Sustainable Management with Mycorrhizae and Phosphate Solubilizing Bacteria for Enhanced Phosphorus Uptake in Calcareous Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Arbuscular Mycorrhizal Fungi (AMF) Inoculum
2.2. Preparation of Mycorrhizal Substrate for Field Application
2.3. Phosphate-Solubilizing Bacteria (PSB) Inoculum
2.4. Field Set Up for Maize Growth (Experiment 1)
2.5. Residual Effects of Inoculated AMF and PSB with RP on Wheat Crop (Experiment 2)
2.6. Analysis of Post-Harvest Plant Parameters
2.7. Analysis of Post-Harvest Soil Parameters
2.8. Statistical Analysis
3. Results
3.1. Maize Grain Yield and Post-Harvest Soil and Plant P Concentration (Experiment 1)
3.2. Soil Mycorrhiza Status and Phosphate Solubilizing Bacteria Population
3.3. Post-harvest Soil Properties
3.4. Residual Effect of AMF and PSB with RP on Post Harvest Soil and Wheat Crop
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T. A phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2013, 2, 587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketterings, Q.; Czymmek, K. Removal of Phosphorus by Field Crops. In Agronomy Fact Sheet Series; Fact Sheet #28. Available online: http://nmsp.cals.cornell.edu/publications/factsheets/factsheet28.pdf (accessed on 25 July 2020).
- Cozzolino, V.; Di Meo, V.; Piccolo, A. Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability. J. Geochem. Explor. 2013, 129, 40–44. [Google Scholar] [CrossRef]
- Collavino, M.M.; Sansberro, P.A.; Mroginski, L.A.; Aguilar, O.M. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol. Fertil. Soils 2010, 46, 727–738. [Google Scholar] [CrossRef]
- Da Martins Costa, E.; de Lima, W.; Oliveira-Longatti, S.M.; de Souza, F.M. Phosphate-solubilising bacteria enhance Oryza sativa growth and nutrient accumulation in an oxisol fertilized with rock phosphate. Ecol. Eng. 2015, 83, 380–385. [Google Scholar] [CrossRef]
- Battaglia, M.L.; Groover, G.; Thomason, W.E. Harvesting and Nutrient Replacement Costs Associated with Corn Stover Removal in Virginia; Virginia Cooperative Extension Publication CSES-229NP; Virginia Tech: Blacksburg, VA, USA, 2018. [Google Scholar]
- Czymmek, K.; Ketterings, Q.; Ros, M.; Battaglia, M.; Cela, S.; Crittenden, S.; Gates, D.; Walter, T.; Latessa, S.; Klaiber, L.; et al. The New York Phosphorus Index 2.0; Agronomy Fact Sheet Series; Fact Sheet #110; Cornell University Cooperative Extension: Ithaca, NY, USA, 2020. [Google Scholar]
- Pizzeghello, D.; Berti, A.; Nardi, S.; Morari, F. Phosphorus forms and p-sorption properties in three alkaline soils after long-term mineral and manure applications in north-eastern Italy. Agric. Ecosyst. Environ. 2011, 141, 58–66. [Google Scholar] [CrossRef]
- Kumar, S.; Lai, L.; Kumar, P.; Feliciano, Y.M.V.; Battaglia, M.L.; Hong, C.O.; Owens, V.N.; Fike, J.; Farris, R.; Galbraith, J. Impacts of nitrogen rate and landscape position on soils and switchgrass root growth parameters. Agron. J. 2019, 111, 1046–1059. [Google Scholar] [CrossRef]
- Kumar, P.; Lai, L.; Battaglia, M.L.; Kumar, S.; Owens, V.; Fike, J.; Galbraith, J.; Hong, C.O.; Faris, R.; Crawford, R.; et al. Impacts of nitrogen fertilization rate and landscape position on select soil properties in switchgrass field at four sites in the USA. Catena 2019, 180, 183–193. [Google Scholar] [CrossRef]
- Good, A.G.; Beatty, P.H. Fertilizing Nature: A Tragedy of Excess in the Commons. PLoS Biol. 2011, 9, e1001124. [Google Scholar] [CrossRef]
- Molaei, A.; Lakzian, A.; Haghnia, G.; Astaraei, A.; Rasouli-Sadaghiani, M.; Ceccherini, M.T.; Datta, R. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: An incubation study. PLoS ONE 2017, 12, e0180663. [Google Scholar] [CrossRef]
- Molaei, A.; Lakzian, A.; Datta, R.; Haghnia, G.; Astaraei, A.; Rasouli-Sadaghiani, M.; Ceccherini, M.T. Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities. Int. Agrophys. 2017, 31, 499. [Google Scholar] [CrossRef] [Green Version]
- Meena, R.S.; Kumar, S.; Datta, R.; Lal, R.; Vijayakumar, V.; Brtnicky, M.; Sharma, M.P.; Yadav, G.S.; Jhariya, M.K.; Jangir, C.K. Impact of agrochemicals on soil microbiota and management: A review. Land 2020, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Zapata, F.; Zaharah, A.R. Phosphorus availability from phosphate rock and sewage sludge as influenced by the addition of water soluble phosphate fertilizer. Nutr. Cycl. Agroecosyst. 2002, 63, 43–48. [Google Scholar] [CrossRef]
- Wahid, F.; Sharif, M.; Steinkellner, S.; Khan, M.A.; Marwat, K.B.; Khan, S.A. Inoculation of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria in the presence of rock phosphate improves phosphorus uptake and growth of maize. Pak. J. Bot. 2016, 48, 739–747. [Google Scholar]
- Pierre, M.J.; Sopan Bhople, D.B.; Kumar, D.A.; Erneste, H.; Emmanuel, B.; Singh, Y.N. Contribution of arbuscular mycorrhizal fungi (AM fungi) and rhizobium inoculation on crop growth and chemical properties of rhizospheric soils in high plants. IOSR J. Agric. Vet. Sci. 2014, 7, 45–55. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, J.; Ding, X.; He, X.; Zhang, F.; Feng, G. Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol. Biochem. 2014, 74, 177–183. [Google Scholar] [CrossRef]
- Adnan, M.; Fahad, S.; Zamin, M.; Shah, S.; Mian, I.A.; Danish, S.; Zafar-ul-Hye, M.; Battaglia, M.L.; Naz, R.M.M.; Saeed, B.; et al. Coupling Phosphate-Solubilizing Bacteria with Phosphorus Supplements Improve Maize Phosphorus Acquisition and Growth under Lime Induced Salinity Stress. Plants 2020, 9, 900. [Google Scholar] [CrossRef]
- Smith, S.E.; Smith, F.A. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem Scales. Annu. Rev. Plant Biol. 2011, 62, 227–250. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, H.; Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999, 17, 319–339. [Google Scholar] [CrossRef]
- Hussain, M.I.; Asghar, H.N.; Akhtar, M.J.; Arshad, M. Impact of phosphate solubilizing bacteria on growth and yield of maize. Soil Environ. 2013, 32, 71–78. [Google Scholar]
- Zafar-ul-Hye, M.; Zahra, M.B.; Danish, S.; Abbas, M.; Rehim, A.; Naeem Akbar, M.; Iftikhar, A.; Gul, M.; Nazir, I.; Abid, M.; et al. Multi-strain Inoculation with PGPR Producing ACC Deaminase is More Effective Than Single-strain Inoculation to Improve Wheat (Triticum aestivum) Growth and Yield. Phyton—Int. J. Exp. Bot. 2020, 89, 405–413. [Google Scholar] [CrossRef]
- Danish, S.; Younis, U.; Akhtar, N.; Ameer, A.; Ijaz, M.; Nasreen, S.; Huma, F.; Sharif, S.; Ehsanullah, M. Phosphorus solubilizing bacteria and rice straw biochar consequence on maize pigments synthesis. Int. J. Biosci. 2015, 5, 31–39. [Google Scholar] [CrossRef]
- Danish, S.; Zafar-ul-Hye, M. Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Sci. Rep. 2019, 9, 5999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danish, S.; Zafar-ul-Hye, M.; Mohsin, F.; Hussain, M. ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS ONE 2020, 15, e0230615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danish, S.; Zafar-ul-Hye, M.; Hussain, M.; Shaaban, M.; Núñez-delgado, A. Rhizobacteria with ACC-Deaminase Activity Improve Nutrient Uptake, Chlorophyll Contents and Early Seedling Growth of Wheat under PEG- Induced Osmotic Stress. Int. J. Agric. Biol. 2019, 21, 1212–1220. [Google Scholar] [CrossRef]
- Zafar-ul-Hye, M.; Danish, S.; Abbas, M.; Ahmad, M.; Munir, T.M. ACC deaminase producing PGPR Bacillus amyloliquefaciens and Agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy 2019, 9, 343. [Google Scholar] [CrossRef] [Green Version]
- Brtnicky, M.; Dokulilova, T.; Holatko, J.; Pecina, V.; Kintl, A.; Latal, O.; Vyhnanek, T.; Prichystalova, J.; Datta, R. Long-Term Effects of Biochar-Based Organic Amendments on Soil Microbial Parameters. Agronomy 2019, 9, 747. [Google Scholar] [CrossRef] [Green Version]
- Pathan, S.I.; Větrovský, T.; Giagnoni, L.; Datta, R.; Baldrian, P.; Nannipieri, P.; Renella, G. Microbial expression profiles in the rhizosphere of two maize lines differing in N use efficiency. Plant Soil 2018, 433, 401–413. [Google Scholar] [CrossRef]
- Barea, J.M.; Pozo, M.J.; Azcón, R.; Azcón-Aguilar, C. Microbial co-operation in the rhizosphere. J. Exp. Bot. 2005, 56, 1761–1778. [Google Scholar] [CrossRef] [Green Version]
- Eweda, W.E.; Selim, S.M.; Mostafa, M.I.; Abd-El-Fattah, D.A. Use of Bacillus circulans as Bio-Accelerator Enriching Composted Agricultural Wastes Identification and Utilization of the Microorganism for Compost Production. In Proceedings of the 12th Conference of the Microbiology; Search Results Web Results Egyptian Society of Applied Microbiology, Giza, Egypt, 18–20 March 2007; pp. 43–65. [Google Scholar]
- Ordoñez, Y.M.; Fernandez, B.R.; Lara, L.S.; Rodriguez, A.; Uribe-Vélez, D.; Sanders, I.R. Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities. PLoS ONE 2016, 11, 0154438. [Google Scholar] [CrossRef]
- Hage-Ahmed, K.; Krammer, J.; Steinkellner, S. The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato. Mycorrhiza 2013, 23, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Page, A.L.; Miller, R.H.; Keeny, D.R. Soil pH and Lime Requirement. In Methods of Soil Analysis; American Society of Agronomy: Madison, WI, USA, 1982; pp. 199–208. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Method of Soil Analysis, Agron. No. 9, Part 2: Chemical and Microbiological Properties; Page, A.L., Ed.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Soltanpour, P.N.; Schwab, A.P. A new soil test for simultaneous extraction of macroand micro-nutrients in alkaline soils. Commun. Soil Sci. Plant Anal. 1977, 8, 195–207. [Google Scholar] [CrossRef]
- McGonigle, T.; Miller, M.; Evans, D.; Fairchild, G.; Swan, J. A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol. 1990, 115, 495–501. [Google Scholar] [CrossRef]
- Pikovskaya, R.I. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology 1948, 17, 362–370. [Google Scholar]
- Murray, P.; Baron, E.; Jorgensen, J.; Pfaller, M.; Yorken, R. Susceptibility Testing Methods Yeast and Filamentous Fungi, Manual of Clinical Microbiology, 8th ed.; American Society Microbiology Press: Washington, DC, USA, 2003. [Google Scholar]
- Pellegrino, E.; Bedini, S.; Avio, L.; Bonari, E.; Giovannetti, M. Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil Biol. Biochem. 2011, 43, 367–376. [Google Scholar] [CrossRef]
- Norman, D.W.; Worman, F.D.; Siebert, J.D.; Modiakgotla, E. The Farming Systems Approach to Development and Appropriate Technology Generation; Food and Agricultural Organization: Rome, Italy, 1995. [Google Scholar]
- Jones, J.B., Jr.; Wolf, H.B.; Mills, H.A. Plant Analysis Handbook: A Practical Sampling, Preparation, Analysis, and Interpretation Guide; Micro-Macro Publishing Inc.: Athens, GA, USA, 1991. [Google Scholar]
- Sharma, N.K.; Singh, R.J.; Kumar, K. Dry Matter Accumulation and Nutrient Uptake by Wheat (Triticum aestivum L.) under Poplar (Populus deltoides) Based Agroforestry System. ISRN Agron. 2012, 2012, 359673. [Google Scholar] [CrossRef] [Green Version]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Datta, R.; Vranová, V.; Pavelka, M.; Rejsek, K.; Formánek, P. Effect of soil sieving on respiration induced by low-molecular-weight substrates. Int. Agrophys. 2014, 28, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Marfo, T.D.; Datta, R.; Pathan, S.I.; Vranová, V. Ecotone Dynamics and Stability from Soil Scientific Point of View. Diversity 2019, 11, 53. [Google Scholar] [CrossRef] [Green Version]
- Marfo, T.D.; Datta, R.; Vranová, V.; Ekielski, A. Ecotone Dynamics and Stability from Soil Perspective: Forest-Agriculture Land Transition. Agriculture 2019, 9, 228. [Google Scholar] [CrossRef] [Green Version]
- Yadav, G.S.; Datta, R.; Pathan, S.I.; Lal, R.; Meena, R.S.; Babu, S.; Das, A.; Bhowmik, S.; Datta, M.; Saha, P.; et al. Effects of conservation tillage and nutrient management practices on soil fertility and productivity of rice (Oryza sativa L.)–rice system in north eastern region of India. Sustainability 2017, 9, 1816. [Google Scholar]
- Gerdemann, J.W.; Nicolson, T.H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- James, G.C. Native Sherman Rockland Community College, State University of New York; The Benjamin/Coming Publishing Company. Inc.: San Francisco, CA, USA, 1978. [Google Scholar]
- Steel, R.G.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biometrical Approach, 3rd ed.; McGraw Hill Book International Co.: Singapore, 1997. [Google Scholar]
- Ramasamy, K.; Joe, M.M.; Kim, K.Y.; Lee, S.-M.; Shagol, C.; Rangasamy, A.; Chung, J.-B.; Islam, M.R.; Sa, T.-M. Synergistic effects of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria for sustainable agricultural production. Korean J. Soil Sci. Fertil. 2011, 44, 637–649. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, P.K.; Rai, R.K. Effect of vesicular arbuscular mycorrhizae and phosphate-solubilizing bacteria on growth, yield and phosphorus uptake by wheat (Triticum aestivum) and chickpea (Cicer arietinum). Indian J. Agron. 2000, 45, 602–607. [Google Scholar]
- Singh, H.; Reddy, M.S. Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. Eur. J. Soil Biol. 2011, 47, 30–34. [Google Scholar] [CrossRef]
- Chu, Q.; Wang, X.; Yang, Y.; Chen, F.; Zhang, F.; Feng, G. Mycorrhizal responsiveness of maize (Zea mays L.) genotypes as related to releasing date and available P content in soil. Mycorrhiza 2013, 23, 497–505. [Google Scholar] [CrossRef]
- Lu, D.Q.; Chien, S.H.; Henao, J.; Sompongse, D. Evaluation of short-term efficiency of diammonium phosphate versus urea plus single superphosphate on a calcareous soil 1. Agron. J. 1987, 79, 896–900. [Google Scholar] [CrossRef]
- Abarchi, I.; Zhang, B.; Zhan, Y.; Xiang-Ping, V.G.; Wei-Mu, W.; Ong’or, B.T.; Timbely, D. Effects of plant age and rock phosphate on quality and nutrient release of legume residue. Pedosphere 2009, 19, 78–85. [Google Scholar] [CrossRef]
- Cao, J.; Huang, Y.; Wang, C. Rhizosphere interactions between earthworms (Eisenia fetida) and arbuscular mycorrhizal fungus (Funneliformis mosseae) promote utilization efficiency of phytate phosphorus in maize. Appl. Soil Ecol. 2015, 94, 30–39. [Google Scholar] [CrossRef]
- Singh, R.; Soni, S.K.; Kalra, A. Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 2013, 23, 35–44. [Google Scholar] [CrossRef]
- Panhwar, Q.A.; Jusop, S.; Naher, U.A.; Othman, R.; Razi, M.I. Application of potential phosphate-solubilizing bacteria and organic acids on phosphate solubilization from phosphate rock in aerobic rice. Sci. World J. 2013, 2013, 272409. [Google Scholar] [CrossRef] [PubMed]
- Garbaye, J. Helper bacteria: A new dimension to the mycorrhizal symbiosis. New Phytol. 1994, 128, 197–210. [Google Scholar] [CrossRef]
- Barea, J.M. Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. J. Soil Sci. Plant Nutr. 2015, 15, 261–282. [Google Scholar] [CrossRef]
- Babana, A.H.; Antoun, H. Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant Soil 2006, 287, 51–58. [Google Scholar] [CrossRef]
- Zubek, S.; Mielcarek, S.; Turnau, K. Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 2012, 22, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanwar, A.; Aggarwal, A.; Kadian, N.; Gupta, A. Arbuscular mycorrhizal inoculation and super phosphate application influence plant growth and yield of Capsicum annuum. J. Soil Sci. Plant Nutr. 2013, 13, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Li, L.; Zhang, A.; Pan, G.; Bao, D.; Chang, A. Biochar Amendment Greatly Reduces Rice Cd Uptake in a Contaminated Paddy Soil: A Two-Year Field Experiment. BioResources 2011, 6, 2605–2618. [Google Scholar]
- Kaya, C.; Akram, N.A.; Ashraf, M.; Sonmez, O. Exogenous Application of Humic Acid Mitigates Salinity Stress in Maize (Zea mays L.) Plants by Improving some Key Physico-biochemical Attributes. Cereal Res. Commun. 2018, 46, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Kaya, C.; Ashraf, M.; Sonmez, O.; Tuna, L.; Aydemir, S. Exogenously applied nitric oxide confers tolerance to salinity-induced oxidativestress in two maize (Zea mays L.) cultivars differing in salinity tolerance. Turk. J. Agrıc. For. 2015, 39, 909–919. [Google Scholar] [CrossRef]
- Kaya, C.; Ashraf, M.; Sonmez, O. Promotive effect of exogenously applied thiourea on key physiological parameters and oxidative defense mechanism in salt-stressed Zea mays L. plants. Turk. J. Bot. 2015, 39, 786–795. [Google Scholar] [CrossRef]
- Sonmez, O.; Pierzynski, G.M.; Frees, L.; Davis, B.; Leikam, D.; Sweeney, D.W.; Janssen, K.A. A Field Assessment Tool for Phosphorus Losses in Runoff in Kansas. J. Soil Water Conserv. 2009, 64, 212–222. [Google Scholar] [CrossRef]
- Sonmez, O.; Aydemir, S.; Kaya, C. Mitigation Effects of Mycorrhiza on Boron Toxicity in Wheat Plants. N. Z. J. Crop Hort. Sci. 2009, 37, 99–104. [Google Scholar] [CrossRef]
Treatments | Grain Yield (kg·ha−1) | Plant P Uptake (kg·ha−1) | Soil P Concentration (mg·kg−1) |
---|---|---|---|
Control (No fertilizers) | 1668 ± 480 f * | 3 ± 0.7 g * | 1.40± 0.72 f * |
N & K fertilizers | 2136 ± 115 ef | 5 ± 2.4 fg | 1.63 ± 0.87 f |
Single super phosphate (SSP) | 3460 ± 562 a | 19 ± 0.9 a | 6.45 ± 0.82 a |
Rock phosphate (RP) | 2984 ± 382 abcd | 8 ± 2.1 ef | 2.8 ± 1 e |
Bacillus sp. | 2823 ± 197 bcd | 11 ± 3.4 cd | 4.8 ± 1.31 cd |
Arbuscular mycorrhizal fungi (AMF) | 2545 ± 622 de | 10 ± 2.6 de | 3.93 ± 1.1 d |
AMF + Bacillus sp. | 3198 ± 536 abc | 15 ± 2.3 b | 6.2 ± 0.87 ab |
RP + Bacillus sp. | 2752 ± 545 cde | 14 ± 2.9 bc | 5.67 ± 1.9 bc |
RP + AMF | 2717 ± 136 cde | 12 ± 2.8 cd | 4.93 ± 0.5 c |
RP + AMF + Bacillus sp. | 3387 ± 547 ab | 18 ± 1.6 a | 6.73 ± 0.92 a |
LSD (p ≤ 0.01) | 621 | 2.7 | 0.99 |
SOV | DF | Grain Yield (kg·ha−1) | Plant P Uptake (kg·ha−1) | Soil P (mg·kg−1) | AMF Spores (20 g Soil) | Roots Colonization (%) | PSB Population (×108 cfu/mL) | Soil pH (1:5) | Soil EC (dS·m−1) | Organic Matter (%) |
---|---|---|---|---|---|---|---|---|---|---|
Rep | 2 | 1,228,628 | 0.0047 | 8.03 | 104.63 | 58.43 | 566.03 | 0.03 | 04 | 0.11 |
Treatments | 9 | 437,860.3 ** | 0.0059 | 11.68 ** | 159.63 ** | 532.07 ** | 1558.96 ** | 0.07 ** | 0.06 ** | 0.97 ** |
Error | 18 | 47,421.87 | 0.0004 | 0.33 | 8.63 | 16.17 | 39.88 | 0.01 | 0.003 | 0.06 |
Total | 29 |
Treatments | No of Spores (per 20 g Soil) | Root Colonization (%) | PSB Population (×108 cfu/mL) |
---|---|---|---|
Control (No fertilizers) | 15 ± 3 f * | 6 ± 3 f * | 15 ± 7 e * |
N & K fertilizers | 21 ± 3 de | 9 ± 4 ef | 21 ± 6 e |
Single super phosphate (SSP) | 16 ± 2 ef | 12 ± 4 def | 22 ± 5 de |
Rock phosphate (RP) | 17 ± 2 ef | 15 ± de | 33 ± 10 d |
Bacillus sp. | 18 ± 3 ef | 12 ± 3 def | 54 ± 10 c |
Arbuscular mycorrhizal fungi (AMF) | 29 ± 4 bc | 28 ± 4 c | 25 ± 7 de |
AMF + Bacillus sp. | 36 ± 4 a | 38 ± 4 ab | 67 ± 15 b |
RP + Bacillus sp. | 25 ± 9 cd | 18 ± 5 d | 55 ± 10 c |
RP + AMF | 25 ± 4 cd | 35 ± 8 b | 23 ± 3 de |
RP + AMF + Bacillus sp. | 33 ± 5 ab | 42 ± 3 a | 81 ± 14 a |
LSD (p ≤ 0.01) | 5.0 | 7.0 | 11.0 |
Treatments | Organic Matter (%) | pH (1:5) | ECe (dS·m−1) |
---|---|---|---|
Control (No fertilizers) | 0.7 ± 0.02 f * | 7.8 ± 0.04 a * | 0.26 ± 0.07 f * |
N and K fertilizers | 0.8 ± 0.07 e | 7.6 ± 0.03 ab | 0.28 ± 0.12 f |
Single super phosphate (SSP) | 1.3 ± 0.06 ab | 7.5 ± 0.04 bc | 0.45 ± 0.03 cd |
Rock phosphate (RP) | 0.9 ± 0.13 de | 7.5 ± 0.04 bc | 0.34 ± 0.13 ef |
Bacillus sp. | 1.1 ± 0.2 c | 7.4 ± 0.03 bcd | 0.46 ± 0.1 cd |
Arbuscular mycorrhizal fungi (AMF) | 1.0 ± 0.13 cd | 7.4 ± 0.02 cd | 0.39 ± 0.09 de |
AMF + Bacillus sp. | 1.3 ± 0.06 ab | 7.4 ± 0.02 cd | 0.66 ± 0.08 a |
RP + Bacillus sp. | 1.1 ± 0.2 c | 7.5 ± 0.07 bc | 0.56 ± 0.06 ab |
RP + AMF | 1.2 ± 0.07 bc | 7.5 ± 0.02 bc | 0.5 ± 0.04 bc |
RP + AMF + Bacillus sp. | 1.4 ± 0.07 a | 7.3 ± 0.27 d | 0.67 ± 0.04 a |
LSD (p ≤ 0.01) | 0.12 | 0.2 | 0.1 |
Treatments | Grain Yield (kg·ha−1) | Plant P Uptake (kg·ha−1) | Soil P Concentration (mg·kg−1) |
---|---|---|---|
Control (No fertilizers) | 1720 ± 12 h * | 2.04 ± 0.71 h * | 1.11 ± 0.21 g * |
N & K fertilizers | 1981 ± 13 g | 4.64 ± 0.96 gh | 1.25 ± 0.22 g |
Single super phosphate (SSP) | 2292 ± 84 ef | 10.02 ± 1.3 ef | 3.75 ± 0.39 ef |
Rock phosphate (RP) | 2555 ± 67 d | 13.58 ± 1.5 cd | 4.29 ± 0.49 e |
Bacillus sp. | 2420 ± 38 de | 10.48 ± 0.97 de | 5.55 ± 1.71 d |
Arbuscular mycorrhizal fungi (AMF) | 2150 ± 17 fg | 7.13 ± 0.76 fg | 3.1 ± 0.31 f |
AMF + Bacillus sp. | 3061 ± 14 b | 20.98 ± 3.75 b | 5.99 ± 0.22 cd |
RP + Bacillus sp. | 3316 ± 27 a | 18.79 ± 3.5 b | 7.4 ± 0.22 ab |
RP + AMF | 2770 ± 83 c | 15.36 ± 2 c | 6.7 ± 0.37 bc |
RP + AMF + Bacillus sp. | 3101 ± 18 b | 24.49 ± 5.4 a | 8.05 ± 0.17 a |
LSD (p ≤ 0.01) | 179 | 3.2 | 1.11 |
SOV | DF | Grain Yield (kg·ha−1) | Plant P Uptake (kg·ha−1) | Soil P (mg·kg−1) | AMF Spores (20 g soil) | Roots Colonization (%) | PSB Population (×108 cfu/mL) | Soil pH (1:5) | Soil EC (dS·m−1) | Organic Matter (%) |
---|---|---|---|---|---|---|---|---|---|---|
Rep | 2 | 26,294.53 | 35.67 | 0.03 | 20.233 | 64.93 | 38.53 | 0.008 | 0.04 | 0.785 |
Treat | 9 | 818,194 ** | 158.24 ** | 17.78 ** | 432.38 ** | 644.66 ** | 895.88 ** | 0.044 ** | 0.09 ** | 0.592 ** |
Error | 18 | 10,791.87 | 3.5 | 0.42 | 18.455 | 16.93 | 29.49 | 0.0007 | 0.01 | 0.046 |
Total | 29 |
Treatments | No of Spores (per 20 g Soil) | Root Colonization (%) | PSB Population (×108 cfu/mL) |
---|---|---|---|
Control (No fertilizers) | 13 ± 3 f * | 11 ± 2 f * | 21 ± 2 g * |
N & K fertilizers | 18 ± 4 ef | 17 ± 3 ef | 28 ± 3 f |
Single super phosphate (SSP) | 24 ± 2 de | 23 ± 3 de | 35 ± 3 e |
Rock phosphate (RP) | 21 ± 1 e | 27 ± 4 cd | 32 ± 2 ef |
Bacillus sp. | 13 ± 3 f | 29 ± 8 cd | 46 ± 1 d |
Arbuscular mycorrhizal fungi (AMF) | 30 ± 8 cd | 33 ± 7 c | 32 ± 2 ef |
AMF + Bacillus sp. | 50 ± 5 a | 49 ± 3 b | 57 ± 5 c |
RP + Bacillus sp. | 25 ± 3 de | 31 ± 5 c | 68 ± 5 b |
RP + AMF | 35 ± 4 bc | 42 ± 5 b | 32 ± 2 ef |
RP + AMF + Bacillus sp. | 41 ± 4 b | 60 ± 4 a | 78 ± 3 a |
LSD (p ≤ 0.01) | 7.2 | 7 | 4.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wahid, F.; Fahad, S.; Danish, S.; Adnan, M.; Yue, Z.; Saud, S.; Siddiqui, M.H.; Brtnicky, M.; Hammerschmiedt, T.; Datta, R. Sustainable Management with Mycorrhizae and Phosphate Solubilizing Bacteria for Enhanced Phosphorus Uptake in Calcareous Soils. Agriculture 2020, 10, 334. https://doi.org/10.3390/agriculture10080334
Wahid F, Fahad S, Danish S, Adnan M, Yue Z, Saud S, Siddiqui MH, Brtnicky M, Hammerschmiedt T, Datta R. Sustainable Management with Mycorrhizae and Phosphate Solubilizing Bacteria for Enhanced Phosphorus Uptake in Calcareous Soils. Agriculture. 2020; 10(8):334. https://doi.org/10.3390/agriculture10080334
Chicago/Turabian StyleWahid, Fazli, Shah Fahad, Subhan Danish, Muhammad Adnan, Zhen Yue, Shah Saud, Manzer H. Siddiqui, Martin Brtnicky, Tereza Hammerschmiedt, and Rahul Datta. 2020. "Sustainable Management with Mycorrhizae and Phosphate Solubilizing Bacteria for Enhanced Phosphorus Uptake in Calcareous Soils" Agriculture 10, no. 8: 334. https://doi.org/10.3390/agriculture10080334
APA StyleWahid, F., Fahad, S., Danish, S., Adnan, M., Yue, Z., Saud, S., Siddiqui, M. H., Brtnicky, M., Hammerschmiedt, T., & Datta, R. (2020). Sustainable Management with Mycorrhizae and Phosphate Solubilizing Bacteria for Enhanced Phosphorus Uptake in Calcareous Soils. Agriculture, 10(8), 334. https://doi.org/10.3390/agriculture10080334