [CrossRef]
- De Bruno, A.; Romeo, R.; Fedele, F.L.; Sicari, A.; Piscopo, A.; Poiana, M. Antioxidant activity shown by olive pomace extracts. J. Environ. Sci. Health Part B 2018. [Google Scholar] [CrossRef]
- Bonofiglio, T.; Orlandi, F.; Sgromo, C.; Romano, B.; Fornaciari, M. Influence of temperature and rainfall on timing of olive (Olea europaea) flowering in southern Italy. N. Z. J. Crop Hortic. Sci. 2008, 36, 59–69. [Google Scholar] [CrossRef]
- Meier, U. BBCH-Monograph. Growth Stages of Plants—Entwicklungsstadien von Pflanzen—Estadios de las Plantas—Développement des Plantes; Blackwell Wissenschafts-Verlag: Berlin, Germany, 1997; pp. 94–95. [Google Scholar]
- Sanz-Cortés, F.; Martínez-Calvo, J.; Badenes, M.L.; Bleiholder, H.; Hack, H.; Llacer, G.; Meier, U. Phenological growth stages of olive trees (Olea europaea). Ann. Appl. Biol. 2002, 140, 151–157. [Google Scholar] [CrossRef]
- Uceda, M.; Frias, L. Harvest dates. Evolution of the fruit oil content, oil composition and oil quality. In Proceedings of the “Segundo Seminario Oleicola Internacional” COI, Cordoba, Spain, 6 October 1975; pp. 125–128. [Google Scholar]
- European Union Commission. Commission Regulation No. 61/2011 of 24 January 2011. Off. J. Eur. Union 2011, 23, 1–14. [Google Scholar]
- European Union Commission. Commission Implementing Regulation No. 348/2013 of 17 December 2013. Off. J. Eur. Union 2013, 338, 31–67. [Google Scholar]
- European Union Commission. Commission delegated regulation No 16/2095 of 26 September 2016. Off. J. Eur. Union 2016, 326, 1–6. [Google Scholar]
- Baiano, A.; Gambacorta, G.; Terracone, C.; Previtali, M.A.; Lamacchia, C.; La Notte, E. Changes in phenolic content and antioxidant activity of italian extravirgin olive oils during storage. J. Food Sci. 2009, 74, 177–183. [Google Scholar] [CrossRef] [PubMed]
- IUPAC. International Union of Pure and Applied Chemistry. Determination of Tocopherol and Tocotrienols in Vegetable Oils and Fats by HPLC: Method 2.432. In Standard Methods for the Analysis of Oils, Fats and Derivatives; Paquot, C., Haufenne, A., Eds.; Blackwell Scientific Publications: Oxford, UK, 1987; pp. 1–7. [Google Scholar]
- Minguez-Mosquera, M.I.; Rejano, L.; Gandul, B.; Sanchez, A.H.; Garrido, J. Color-pigment correlation in virgin olive oil. J. Am. Oil Chem. 1991, 68, 332–336. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galán, C.; García-Mozo, H.; Vázquez, L.; Ruiz-Valenzuela, L.; Díaz de la Guardia, C.; Trigo-Pérez, M. Heat requirement for the onset of the Olea europaea L. pollen season in several places of Andalusia region and the effect of the expected future climate change. Int. J. Biometeorol. 2005, 49, 184–188. [Google Scholar] [CrossRef]
- Aguilera, F.; Ruiz, L. Study of the floral phenology of Olea europaea L. in Jaén province (SE Spain) and its relation with pollen emission. Aerobiologia 2009, 25, 217–225. [Google Scholar] [CrossRef]
- Rojo, J.; Pérez-Badia, R. Effects of topography and crown-exposure on olive tree phenology. Trees 2014, 28, 449–459. [Google Scholar] [CrossRef]
- Davi, H.; Gillmann, M.; Ibanez, T.; Cailleret, M.; Bontemps, A.; Fady, B.; Lefèvre, F. Diversity of leaf unfolding dynamics among tree species: New insights from a study along an altitudinal gradient. Agric. For. Meteorol. 2011, 151, 1504–1513. [Google Scholar] [CrossRef]
- Jochner, S.C.; Sparks, T.H.; Estrella, N.; Menzel, A. The influence of altitude and urbanization on trends and mean dates in phenology (1980–2009). Int. J. Biometeorol. 2012, 56, 387–394. [Google Scholar] [CrossRef]
- Galán, C.; García-Mozo, H.; Carinãnos, P.; Alcázar, P.; Domínguez-Vilches, E. The role of temperature in the onset of the Olea europaea L. pollen season in southwestern Spain. Int. J. Biometeorol. 2001, 45, 8–12. [Google Scholar] [CrossRef]
- Orlandi, F.; Fornaciari, M.; Romano, B. The use of phenological data to calculate chilling units in Olea europaea L. inrelation to the onset of reproduction. Int. J. Biometeorol. 2002, 46, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Galán, C.; García-Mozo, H.; Vázquez, L.; Ruiz, L.; Díaz de la Guardia, C.; Domínguez-Vilches, E. Modeling olive crop yield in Andalusia, Spain. Agron. J. 2008, 100, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, X.; Dawadi, B.; Eckstein, D.; Liang, E. Phenological variation in height growth and needle unfolding of Smith fir along and altitudinal gradient on the southeastern Tibetan Plateau. Trees 2013, 27, 401–407. [Google Scholar] [CrossRef]
- Osborne, C.P.; Chuine, I.; Viner, D.; Woodward, F.I. Olive phenology as a sensitive indicator of future climatic warming in the mediterranean. Plant Cell Environ. 2000, 23, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Connor, D.J.; Fereres, E. The physiology of adaptation and yield expression in olive. Hortic. Rev. 2005, 31, 155–229. [Google Scholar] [CrossRef]
- Lavee, S. Olive. In Handbook of Fruit Set and Development; Monselise, S.P., Ed.; CRC Press Inc.: Boca Raton, FL, USA, 1986; pp. 261–276. [Google Scholar]
- Bollard, E.G. The physiology and nutrition of developing fruits. In The Biochemistry of Fruits and Their Products; Hulme, A.C., Ed.; Academic Press: New York, NY, USA, 1970; Volume 1, pp. 387–425. [Google Scholar]
- Rapoport, H.F. Botánica y morfología. In El Cultivo del Olivo; Barranco, D., Fernández-Escobar, R., Rallo, L., Eds.; MundiPrensa: Barcelona, Spain, 1999; pp. 35–60. [Google Scholar]
- Rallo, P.; Rapoport, H. Early growth and development of the olive fruit mesocarp. J. Hortic. Sci. Biotechnol. 2001, 76, 408–412. [Google Scholar] [CrossRef]
- Manrique, T.; Castro, J.; Pastor, M.; Rapoport, H.F. Mesocarp cell division and expansion in the growth of olive fruits. Acta Hortic. 1999, 474, 301–304. [Google Scholar] [CrossRef]
- Rapoport, H.F.; Manrique, T.; Gucci, R. Cell division and expansion in the olive fruit. Acta Hortic. 2004, 636, 461–465. [Google Scholar] [CrossRef]
- Hammami, S.B.M.; Manrique, T.; Rapoport, H.F. Cultivar-based fruit size in olive depends on different tissue and cellular processes throughout growth. Sci. Hortic. 2011, 130, 445–451. [Google Scholar] [CrossRef]
- Ben Mimoun, M.; DeJong, T.M. Using the relation between growing degree hours and harvest date to estimate run-times for peach: A tree growth and yield simulation model. Acta Hortic. 1999, 499, 107–114. [Google Scholar] [CrossRef]
- Lopez, G.; DeJong, T.M. Spring temperatures have a major effect on early stages of peach fruit growth. J. Hortic. Sci. Biotechnol. 2007, 82, 507–512. [Google Scholar] [CrossRef]
- Day, K.; Lopez, G.; DeJong, T.M. Using growing degree hours accumulated 30 d after bloom to predict peach and nectarine harvest date. Acta Hortic. 2008, 803, 163–166. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Jimenez, M.C.; Paredes, M.A.; Gallardo, M.; Fernandez-Garcia, N.; Olmos, E.; Sanchez-Calle, I.M. Tissue-specific expression of olive S-adenosyl methionine decarboxylase and spermidine synthase genes and polyamine metabolism during flower opening and early fruit development. Planta 2010, 232, 629–647. [Google Scholar] [CrossRef]
- Gomez-Jimenez, M.C.; Paredes, M.A.; Gallardo, M.; Sanchez-Calle, I.M. Mature fruit abscission is associated with upregulation of polyamine metabolism in the olive abscission zone. J. Plant Physiol. 2010, 167, 1432–1441. [Google Scholar] [CrossRef]
- Parra-Lobato, M.C.; Gomez-Jimenez, M.C. Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission. J. Exp. Bot. 2011, 62, 4447–4465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil-Amado, J.A.; Gomez-Jimenez, M.C. Regulation of polyamine metabolism and biosynthetic gene expression during olive mature-fruit abscission. Planta 2012, 235, 1221–1237. [Google Scholar] [CrossRef]
- Tombesi, A. Physiological and mechanical advances in olive harvesting. Acta Hortic. 1990, 286, 399–412. [Google Scholar] [CrossRef]
- Mousavi, S.; de la Rosa, R.; Moukhli, A.; El Riachy, M.; Mariotti, R.; Torres, M.; Pierantozzi, P.; Stanzione, V.; Mastio, V.; Zaher, H.; et al. Plasticity of fruit and oil traits in olive among different environments. Sci. Rep. 2019, 9, 16968. [Google Scholar] [CrossRef] [Green Version]
- Osman, M.; Metzidakis, I.; Gerasopoulos, D.; Kiritsakis, A. Qualitative changes in olive oil of fruits collected from trees grown at two altitudes. Riv. Ital. Sostanze Gr. 1994, 71, 187–194. [Google Scholar]
- Sicari, V.; Giuffrè, A.M.; Piscopo, A.; Poiana, M. Effect of ‘‘Ottobratica” variety ripening stage on the phenolic profile of the obtained olive oil. Riv. Ital. Sostanze Gr. 2009, 86, 215–219. [Google Scholar]
- Giuffrè, A.M.; Piscopo, A.; Sicari, V.; Poiana, M. The effects of harvesting on phenolic compounds and fatty acids content in virgin olive oil (cv. Roggianella). Riv. Ital. Sostanze Gr. 2010, 87, 14–23. [Google Scholar]
- Dag, A.; Kerem, Z.; Yogev, N.; Zipori, I.; Lavee, S.; Ben-David, E. Influence of time of harvest and maturity index on olive oil yield and quality. Sci. Hortic. 2011, 127, 358–366. [Google Scholar] [CrossRef]
- Yousfi, K.; Cert, R.M.; García, J.M. Changes in quality and phenolic compounds of virgin olive oils during objectively described fruit maturation. Eur. Food Res. Technol. 2006, 223, 117–124. [Google Scholar] [CrossRef]
- Piscopo, A.; De Bruno, A.; Zappia, A.; Ventre, C.; Poiana, M. Data on some qualitative parameters of Carolea olive oils obtained in different areas of Calabria (Southern Italy). Data Brief 2016, 9, 78–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, M.N.; Galeano-Díaz, T.; Sánchez, J.; De Miguel, C.; Martín-Vertedora, D. Antioxidant capacity of the phenolic fraction and its effect on the oxidative stability of olive oil varieties grown in the southwest of Spain. Grasas Y Aceites 2014, 65, e004. [Google Scholar] [CrossRef] [Green Version]
- Borges, T.H.; López, L.C.; Pereira, J.A.; Cabrera–Vique, C.; Seiquer, I. Comparative analysis of minor bioactive constituents (CoQ10, tocopherols and phenolic compounds) in Arbequina extra virgin olive oils from Brazil and Spain. J. Food Compos. Anal. 2017, 63, 47–54. [Google Scholar] [CrossRef]
- Rodney, J.M.; Ayton, J.; Graham, K.J. The Influence of Growing Region, Cultivar and Harvest Timing on the Diversity of Australian Olive Oil. J. Am. Oil Chem. Soc. 2010, 87, 877–884. [Google Scholar] [CrossRef]
- Martakos, I.; Kostakis, M.; Dasenaki, M.; Pentogennis, M.; Thomaidis, N. Simultaneous Determination of Pigments, Tocopherols, and Squalene in Greek Olive Oils: A Study of the Influence of Cultivation and Oil-Production Parameters. Foods 2020, 9, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosma, I.; Badeka, A.; Vatavali, K.; Kontakos, S.; Kontominas, M. Differentiation of Greek extra virgin olive oils according to cultivar based on volatile compound analysis and fatty acid composition. Eur. J. Lipid Sci. Technol. 2016, 118, 849–861. [Google Scholar] [CrossRef]
- Longobardi, F.; Ventrella, A.; Casiello, G.; Sacco, D.; Tasioula-Margari, M.; Kiritsakis, A.K.; Kontominas, M.G. Characterisation of the geographical origin of Western Greek virgin olive oils based on instrumental and multivariate statistical analysis. Food Chem. 2012, 133, 169–175. [Google Scholar] [CrossRef]
- Rondanini, D.P.; Castro, D.N.; Searles, P.S.; Rousseaux, M.C. Contrasting patterns of fatty acid composition and oil accumulation during fruit growth in several olive varieties and locations in a non-Mediterranean region. Eur. J. Agron. 2014, 52 Pt B, 237–246. [Google Scholar] [CrossRef]
- Nergiz, C.; Engez, Y. Compositional variation of olive fruit during ripening. Food Chem. 2000, 69, 55–59. [Google Scholar] [CrossRef]
- Paz, A.M.; Beltran, G.; Ortega, D.; Fernandez, A.; Jimenez, A.; Uceda, M. Characterisation of virgin olive oil of Italian olive cultivars: Frantoio and Leccino, grown in Andalusia. Food Chem. 2005, 89, 387–391. [Google Scholar] [CrossRef]
- Piravi-Vanak, Z.; Ghasemi, J.B.; Ghavami, M.; Ezzatpanah, H.; Zolfonoun, E. The Influence of Growing Region on Fatty Acids and Sterol Composition of Iranian Olive Oils by Unsupervised Clustering Methods. J. Am. Oil Chem. Soc. 2012, 89, 371–378. [Google Scholar] [CrossRef]
Site | Harvesting Month | Parameters | Site | Harvesting Month Time | |||||
---|---|---|---|---|---|---|---|---|---|
October | November | December | October | November | December | ||||
FA (oleic acid %) | A | 0.39 Ab | 0.50 ab | 1.21 a | TPC (mg/kg) | A | 449.36 Aa | 308.07 b | 340.82 Bb |
B | 0.33 AB | 0.42 | 0.46 | B | 457.90 Aa | 318.63 b | 398.27 Aab | ||
C | 0.15 Bb | 0.59 ab | 1.05 a | C | 392.62 Ba | 180.83 b | 226.23 Cb | ||
PV (mEq O2/kg) | A | 3.43 | 3.95 | 7.29 | TT (mg/kg) | A | 269.55 Aa | 209.04 Ab | 185.45 b |
B | 5.43 | 5.33 | 3.51 | B | 195.27 Ba | 158.82 ABb | 170.81 ab | ||
C | 2.65 b | 7.20 a | 6.46 a | C | 202.87 Ba | 129.04 Bb | 157.00 ab | ||
K232 | A | 1.72 Ba | 1.60 b | 1.78 Aa | TCL (mg/kg) | A | 8.40 | 7.23 | 3.72 |
B | 2.06 Aa | 1.86 b | 1.66 Bc | B | 8.71 | 4.99 | 6.44 | ||
C | 1.63 B | 1.86 | 1.70 B | C | 14.12 | 5.84 | 5.42 | ||
K270 | A | 0.11 Bb | 0.09 b | 0.14 a | TCA (mg/kg) | A | 5.18 | 5.08 | 2.75 |
B | 0.14 A | 0.17 | 0.13 | B | 5.85 | 3.38 | 4.29 | ||
C | 0.10 Cb | 0.16 a | 0.14 ab | C | 6.51 | 4.00 | 4.91 | ||
Wax esters (mg/kg) | A | 28.21 | 33.80 | 45.31 | ABTS assay (% inhibition) | A | 32.12 B | 27.30 | 32.44 |
B | 25.28 | 22.32 | 30.21 | B | 56.09 A | 26.36 | 44.46 | ||
C | 19.18 b | 23.64 ab | 40.46 a | C | 41.42 AB | 35.31 | 34.15 | ||
∑FAEE (mg/kg) | A | 2.56 | 16.92 | 13.27 | DPPH assay (% inhibition) | A | 26.04 | 16.99 | 35.69 |
B | 2.30 | 12.55 | 4.68 | B | 49.36 | 38.50 | 57.01 | ||
C | 1.85 | 24.06 | 11.73 | C | 48.53 | 37.05 | 33.26 | ||
Oxidative stability (h) | A | 13.89 | 10.45 B | 10.46 | |||||
B | 15.30 b | 16.90 Aab | 21.04 a | ||||||
C | 18.60 a | 6.18 Cb | 7.74 b |
Samples | Harvesting Month | Harvesting Month | |||||||
---|---|---|---|---|---|---|---|---|---|
October | November | December | October | November | December | ||||
C16:0 (%) | A | 14.77 AB | 14.41 | 14.21 A | C18:2 (%) | A | 5.42 | 5.90 | 6.23 A |
B | 14.91 Aa | 13.10 b | 12.94 Bb | B | 6.15 b | 7.61 a | 5.79 ABb | ||
C | 13.18 B | 12.47 | 11.87 C | C | 5.43 | 5.99 | 5.58 B | ||
C16:1 (%) | A | 1.35 | 1.45 | 1.57 A | C18:3 (%) | A | 0.49 | 0.48 | 0.48 |
B | 1.70 | 1.34 | 1.34 B | B | 0.46 | 0.46 | 0.41 | ||
C | 1.42 | 1.45 | 1.36 AB | C | 0.43 | 0.42 | 0.45 | ||
C17:0 (%) | A | 0.19 A | 0.19 | 0.19 A | SFA | A | 18.37 A | 17.93 | 17.69 A |
B | 0.16 B | 0.17 | 0.19 A | B | 18.19 Aa | 16.28 b | 16.18 Bb | ||
C | 0.13 C | 0.12 | 0.14 B | C | 16.11 B | 15.50 | 14.87 C | ||
C17:1 (%) | A | 0.35 A | 0.36 | 0.37 | MUFA | A | 75.70 | 75.68 | 75.60 C |
B | 0.35 A | 0.35 | 0.38 | B | 75.19 c | 75.64 b | 77.61 Ba | ||
C | 0.28 B | 0.30 | 0.31 | C | 78.03 | 78.04 | 79.09 A | ||
C18:0 (%) | A | 2.73 | 2.66 | 2.66 | PUFA | A | 5.91 | 6.38 | 6.70 |
B | 2.46 | 2.41 | 2.46 | B | 6.62 B | 8.07 A | 6.20 B | ||
C | 2.21 | 2.28 | 2.25 | C | 5.86 | 6.45 | 6.03 | ||
C18:1 (%) | A | 73.71 | 73.60 | 73.40 C | C18:1/C18:2 | A | 13.72 | 12.49 | 11.78 B |
B | 72.84 c | 73.67 b | 75.62 Ba | B | 11.84 a | 9.79 b | 13.06 ABa | ||
C | 76.03 | 75.99 | 77.11 A | C | 14.41 ± 3.28 | 13.04 | 13.88 A |
(%) | Samples | O | N | D | Samples | O | N | D | |
---|---|---|---|---|---|---|---|---|---|
Cholesterol (%) | A | 0.08 | 0.07 | 0.08 | Sitostanol (%) | A | 0.86 | 1.05 | 1.06 |
B | 0.07 | 0.11 | 0.08 | B | 1.06 | 1.13 | 1.05 | ||
C | 0.08 | 0.09 | 0.09 | C | 1.03 | 1.06 | 0.94 | ||
24-Methylene cholesterol (%) | A | 0.10 | 0.10 | 0.10 | D5-Avenastenol (%) | A | 7.04 | 5.99 | 6.01 |
B | 0.10 | 0.12 | 0.10 | B | 9.28 | 8.17 | 5.98 | ||
C | 0.10 | 0.10 | 0.12 | C | 5.85 | 6.72 | 7.72 | ||
Campesterol (%) | A | 1.77 | 2.22 | 1.87 B | D5-24-Stigmastadienol (%) | A | 0.77 | 0.85 | 0.86 |
B | 1.77 | 2.34 | 2.64 A | B | 0.89 | 0.77 | 0.85 | ||
C | 2.51 | 2.14 | 2.45 A | C | 0.83 | 0.86 | 0.78 | ||
Campestanol (%) | A | 0.13 | 0.15 | 0.15 | D7-Stigmastenol (%) | A | 0.18 | 0.16 | 0.15 AB |
B | 0.18 | 0.18 | 0.15 | B | 0.15 | 0.20 | 0.17 A | ||
C | 0.15 | 0.15 | 0.15 | C | 0.16 | 0.09 | 0.09 B | ||
Stigmasterol (%) | A | 0.66 | 0.90 | 1.00 | A | 0.55 | 0.50 | 0.41 | |
B | 0.53 | 0.53 | 0.74 | D7-Avenasterol (%) | B | 0.58 | 0.66 | 0.53 | |
C | 0.71 | 0.95 | 0.92 | C | 0.57 | 0.49 | 0.50 | ||
Campesterol/ Stigmasterol | A | 3.07 | 2.48 | 1.87 | Total β-Sitosterol (%) | A | 96.53 | 95.90 | 96.23 |
B | 3.31 | 4.76 | 3.58 | B | 96.62 | 95.86 | 95.57 | ||
C | 3.55 | 0.95 | 2.73 | C | 95.72 | 95.99 | 95.70 | ||
Clerosterol (%) | A | 0.93 | 0.90 | 0.90 | Total sterols (mg/kg) | A | 1527 | 1738 | 1582 |
B | 0.84 | 0.91 | 0.90 | B | 1348 | 1320 | 1679 | ||
C | 0.88 | 0.96 | 0.91 | C | 1776 | 1553 | 1630 | ||
β-sitosterol (%) | A | 86.94 | 87.11 | 87.40 A | |||||
B | 84.55 | 84.88 | 86.79 AB | ||||||
C | 87.14 | 86.39 | 85.35 B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mafrica, R.; Piscopo, A.; De Bruno, A.; Poiana, M. Effects of Climate on Fruit Growth and Development on Olive Oil Quality in Cultivar Carolea. Agriculture 2021, 11, 147. https://doi.org/10.3390/agriculture11020147
Mafrica R, Piscopo A, De Bruno A, Poiana M. Effects of Climate on Fruit Growth and Development on Olive Oil Quality in Cultivar Carolea. Agriculture. 2021; 11(2):147. https://doi.org/10.3390/agriculture11020147
Chicago/Turabian StyleMafrica, Rocco, Amalia Piscopo, Alessandra De Bruno, and Marco Poiana. 2021. "Effects of Climate on Fruit Growth and Development on Olive Oil Quality in Cultivar Carolea" Agriculture 11, no. 2: 147. https://doi.org/10.3390/agriculture11020147
APA StyleMafrica, R., Piscopo, A., De Bruno, A., & Poiana, M. (2021). Effects of Climate on Fruit Growth and Development on Olive Oil Quality in Cultivar Carolea. Agriculture, 11(2), 147. https://doi.org/10.3390/agriculture11020147