Field Validation of the DNDC-Rice Model for Methane and Nitrous Oxide Emissions from Double-Cropping Paddy Rice under Different Irrigation Practices in Tamil Nadu, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Gas Sample Collection, Measurement, and Calculation
2.3. The DNDC-Rice Model
2.4. Statistical Analysis
3. Results and Discussion
3.1. Rice Growth
3.2. Soil Redox Status and Methane Emissions
3.3. Nitrous Oxide Emissions
3.4. Cumulative Emissions and Total Global Warming Potential
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Ge, J.; Tian, S.; Li, S.; Nguy-Robertson, A.L.; Zhan, M.; Cao, C. Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China. Sci. Total Environ. 2015, 505, 1043. [Google Scholar] [CrossRef] [PubMed]
- Oo, A.Z.; Sudo, S.; Inubushi, K.; Mano, M.; Yamamoto, A.; Ono, K.; Osawa, T.; Hayashida, S.; Patra, P.K.; Terao, Y.; et al. Methane and nitrous oxide emissions from conventional and modified rice cultivation systems in South India. Agric. Ecosyst. Environ. 2018, 252, 148–158. [Google Scholar] [CrossRef]
- Kruger, M.; Frenzel, P.; Conrad, R. Microbial processes influencing methane emission from rice fields. Global Chang. Biol. 2001, 7, 49–63. [Google Scholar] [CrossRef]
- Itoh, M.; Sudo, S.; Mori, S.; Saito, H.; Yoshida, T.; Shiratori, Y.; Suga, S.; Yoshikawa, N.; Suzue, Y.; Mizukami, H.; et al. Mitigation of methane emissions from paddy fields by prolonging midseason drainage. Agric. Ecosyst. Environ. 2011, 141, 359–372. [Google Scholar] [CrossRef]
- Minamikawa, K.; Fumoto, T.; Itoh, M.; Hayano, M.; Sudo, S.; Yagi, K. Potential of prolonged midseason drainage for reducing methane emission from rice paddies in Japan: A long-term simulation using the DNDC-Rice model. Biol. Fertil. Soils. 2014, 50, 879–889. [Google Scholar] [CrossRef]
- Setyanto, P.; Pramono, A.; Adriany, T.A.; Susilawati, H.L.; Tokida, T.; Agnes, T.; Padre, A.T.; Minamikawa, K. Alternate wetting and drying reduces methane emission from a rice paddy in Central Java, Indonesia without yield loss. Soil Sci. Plant Nutr. 2018, 1, 23–30. [Google Scholar] [CrossRef]
- Win, E.P.; Win, K.K.; Kimura, S.D.; Oo, A.Z. Greenhouse gas emissions, grain yield and water productivity: a paddy rice field case study based in Myanmar. Greenh. Gas Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Oo, A.Z.; Sudo, S.; Inubushi, K.; Chellappan, U.; Yamamoto, A.; Ono, K.; Mano, M.; Hayashida, S.; Koothan, V.; Osawa, T.; et al. Mitigation Potential and Yield-Scaled Global Warming Potential of Early-Season Drainage from a Rice Paddy in Tamil Nadu, India. Agronomy 2018, 8, 202. [Google Scholar] [CrossRef] [Green Version]
- Peyron, M.; Bertora, C.; Pelissetti, S.; Said-Pullicino, D.; Celi, L.; Miniotti, E.; Romani, M.; Sacco, D. Greenhouse gas emissions as affected by different water management practices in temperate rice paddies. Agric. Ecosyst. Environ. 2016, 232, 17–28. [Google Scholar] [CrossRef]
- Zou, J.; Huang, Y.; Zheng, X.; Wang, Y. Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: Dependence on water regime. Atmos. Environ. 2007, 41, 8032–8042. [Google Scholar] [CrossRef]
- Wang, J.; Jia, J.; Xiong, Z.; Khalil, M.A.K.; Xing, G. Water regime-nitrogen fertilizer-straw incorporation interaction: Field study on nitrous oxide emissions from a rice agroecosystem in Nanjing, China. Agric. Ecosyst. Environ. 2011, 141, 437–446. [Google Scholar] [CrossRef]
- Babu, Y.J.; Li, C.; Frolking, S.; Nayak, D.R.; Adhya, T.K. Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India. Nutr. Cycl. Agroecosyst. 2006, 74, 157–174. [Google Scholar] [CrossRef]
- Li, C. Modeling trace gas emissions from agricultural ecosystems. Nutr. Cycl. Agroecosyst. 2000, 58, 259–276. [Google Scholar] [CrossRef]
- Li, C.; Aber, J.; Stange, F.; Butterbach-Bhal, K.; Papen, H. A process-oriented model of N2O and NO emissions from forest soils: Model development. J. Geophys. Res. 2000, 105, 4369–4384. [Google Scholar] [CrossRef]
- Li, C.; Frolking, S.; Harriss, R. Modeling carbon biogeochemistry in agricultural soils. Glob. Biogeochem. Cycles 1994, 8, 237–254. [Google Scholar] [CrossRef]
- Fumoto, T.; Kobayashi, K.; Li, C.; Yagi, K.; Hasegawa, T. Revising a process-based biogeochemistry model DNDC to simulate methane emission from paddy fields under various residue managements. Glob. Chang. Biol. 2008, 14, 382–402. [Google Scholar] [CrossRef]
- Smakgahn, K.; Fumoto, T.; Yagi, K. Validation of revised DNDC model for methane emissions from irrigated rice fields in Thailand and sensitivity analysis of key factors. J. Geophys. Res.-Biogeosci. 2009, 114, G02017. [Google Scholar] [CrossRef] [Green Version]
- Fumoto, T.; Yanagihara, T.; Saito, T.; Yagi, K. Assessment of the methane mitigation potentials of alternative water regimes in rice fields using a process-based biogeochemistry model. Glob. Chang. Biol. 2010, 16, 1847–1859. [Google Scholar] [CrossRef]
- Minamikawa, K.; Fumoto, T.; Iizumi, T.; Cha-un, N.; Pimple, U.; Nishimori, M.; Ishigooka, Y.; Kuwagata, T. Prediction of future methane emission from irrigated rice paddies in central Thailand under different water management practices. Sci. Total Environ. 2016, 566–567, 641–651. [Google Scholar] [CrossRef] [Green Version]
- Katayanagi, N.; Furukawa, Y.; Fumoto, T.; Hosen, Y. Validation of the DNDC-Rice model by using CH4 and N2O flux data from rice cultivated in pots under alternate wetting and drying irrigation management. Soil Sci. Plant Nutr. 2012, 58, 360–372. [Google Scholar] [CrossRef]
- Inubushi, K.; Takeuchi, D.; Mano, M.; Sudo, S.; Oo, A.Z.; Ono, K.; Yamamoto, A.; Hayashida, S.; Ravi, V. Greenhouse-gasses emission and their influencing factors in paddy fields in South India. Res. Trop. Agric. 2017, 10, 15. (In Japanese) [Google Scholar]
- Penning de Vries, F.W.T.; Jansen, D.M.; Ten Berge, H.F.M.; Bakema, A. Simulation of Ecophysiological Processes of Growth in Several Annual Crops; Pudoc: Wageningen, The Netherlands; IRRI: Los Baños, Philippines, 1989; 271p. [Google Scholar]
- Farquhar, G.; Von Caemmerer, S. Modelling of photosynthetic response to environmental conditions. In Physiological Plant Ecology II; Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1982; pp. 549–587. [Google Scholar]
- Kato, Y.; Okami, M. Root growth dynamics and stomatal behavior of rice (Oryza sativa L.) grown under aerobic and flooded conditions. Field Crops Res. 2010, 117, 9–17. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, S.; Fu, Z.; Chen, G.; Zou, G.; Song, X. A two-year field measurement of methane and nitrous oxide fluxes from rice paddies under contrasting climate conditions. Sci. Rep. 2016, 6, 28255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oo, A.Z.; Nguyen, L.; Win, K.T.; Cadisch, G.; Bellingrath-Kimura, S.D. Toposequential variation in methane emissions from double-cropping paddy rice in Northwest Vietnam. Geoderma 2013, 209–210, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Ussiri, D.; Lal, R. Nitrous oxide emissions from rice fields. In Soil Emission of Nitrous Oxide and Its Mitigation; Ussiri, D., Lal, R., Eds.; Springer: Cham, The Netherlands, 2013; pp. 213–242. [Google Scholar]
- Davidson, E.A.; Keller, M.; Erickson, H.E.; Verchot, L.V.; Veldkamp, E. Testing a conceptual model of soil emissions of nitrous and nitric oxides: Using two functions based on soil nitrogen availability and soil water content, the hole-in-the-pipe model characterizes a large fraction of the observed variation of nitric oxide and nitrous oxide emissions from soils. Bioscience 2000, 50, 667–680. [Google Scholar]
- Katayanagi, N.; Fumoto, Y.; Hayano, M.; Shirato, Y.; Takata, Y.; Leon, A.; Yagi, K. Estimation of total CH4 emission from Japanese rice paddies using a new estimation method based on the DNDC-Rice simulation model. Sci. Total Environ. 2017, 601–602, 346–355. [Google Scholar] [CrossRef]
Summer Rice June–September 2016 | Monsoon Rice October 2016–January 2017 | Summer Rice June–September 2017 | Monsoon Rice October 2017–January 2018 | ||
---|---|---|---|---|---|
Residue amendment | 20/5/2016: 650 kg C ha−1 | 23/9/2016: 850 kg C ha−1 | 20/2/2017: 850 kg C ha−1 | 25/9/2017: 850 kg C ha−1 | |
Crop cultivation | Planting: 10/6/2016 Harvest: 14/9/2016 | Planting: 5/10/2016 Harvest: 18/1/2017 | Planting: 16/6/2017 Harvest: 21/9/2017 | Planting: 6/10/2017 Harvest: 18/1/2018 | |
Rice variety | ADT 43 | ADT 46 | ADT 43 | ADT 46 | |
Fertilizer application | 150 kg N ha−1 as urea, 50 kg P2O5 ha−1 as diammonium phosphate, 50 kg K2O ha−1 as muriate of potash, 25 kg ZnSO4 ha−1, and 500 kg gypsum ha−1 Basal—DAP, gypsum, zinc sulfate Urea and muriate of potash were applied in four equal split doses at basal, active tillering, panicle initiation, and heading stages | ||||
Water management (CF, continuous flooding; AWD, alternate wetting and drying) | |||||
CF | Flooded:Drained | 15/5/2016 1/9/2016 | 23/9/2016 3/1/2017 | 9/6/2017 6/9/2017 | 23/9/2017 3/1/2018 |
AWD | Flooded: 1st drained: Final drained: | 15/5/2016 30/6/2016 1/9/2016 | 23/9/2016 26/10/2016 3/1/2017 | 9/6/2017 30/6/2017 6/9/2017 | 23/9/2017 17/10/2017 3/1/2018 |
Rice season weather summaries | |||||
Ave. Max. T. (°C) a | 34.8 | 31.3 | 34.9 | 30.2 | |
Ave. Min. T. (°C) b | 25.2 | 21.6 | 25.1 | 22.6 | |
Rainfall (mm) | 160.5 | 195.0 | 314.4 | 781.2 |
Grain Yield (kg ha−1) | Straw Biomass (kg ha−1) | |||
---|---|---|---|---|
Observed | Simulated | Observed | Simulated | |
Summer 2016 | ||||
CF | 6725 ± 418 | 7846 | 12,436 ± 787 | 4640 |
AWD | 6536 ± 457 | 9557 | 10,641 ± 314 | 5050 |
Monsoon 2016–2017 | ||||
CF | 6400 ± 620 | 8420 | 13,652 ± 450 | 4530 |
AWD | 6093 ± 907 | 8122 | 11,500 ± 350 | 4482 |
Summer 2017 | ||||
CF | 5418 ± 429 | 7905 | 9456 ± 195 | 4532 |
AWD | 5186 ± 206 | 7852 | 9303 ± 259 | 4559 |
Monsoon 2017–2018 | ||||
CF | 6263 ± 577 | 8414 | 8993 ± 184 | 4578 |
AWD | 6440 ± 358 | 8511 | 8594 ± 268 | 4590 |
CH4 (kg ha−1 d−1) | N2O (g ha−1 d−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
n | Mean | SD | RMSE | n | Mean | SD | RMSE | |||
Summer 2016 | ||||||||||
CF | Observed | 21 | 0.79 | 0.77 | 21 | 7.1 | 18.8 | |||
Simulated | 101 | 0.73 | 0.82 | 1.14 | 101 | 5.9 | 11.1 | 19.1 | ||
AWD | Observed | 21 | 0.37 | 0.25 | 21 | 20.1 | 27.0 | |||
Simulated | 101 | 0.42 | 0.37 | 0.49 | 101 | 25.7 | 27.3 | 25.2 | ||
Monsoon 2016–2017 | ||||||||||
CF | Observed | 19 | 1.12 | 0.58 | 19 | 4.3 | 5.7 | |||
Simulated | 105 | 1.19 | 0.92 | 0.60 | 105 | 1.7 | 4.4 | 7.4 | ||
AWD | Observed | 19 | 0.78 | 0.45 | 19 | 8.9 | 14.1 | |||
Simulated | 105 | 0.70 | 0.61 | 0.54 | 105 | 45.6 | 89.3 | 97.0 | ||
Summer 2017 | ||||||||||
CF | Observed | 20 | 0.70 | 0.49 | 20 | 5.5 | 11.0 | |||
Simulated | 98 | 0.66 | 0.75 | 0.47 | 98 | 10.2 | 20.2 | 18.3 | ||
AWD | Observed | 20 | 0.33 | 0.25 | 20 | 10.5 | 16.6 | |||
Simulated | 98 | 0.29 | 0.34 | 0.30 | 98 | 52.4 | 89.3 | 96.1 | ||
Monsoon 2017–2018 | ||||||||||
CF | Observed | 18 | 1.21 | 1.03 | 18 | 12.1 | 36.5 | |||
Simulated | 105 | 1.38 | 1.02 | 1.85 | 105 | 5.7 | 15.0 | 41.1 | ||
AWD | Observed | 18 | 0.79 | 0.76 | 18 | 10.5 | 19.9 | |||
Simulated | 105 | 0.96 | 0.91 | 1.31 | 105 | 8.0 | 11.9 | 22.2 |
Cumulative Emissions (kg C or N ha−1) | GWP (kg CO2 eq ha−1) | |||||
---|---|---|---|---|---|---|
CH4 | N2O | CH4 | N2O | Total GWP | ||
Summer 2016 | ||||||
CF | Observed | 74.2 | 0.92 | 3363.7 | 430.8 | 3794.6 |
Simulated | 72.9 | 0.59 | 3304.8 | 276.3 | 3581.1 | |
Relative variation (%) | −1.8 | −35.9 | −5.6 | |||
AWD | Observed | 44.9 | 1.23 | 2035.5 | 576.0 | 2611.5 |
Simulated | 42.3 | 2.57 | 1917.6 | 1203.5 | 3121.1 | |
Variation (%) | −5.8 | 108.9 | 19.5 | |||
Monsoon 2016–2017 | ||||||
CF | Observed | 115.3 | 0.39 | 5226.9 | 182.6 | 5409.6 |
Simulated | 125.9 | 0.18 | 5707.5 | 84.3 | 5791.8 | |
Relative variation (%) | 9.2 | −53.85 | 7.1 | |||
AWD | Observed | 89.6 | 0.78 | 4061.9 | 365.3 | 4427.1 |
Simulated | 73.9 | 4.79 | 3350.1 | 2243.1 | 5593.2 | |
Relative variation (%) | −17.5 | 514.1 | 26.3 | |||
Summer 2017 | ||||||
CF | Observed | 73.2 | 0.52 | 3318.4 | 243.5 | 3561.9 |
Simulated | 65.1 | 0.99 | 2951.2 | 463.6 | 3414.8 | |
Relative variation (%) | −11.1 | 90.4 | −4.1 | |||
AWD | Observed | 32.1 | 0.97 | 1455.2 | 454.2 | 1909.4 |
Simulated | 28.0 | 5.10 | 1269.3 | 2388.3 | 3657.6 | |
Relative variation (%) | −12.8 | 425.8 | 91.6 | |||
Monsoon 2017–2018 | ||||||
CF | Observed | 146.6 | 0.78 | 6645.9 | 365.3 | 7011.1 |
Simulated | 145.3 | 0.65 | 6586.9 | 304.4 | 6891.3 | |
Relative variation (%) | −0.9 | −16.7 | −1.7 | |||
AWD | Observed | 109.2 | 1.57 | 4950.4 | 735.2 | 5685.6 |
Simulated | 100.6 | 0.84 | 4560.5 | 393.4 | 4953.9 | |
Relative variation (%) | −7.9 | −46.5 | −12.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oo, A.Z.; Sudo, S.; Fumoto, T.; Inubushi, K.; Ono, K.; Yamamoto, A.; Bellingrath-Kimura, S.D.; Win, K.T.; Umamageswari, C.; Bama, K.S.; et al. Field Validation of the DNDC-Rice Model for Methane and Nitrous Oxide Emissions from Double-Cropping Paddy Rice under Different Irrigation Practices in Tamil Nadu, India. Agriculture 2020, 10, 355. https://doi.org/10.3390/agriculture10080355
Oo AZ, Sudo S, Fumoto T, Inubushi K, Ono K, Yamamoto A, Bellingrath-Kimura SD, Win KT, Umamageswari C, Bama KS, et al. Field Validation of the DNDC-Rice Model for Methane and Nitrous Oxide Emissions from Double-Cropping Paddy Rice under Different Irrigation Practices in Tamil Nadu, India. Agriculture. 2020; 10(8):355. https://doi.org/10.3390/agriculture10080355
Chicago/Turabian StyleOo, Aung Zaw, Shigeto Sudo, Tamon Fumoto, Kazuyuki Inubushi, Keisuke Ono, Akinori Yamamoto, Sonoko D. Bellingrath-Kimura, Khin Thuzar Win, Chellappan Umamageswari, Kaliappan Sathiya Bama, and et al. 2020. "Field Validation of the DNDC-Rice Model for Methane and Nitrous Oxide Emissions from Double-Cropping Paddy Rice under Different Irrigation Practices in Tamil Nadu, India" Agriculture 10, no. 8: 355. https://doi.org/10.3390/agriculture10080355
APA StyleOo, A. Z., Sudo, S., Fumoto, T., Inubushi, K., Ono, K., Yamamoto, A., Bellingrath-Kimura, S. D., Win, K. T., Umamageswari, C., Bama, K. S., Raju, M., Vanitha, K., Elayakumar, P., Ravi, V., & Ambethgar, V. (2020). Field Validation of the DNDC-Rice Model for Methane and Nitrous Oxide Emissions from Double-Cropping Paddy Rice under Different Irrigation Practices in Tamil Nadu, India. Agriculture, 10(8), 355. https://doi.org/10.3390/agriculture10080355