Olive Pulp and Exogenous Enzymes Feed Supplementation Effect on the Carcass and Offal in Broilers: A Preliminary Study
Abstract
:1. Introduction
2. Material and Methods
- 50 p: processed OP (50 g/kg) without enzyme blend;
- 50 p + ENZ: processed OP (50 g/kg) with enzyme blend (50 mg/kg);
- 100 p: processed OP (100 g/kg) without enzyme blend;
- 100 p + ENZ: processed OP (100 g/kg) with enzyme blend (50 mg/kg);
- 50 u: unprocessed OP (50 g/kg) without enzyme blend;
- 50 u + ENZ: unprocessed OP (50 g/kg) with enzyme blend (50 mg/kg);
- 100 u: unprocessed OP (100 g/kg) without enzyme blend;
- 100 u + ENZ: unprocessed OP (100 g/kg) with enzyme blend (50 mg/kg);
- Ctrl: control diet without OP and without enzyme blend;
- Ctrl + ENZ: control diet without OP with enzyme (50 mg/kg) blend.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Al–Harthi, M.A. The chemical composition and nutrient profiles and energy values of olive cake for poultry diets. Life Sci. J. 2014, 11, 159–165. [Google Scholar]
- Alves, E.; Melo, T.; Barros, M.P.; Domingues, M.R.M.; Domingues, P. Lipidomic profiling of the olive (Olea europaea L.) fruit towards its valorisation as a functional food: In–depth identification of triacylglycerols and polar lipids in portuguese olives. Molecules 2019, 24, 2555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.Y.; Zhang, X.; Pei, D.; Liu, J.F.; Gong, Y.; Aisa, H.A.; Di, D.L. Continuous separation of maslinic and oleanolic acids from olive pulp by high–speed countercurrent chromatography with elution–extrusion mode. J. Sep. Sci. 2019, 42, 2080–2088. [Google Scholar] [CrossRef] [PubMed]
- Mahesar, S.A.; Lucarini, M.; Durazzo, A.; Santini, A.; Lampe, A.I.; Kiefer, J. Application of infrared spectroscopy for functional compounds evaluation in olive oil: A current snapshot. J. Spectr. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Santini, A.; Tenore, G.C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci. 2017, 96, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; D’Addezio, L.; Camilli, E.; Piccinelli, R.; Turrini, A.; Marletta, L.; Marconi, S.; Lucarini, M.; Lisciani, S.; Gabrielli, P.; et al. From plant compounds to botanicals and back: A current snapshot. Molecules 2018, 23, 1844. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, A. Extractable and Non–extractable polyphenols: An overview. In Non–Extractable Polyphenols and Carotenoids: Importance in Human Nutrition and Health; Saura–Calixto, F., Pérez–Jiménez, J., Eds.; Royal Society of Chemistry: London, UK, 2018; pp. 1–37. [Google Scholar]
- Durazzo, A.; Lucarini, M. A current shot and re–thinking of antioxidant research strategy. Braz. J. Anal. Chem. 2018, 5, 9–11. [Google Scholar] [CrossRef]
- Santini, A.; Novellino, E. Nutraceuticals–shedding light on the grey area between pharmaceuticals and food. Expert. Rev. Clin. Pharmacol. 2018, 11, 545–547. [Google Scholar] [CrossRef] [Green Version]
- Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the debate for a regulatory framework. Br. J. Clin. Pharmacol. 2018, 84, 659–672. [Google Scholar] [CrossRef] [Green Version]
- Daliu, P.; Santini, A.; Novellino, E. A decade of nutraceutical patents: Where are we now in 2018? Exp. Opin. Therap. Pat. 2018, 28, 875–882. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M. Extractable and Non–extractable antioxidants. Molecules 2019, 24, 1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence and human health. Phyt. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daliu, P.; Santini, A.; Novellino, E. From pharmaceuticals to nutraceuticals: Bridging disease prevention and management. Expert. Rev. Clin. Pharmacol. 2019, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Romano, R.; Masucci, F.; Giordano, A.; Musso, S.S.; Naviglio, D.; Santini, A. Effect of tomato by–products in the diet of Comisana sheep on composition and conjugated linoleic acid content of milk fat. Inter. Dairy J. 2010, 20, 858–862. [Google Scholar] [CrossRef]
- Montesano, D.; Blasi, F.; Simonetti, M.S.; Santini, A.; Cossignani, L. Chemical and Nutritional Characterization of Seed Oil from Cucurbita maxima L. (var. Berrettina) Pumpkin. Foods 2018, 7, 30. [Google Scholar]
- Santini, A.; Ferracane, R.; Meca, G.; Ritieni, A. Overview of analytical methods for beauvericin and fusaproliferin in food matrices. Anal. Bioanal. Chem. 2009, 395, 1253–1260. [Google Scholar] [CrossRef] [Green Version]
- Mikusova, P.; Ritieni, A.; Santini, A.; Juhasova, G.; Srobarova, A. Contamination by moulds of grape berries in Slovakia. Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment. Food Addit. Contam. 2010, 27, 738–747. [Google Scholar]
- Mikušová, P.; Šrobárová, A.; Sulyok, M.; Santini, A. Fusarium fungi and associated metabolites presence on grapes from Slovakia. Mycotoxin Res. 2013, 29, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, J.M.; Calada, T.; Guimaraes, A.; Rodrigues, M.A.M.; Abrunosa, L. In vitro adsorption of aflatoxin B1, ochratoxin A, and zearalenone by micronized grape stems and olive pomace in buffer solutions. Myc. Res. 2019, 35, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Cimmino, A.; Andolfi, A.; Troise, C.; Zonno, M.C.; Santini, A.; Tuzi, A.; Vurro, M.; Ash, G.; Evidente, A. Phomentrioloxin: A novel phytotoxic pentasubstituted geranylcyclohexentriol produced by Phomopsis sp., a potential mycoherbicide for Carthamuslanathus biocontrol. J. Natural Prod. 2012, 75, 1130–1137. [Google Scholar] [CrossRef]
- Ghanbari, R.; Anwar, F.; Alkharfy, K.M.; Gilani, A.H.; Saari, N. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)–a review. Int. J. Mol. Sci. 2012, 13, 3291. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, G.; Heyden, Y.V.; Rabiei, Z.; Sadeghi, N.; Reza, O.M.; Jannat, B.; Araghi, V.; Hassani, S.; Behzad, M.; Hajimahmoodi, M. Characterization of different olive pulp and kernel oils. J. Food Compos. Anal. 2019, 28, 54–60. [Google Scholar] [CrossRef]
- Sinrod, A.J.G.; Avena–Bustillos, R.J.; Olson, D.A.; Crawford, L.M.; Wang, S.C.; McHugh, T.H. Phenolics and antioxidant capacity of pitted olive pomace affected by three drying technologies. J. Food. Sci. 2019, 84, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, S.M.; Ferreira, J.A.; Mafra, I.; Silva, A.M.S.; Coimbra, M.A. Structural ripening–related changes of the arabinan–rich pectic polysaccharides from olive pulp cell walls. J. Agric. Food. Chem. 2007, 55, 7124–7130. [Google Scholar] [CrossRef]
- Gervasi, T.; Pellizzeri, V.; Benameur, Q.; Gervasi, C.; Santini, A.; Cicero, N.; Dugo, G. Valorization of raw materials from agricultural industry for astaxanthin and β–carotene production by Xanthophyllomyces dendrorhous. Nat. Prod. Res. 2018, 32, 1554–1561. [Google Scholar] [CrossRef]
- Gervasi, T.; Santini, A.; Daliu, P.; Salem, A.Z.M.; Gervasi, C.; Pellizzeri, V.; Barrega, L.; De Pasquale, P.; Dugo, G.; Cicero, N. Astaxanthin production by Xanthophyllomyces dendrorhous growing on a low cost substrate. Agrof. Syst. 2019, 94, 1229–1234. [Google Scholar] [CrossRef]
- Seidavi, A.R.; Azizi, M.; Ragni, M.; Laudadio, V.; Tufarelli, V. Practical applications of agricultural wastes in poultry feeding in Mediterranean and Middle East regions. Part 2: Tomato, olive, date, sunflower wastes. World’s Poult. Sci. J. 2018, 74, 443–452. [Google Scholar] [CrossRef]
- Choct, M. Enzymes for the feed industry: Past, present and future. World. Poult. Sci. J. 2006, 62, 5–16. [Google Scholar] [CrossRef]
- Lavelli, V.; Bondesan, L. Secoiridoids, tocopherols, and antioxidant activity of monovarietal extra virgin olive oils extracted from destoned fruits. J. Agric. Food. Chem. 2005, 53, 1102–1107. [Google Scholar] [CrossRef]
- Kidd, M.T. Nutritional modulation of immune function in broilers. Poultry. Sci. 2004, 83, 650–657. [Google Scholar] [CrossRef]
- Debbou–Iouknane, N.; Nerín, C.; Amrane, M.; Ghemghar, M.; Madani, K.; Ayad, A. In vitro anticoccidial activity of olive pulp (Olea europaea L. var. Chemlal) extract against eimeria oocysts in broiler chickens. Acta Parasitol. 2019, 64, 887–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadomichelakis, G.; Pappas, A.C.; Tsiplakou, E.; Symeon, G.K.; Sotirakoglou, K.; Mpekelis, V.; Fegeros, K.; Zervas, G. Effects of dietary dried olive pulp inclusion on growth performance and meat quality of broiler chickens. Livest. Sci. 2019, 221, 115–122. [Google Scholar] [CrossRef]
- El Hachemi, A.; EL Mecherfi, K.E.; Benzineb, K.; Saidi, D.; Kheroua, O. Supplementation of olive mill wastes in broiler chicken feeding. Afr. J. Biotechnol. 2007, 6, 1848–1853. [Google Scholar]
- Zarei, M.; Ehsani, M.; Torki, M. Productive performance of laying hens fed wheat–based diets included olive pulp with or without a commercial enzyme product. Afr. J. Biotechnol. 2011, 10, 4303–4312. [Google Scholar]
- Abo Omar, J. Broiler chicks performance when fed different levels of olive pulp. Bethl. Univ. J. 2000, 10, 33–37. [Google Scholar]
- Rabayaa, E.; Abo, O.J.M.; Othman, R.A. Utilization of olive pulp in broiler rations. Najah Univ. J. Res. 2004, 15, 133–144. [Google Scholar]
- Abo Omar, J.; Othman, R.; Baker, B.M.A.; Zaazaa, A. Response of broiler chicks to a high olive pulp diet supplemented with two antibiotics. Dirasat Agric. Sci. 2003, 30, 2. [Google Scholar]
- Afsari, M.; Mohebbifar, A.; Torki, M. Effects of phytase supplementation of low phosphorous diets included olive pulp and date pits on productive performance of laying hens, egg quality traits and some blood parameters. Ann. Rev. Res. Biol. 2013, 3, 777–793. [Google Scholar]
- Ross, B. Management Manual; Aviagen: New Bridge, UK, 2014. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- SAS software. User Guide for Personal Computer; Cary SAS Institute: Cary, NC, USA, 2012. [Google Scholar]
- Abo Omar, J.M. Carcass composition and visceral organ mass of broiler chicks fed different levels of olive pulp. J. Islam. Univ. Gaza. 2005, 13, 175–184. [Google Scholar]
- Suksombat, W.; Boonmee, T.; Lounglawan, P. Effects of various levels of conjugated linoleic acid supplementation on fatty acid content and carcass composition of broilers. Poultry. Sci. 2007, 86, 318–324. [Google Scholar] [CrossRef]
- Abd El–Samee, L.D.; Hashish, S.M. Olive cake in laying hen diets for modification of yolk lipids. J. Agric. Sci. Technol. 2011, 1, 415–421. [Google Scholar]
- Romano, R.; Giordano, A.; Le Grottaglie, L.; Manzo, N.; Paduano, A.; Sacchi, R.; Santini, A. Volatile compounds in intermittent frying by gas chromatography and nuclear magnetic resonance. Eur. J. Lipid Sci. Technol. 2013, 115, 764–773. [Google Scholar] [CrossRef]
- Panda, A.K.; Sridhar, K.; Lavanya, G.; Prakash, B.; Rama Rao, S.V.; Raju, M.V.L.N. Growth performance, carcass characteristics, fatty acid composition and sensory attributes of meat of broiler chickens fed diet incorporated with linseed oil. Indian, J. Animal Sci. 2015, 85, 1354–1357. [Google Scholar]
- Panda, A.K.; Sridhar, K.; Lavanya, G.; Prakash, B.; Rama, R.S.V.; Raju, M.V.L.N. Effect of dietary incorporation of fish oil on performance, carcass characteristics, meat fatty acid profile and sensory attributes of meat in broiler chickens. Anim. Nutr. Feed Tech. 2016, 16, 417–425. [Google Scholar] [CrossRef]
- Panda, A.K.; Lavanya, G.; Reddy, E.P.K.; Rao, S.V.R.; Raju, M.V.L.N. Effect of dietary supplementation of enzymes on performance of broiler chickens in maize–soybean meal based diet. Anim. Nutr. Feed Techn. 2012, 12, 297–303. [Google Scholar]
- Yorulmaz, A.; Tekin, A.; Turan, S. Improving olive oil quality with double protection: Destoning and malaxation in nitrogen atmosphere. Eur. J. Lipid. Sci. Tech. 2011, 113, 637–643. [Google Scholar] [CrossRef]
- Brenes, A.; Smith, M.; Guenter, W.; Marquardt, R.R. Effect of enzyme supplementation on the performance and digestive tract size of broiler chickens fed wheat– and barley–based diets. Poult. Sci. 2013, 72, 1731–1739. [Google Scholar] [CrossRef]
- Lázaro, R.; Latorre, M.A.; Medel, P.; Gracia, M.; Mateos, G.G. Feeding regimen and enzyme supplementation to rye–based diets for broilers. Poult. Sci. 2004, 83, 152–160. [Google Scholar] [CrossRef]
- González–alvarado, J.M.; Jiménez–Moreno, E.; Valencia, D.G.; Lázaro, R.; Mateos, G.G. Effect of type of cereal, heat processing of the cereal, and inclusion of fiber in the diet on productive performance and digestive traits of broilers. Poultr. Sci. 2008, 87, 1705–1715. [Google Scholar] [CrossRef]
- González–alvarado, J.M.; Jiménez–Moreno, E.; Lázaro, R.; Mateos, G.G. Effects of fiber source and heat processing of the cereal on the development and pH of the gastrointestinal tract of broilers fed diets based on corn or rice. Poultry. Sci. 2007, 87, 1779–1795. [Google Scholar]
Processed Olive Pulp (OPp) | Unprocessed Olive Pulp (OPu) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
50 3 p 4 | 50 p + ENZ 5 | 100 p | 100 p + ENZ | 50 u 6 | 50 u + ENZ | 100 u | 100 u + ENZ | Ctrl 7 | Ctrl + ENZ | |
Ingredients (g/kg) | ||||||||||
Processed OP | 50.00 | 50.00 | 100.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Unprocessed OP | 0.00 | 0.00 | 0.00 | 0.00 | 50.00 | 50.00 | 100.00 | 100.00 | 0.00 | 0.00 |
Enzyme | 0.00 | 0.05 | 0.00 | 0.05 | 0.00 | 0.05 | 0.00 | 0.05 | 0.00 | 0.05 |
Corn | 507.30 | 507.30 | 456.60 | 456.60 | 482.50 | 482.50 | 407.00 | 407.00 | 558.00 | 558.00 |
Soybean meal | 370.60 | 370.60 | 370.60 | 370.60 | 377.20 | 377.20 | 383.70 | 383.70 | 370.70 | 370.70 |
Soybean oil | 30.00 | 30.00 | 32.10 | 32.10 | 47.60 | 47.60 | 67.40 | 67.40 | 27.80 | 27.80 |
Wheat bran | 0.10 | 0.05 | 0.10 | 0.05 | 0.10 | 0.05 | 0.10 | 0.05 | 0.10 | 0.05 |
Dicalcium phosphate | 19.30 | 19.30 | 19.60 | 19.60 | 19.40 | 19.40 | 19.70 | 19.70 | 19.00 | 19.00 |
Limestone | 10.90 | 10.90 | 9.10 | 9.10 | 11.50 | 11.50 | 10.30 | 10.30 | 12.70 | 12.70 |
Vitamin mixture 1 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
Mineral mixture 2 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
Salt | 2.30 | 2.30 | 2.10 | 2.10 | 2.40 | 2.40 | 2.40 | 2.40 | 2.50 | 2.50 |
Sodium bicarbonate | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
DL-Methionine | 1.40 | 1.40 | 1.50 | 1.50 | 1.40 | 1.40 | 1.50 | 1.50 | 1.30 | 1.30 |
Lysine hydrochloride | 0.60 | 0.60 | 0.80 | 0.80 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 |
Total | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 |
Nutrient analysis (g/kg) | ||||||||||
Dry matter | 903.20 | 903.20 | 904.90 | 904.90 | 904.80 | 904.80 | 908.20 | 908.20 | 901.50 | 901.50 |
Metabolizable energy (kcal/kg) | 3.025 | 3.025 | 3.025 | 3.025 | 3.025 | 3.025 | 3.025 | 3.025 | 3.025 | 3.025 |
Crude protein | 230.00 | 230.00 | 230.00 | 230.00 | 230.00 | 230.00 | 230.00 | 230.00 | 230.00 | 230.00 |
Ether extract | 59.00 | 59.00 | 65.20 | 65.20 | 74.70 | 74.70 | 96.80 | 96.80 | 52.70 | 52.70 |
Linoleic acid | 27.90 | 27.90 | 27.90 | 27.90 | 36.40 | 36.40 | 44.80 | 44.80 | 27.90 | 27.90 |
Crude fiber | 45.80 | 45.80 | 64.90 | 64.90 | 50.70 | 50.70 | 74.70 | 74.70 | 26.70 | 26.70 |
Calcium | 10.50 | 10.50 | 10.50 | 10.50 | 10.50 | 10.50 | 10.50 | 10.50 | 10.50 | 10.50 |
Phosphorus | 7.40 | 7.40 | 7.30 | 7.30 | 7.30 | 7.30 | 7.30 | 7.30 | 7.40 | 7.40 |
Available phosphorus | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Potassium | 9.50 | 9.50 | 9.90 | 9.90 | 9.40 | 9.40 | 9.50 | 9.50 | 9.20 | 9.20 |
Chlorine | 1.80 | 1.80 | 1.80 | 1.80 | 1.90 | 1.90 | 1.90 | 1.90 | 1.90 | 1.90 |
Manganese (mg/kg) | 474.27 | 474.27 | 474.11 | 474.11 | 475.36 | 475.36 | 476.25 | 476.25 | 474.44 | 474.44 |
Sodium | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 |
Zinc (mg/kg) | 383.69 | 383.69 | 383.21 | 383.21 | 385.60 | 385.60 | 387.01 | 387.01 | 384.17 | 384.17 |
Choline (mg/g) | 1.59 | 1.59 | 1.56 | 1.56 | 1.59 | 1.59 | 1.56 | 1.56 | 1.62 | 1.62 |
Folic acid (mg/kg) | 2.19 | 2.19 | 2.18 | 2.18 | 2.21 | 2.21 | 2.20 | 2.20 | 2.21 | 2.21 |
Arginine | 14.80 | 14.80 | 14.60 | 14.60 | 14.90 | 14.90 | 14.90 | 14.90 | 15.00 | 15.00 |
Glycine | 9.20 | 9.20 | 9.10 | 9.10 | 9.30 | 9.30 | 9.20 | 9.20 | 9.40 | 9.40 |
Serine | 11.00 | 11.00 | 10.90 | 10.90 | 11.10 | 11.10 | 11.00 | 11.00 | 11.20 | 11.20 |
Gly + Ser | 20.20 | 20.20 | 20.00 | 20.00 | 20.40 | 20.40 | 20.20 | 20.20 | 20.60 | 20.60 |
Histidine | 5.90 | 5.90 | 5.80 | 5.80 | 5.90 | 5.90 | 5.80 | 5.80 | 6.00 | 6.00 |
Isoleucine | 9.30 | 9.30 | 9.20 | 9.20 | 9.40 | 9.40 | 9.30 | 9.30 | 9.40 | 9.50 |
Leucine | 18.90 | 18.90 | 18.40 | 18.40 | 18.90 | 18.90 | 18.40 | 18.40 | 19.40 | 19.40 |
Lysine | 12.70 | 12.70 | 12.70 | 12.70 | 12.70 | 12.70 | 12.70 | 12.70 | 12.70 | 12.70 |
Methionine | 4.70 | 4.70 | 4.70 | 4.70 | 4.70 | 4.70 | 4.70 | 4.70 | 4.70 | 4.70 |
Cysteine | 3.60 | 3.60 | 3.60 | 3.60 | 3.60 | 3.60 | 3.60 | 3.60 | 3.70 | 3.70 |
Met + Cys | 8.30 | 8.30 | 8.30 | 8.30 | 8.30 | 8.30 | 8.30 | 8.30 | 8.40 | 8.40 |
Phenylalanine | 10.60 | 10.60 | 10.40 | 10.40 | 10.60 | 10.60 | 10.50 | 10.50 | 10.80 | 10.80 |
Tyrosine | 8.70 | 8.70 | 8.60 | 8.60 | 8.80 | 8.80 | 8.70 | 8.70 | 8.90 | 8.90 |
Phe + Tyr | 19.30 | 19.30 | 19.00 | 19.00 | 19.40 | 19.40 | 19.20 | 19.20 | 19.70 | 19.70 |
Threonine | 8.40 | 8.40 | 8.30 | 8.30 | 8.40 | 8.40 | 8.30 | 8.30 | 8.50 | 8.50 |
Tryptophan | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
Valine | 10.20 | 10.20 | 10.10 | 10.10 | 10.30 | 10.30 | 10.10 | 10.10 | 10.40 | 10.40 |
Processed Olive Pulp (OPp) | Unprocessed Olive Pulp (OPu) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
50 3 p 4 | 50 p + ENZ 5 | 100 p | 100 p + ENZ | 50 u 6 | 50 u + ENZ | 100 u | 100 u + ENZ | Ctrl 7 | Ctrl + ENZ | |
Ingredients (g/kg) | ||||||||||
Processed OP | 50.00 | 50.00 | 100.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Unprocessed OP | 0.00 | 0.00 | 0.00 | 0.00 | 50.00 | 50.00 | 100.00 | 100.00 | 0.00 | 0.00 |
Enzyme | 0.00 | 0.05 | 0.00 | 0.05 | 0.00 | 0.05 | 0.00 | 0.05 | 0.00 | 0.05 |
Corn | 547.60 | 547.60 | 496.80 | 496.80 | 522.60 | 522.60 | 447.10 | 447.10 | 598.20 | 598.20 |
Soybean meal | 323.20 | 323.20 | 323.20 | 323.20 | 329.80 | 329.80 | 336.30 | 336.30 | 323.30 | 323.30 |
Soybean oil | 42.30 | 42.30 | 44.50 | 44.50 | 60.00 | 60.00 | 79.80 | 79.80 | 40.20 | 40.20 |
Wheat bran | 0.10 | 0.05 | 0.10 | 0.05 | 0.10 | 0.05 | 0.10 | 0.05 | 0.10 | 0.05 |
Dicalcium phosphate | 17.00 | 17.00 | 17.30 | 17.30 | 17.10 | 17.10 | 17.40 | 17.40 | 16.70 | 16.70 |
Limestone | 8.70 | 8.70 | 6.90 | 6.90 | 9.30 | 9.30 | 8.20 | 8.20 | 10.50 | 10.50 |
Vitamin mixture 1 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
Mineral mixture 2 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
Salt | 2.30 | 2.30 | 2.10 | 2.10 | 2.50 | 2.50 | 2.40 | 2.40 | 2.50 | 2.50 |
Sodium bicarbonate | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
DL-Methionine | 1.10 | 1.10 | 1.20 | 1.20 | 1.10 | 1.10 | 1.20 | 1.20 | 1.00 | 1.00 |
Lysine hydrochloride | 0.20 | 0.20 | 0.40 | 0.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Total | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 |
Nutrient analysis (g/kg) | ||||||||||
Dry matter | 90.36 | 90.36 | 90.53 | 90.53 | 90.52 | 90.52 | 90.85 | 90.85 | 90.19 | 90.19 |
Metabolizable energy (kcal/kg) | 3150.0 | 3150.0 | 3150.0 | 3150.0 | 3150.0 | 3150.0 | 3150.0 | 3150.0 | 3150.0 | 3150.0 |
Crude protein | 21.00 | 21.00 | 21.00 | 21.00 | 21.00 | 21.00 | 21.00 | 21.00 | 21.00 | 21.00 |
Ether extract | 7.24 | 7.24 | 7.87 | 7.87 | 8.82 | 8.82 | 11.02 | 11.02 | 6.62 | 6.62 |
Linoleic acid | 3.49 | 3.49 | 3.49 | 3.49 | 4.34 | 4.34 | 5.18 | 5.18 | 3.49 | 3.49 |
Crude fiber | 4.49 | 4.49 | 6.39 | 6.39 | 4.97 | 4.97 | 7.38 | 7.38 | 2.58 | 2.58 |
Calcium | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
Phosphorus | 0.68 | 0.68 | 0.68 | 0.68 | 0.68 | 0.68 | 0.67 | 0.67 | 0.68 | 0.68 |
Available phosphorus | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 |
Potassium | 0.87 | 0.87 | 0.90 | 0.90 | 0.85 | 0.85 | 0.87 | 0.87 | 0.84 | 0.84 |
Chlorine | 0.18 | 0.18 | 0.17 | 0.17 | 0.18 | 0.18 | 0.18 | 0.18 | 0.19 | 0.19 |
Manganese (mg/kg) | 471.74 | 471.74 | 471.58 | 471.58 | 472.83 | 472.83 | 473.72 | 473.72 | 471.91 | 471.91 |
Sodium | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 |
Zinc (mg/kg) | 381.73 | 381.73 | 381.25 | 381.25 | 383.63 | 383.63 | 385.05 | 385.05 | 382.21 | 382.21 |
Choline (mg/g) | 1.48 | 1.48 | 1.45 | 1.45 | 1.48 | 1.48 | 1.46 | 1.46 | 1.51 | 1.51 |
Folic acid (mg/kg) | 2.04 | 2.04 | 2.02 | 2.02 | 2.05 | 2.05 | 2.05 | 2.05 | 2.06 | 2.06 |
Arginine | 1.33 | 1.33 | 1.31 | 1.31 | 1.34 | 1.34 | 1.34 | 1.34 | 1.35 | 1.35 |
Glycine | 0.84 | 0.84 | 0.83 | 0.83 | 0.84 | 0.84 | 0.84 | 0.84 | 0.86 | 0.86 |
Serine | 1.00 | 1.00 | 0.99 | 0.99 | 1.01 | 1.01 | 1.00 | 1.00 | 1.02 | 1.02 |
Gly + Ser | 1.84 | 1.84 | 1.82 | 1.82 | 1.85 | 1.85 | 1.84 | 1.84 | 1.88 | 1.88 |
Histidine | 0.54 | 0.54 | 0.53 | 0.53 | 0.54 | 0.54 | 0.53 | 0.53 | 0.55 | 0.55 |
Isoleucine | 0.84 | 0.84 | 0.83 | 0.83 | 0.85 | 0.85 | 0.84 | 0.84 | 0.85 | 0.85 |
Leucine | 1.75 | 1.75 | 1.71 | 1.71 | 1.75 | 1.75 | 1.70 | 1.70 | 1.80 | 1.80 |
Lysine | 1.11 | 1.11 | 1.11 | 1.11 | 1.11 | 1.11 | 1.11 | 1.11 | 1.11 | 1.11 |
Methionine | 0.42 | 0.42 | 0.42 | 0.42 | 0.42 | 0.42 | 0.42 | 0.42 | 0.42 | 0.42 |
Cysteine | 0.33 | 0.33 | 0.32 | 0.32 | 0.33 | 0.33 | 0.32 | 0.32 | 0.34 | 0.34 |
Met + Cys | 0.75 | 0.75 | 0.74 | 0.74 | 0.75 | 0.75 | 0.74 | 0.74 | 0.76 | 0.76 |
Phenylalanine | 0.96 | 0.96 | 0.95 | 0.95 | 0.97 | 0.97 | 0.96 | 0.96 | 0.98 | 0.98 |
Tyrosine | 0.79 | 0.79 | 0.78 | 0.78 | 0.80 | 0.80 | 0.79 | 0.79 | 0.81 | 0.81 |
Phe + Tyr | 1.75 | 1.75 | 1.73 | 1.73 | 1.77 | 1.77 | 1.75 | 1.75 | 1.79 | 1.79 |
Threonine | 0.76 | 0.76 | 0.75 | 0.75 | 0.76 | 0.76 | 0.76 | 0.76 | 0.77 | 0.77 |
Tryptophan | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 |
Valine | 0.94 | 0.94 | 0.92 | 0.92 | 0.94 | 0.94 | 0.93 | 0.93 | 0.95 | 0.95 |
Types of Olive Meal | Dried Processed Olive Pulp (Partly Destoned) * | Original Dried Unprocessed Olive Pulp |
---|---|---|
Dry matter (g/kg) | 934.50 | 935.70 |
Metabolizable energy (kcal/kg) | 2980.00 | 1250.00 |
Crude protein (g/kg) | 107.30 | 71.10 |
Crude fiber (g/kg) | 256.00 | 350.00 |
Neutral detergent fiber (α-amylase) (g/kg) | 716.00 | 744.00 |
Acid detergent fiber (g/kg) | 550.00 | 584.00 |
Ash (g/kg) | 85.00 | 62.00 |
Crude fat (g/kg) | 130.00 | 85.00 |
Calcium (g/kg) | 8.20 | 6.10 |
Phosphorus (g/kg) | 0.70 | 0.60 |
Soluble sugars (g/kg) | 1.70 | 1.40 |
Starch (g/kg) | 9.70 | 10.50 |
Total polyphenols (g/kg) | 3.70 | 1.90 |
Total tannins (g/kg) | 22.90 | 17.90 |
LW (g) | DW (g) | FC (g) | EC (g) | ECr (%) | BrW (g) | BrWr (%) | TDW (g) | TDWr (%) | WW (g) | WWr (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Diets | |||||||||||
OPp (50 g/kg) | 2770 a | 2464 a | 2228 a | 1743 a | 78.3 a | 842 a | 34.2 a | 718 a | 29.2 a,b | 95 a | 3.87 a |
OPp (50 g/kg) + ENZ | 2752 a | 2476 a | 2295 a | 1752 a | 76.3 a | 857 a | 34.5 a | 680 a | 27.5 b | 108 a | 4.35 a |
OPp (100 g/kg) | 2807 a | 2482 a | 2315 a | 1763 a | 76.2 a | 857 a | 34.5 a | 707 a | 28.5 b | 110 a | 4.40 a |
OPp (100 g/kg) + ENZ | 2782 a | 2456 a | 2288 a | 1738 a | 75.9 a | 847 a | 34.4 a | 690 a | 28.1 b | 106 a | 4.33 a |
OPu (50 g/kg) | 2910 a | 2564 a | 2365 a | 1847 a | 78.0 a | 862 a | 33.5 a | 845 a | 32.8 a | 112 a | 4.34 a |
OPu (50 g/kg) + ENZ | 2952 a | 2572 a | 2368 a | 1800 a | 76.1 a | 849 a | 33.0 a | 749 a | 29.2 a,b | 111 a | 4.32 a |
OPu (100 g/kg) | 2827 a | 2490 a | 2278 a | 1687 a | 74.0 a | 801 a | 32.1 a | 673 a | 27.0 b | 105 a | 4.22 a |
OPu (100 g/kg) + ENZ | 3033 a | 2635 a | 2433 a | 1780 a | 73.2 a | 842 a | 32.0 a | 735 a | 27.9 b | 107 a | 4.04 a |
Without OP | 2797 a | 2447 a | 2215 a | 1674 a | 75.6 a | 775 a | 31.7 a | 672 a | 27.5 b | 100 a | 4.06 a |
Without OP + ENZ | 2872 a | 2642 a | 2348 a | 1820 a | 77.5 a | 902 a | 34.2 a | 681 a | 25.7 b | 109 a | 4.16 a |
Standard errors | ±114 | ±99 | ±90 | ±70 | ±1.4 | ±39 | ±0.9 | ±35 | ±0.9 | ±6 | ±0.20 |
FW (g) | FWr (%) | G (g) | Gr (%) | Ht(g) | Htr (%) | N(g) | Nr (%) | Hd (g) | Hdr (%) | Lv (g) | Lvr (%) | Lg (g) | Lgr (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diets | ||||||||||||||
OPp (50 g/kg) | 49.79 a | 2.02 a | 64.25 a | 2.60 a | 16.74 a | 0.68 a | 58.74 a | 2.38 a | 76.19 a | 3.09 a | 56.53 a | 2.29 a | 11.27 a | 0.45 a |
OPp (50 g/kg) + ENZ | 39.95 a | 1.60 a | 69.49 a | 2.81 a | 13.08 a | 0.53 a | 56.64 a | 2.28 a | 72.46 a | 2.91 a | 59.32 a | 2.40 a | 12.68 a | 0.51 a |
OPp (100 g/kg) | 42.50 a | 1.70 a | 81.33 a | 3.29 a | 15.51 a | 0.62 a | 56.92 a | 2.29 a | 70.45 a | 2.83 a | 57.41 a | 2.31 a | 11.51 a | 0.46 a |
OPp (100 g/kg) + ENZ | 42.31 a | 1.71 a | 66.48 a | 2.72 a | 15.82 a | 0.65 a | 51.81 a | 2.11 a | 74.03 a | 3.02 a | 55.34 a | 2.26 a | 13.14 a | 0.55 a |
OPu (50 g/kg) | 59.44 a | 2.34 a | 67.80 a | 2.64 a | 15.49 a | 0.60 a | 60.68 a | 2.36 a | 71.96 a | 2.81 a | 56.87 a | 2.22 a | 10.37 a | 0.40 a |
OPu (50 g/kg) + ENZ | 45.99 a | 1.81 a | 70.31 a | 2.71 a | 13.07 a | 0.51 a | 60.80 a | 2.36 a | 76.65 a | 2.97 a | 56.98 a | 2.21 a | 10.68 a | 0.43 a |
OPu (100 g/kg) | 40.82 a | 1.63 a | 70.91 a | 2.85 a | 13.30 a | 0.53 a | 56.34 a | 2.26 a | 71.52 a | 2.87 a | 51.67 a | 2.08 a | 11.91 a | 0.47 a |
OPu (100 g/kg) + ENZ | 56.34 a | 2.14 a | 66.03 a | 2.49 a | 14.86 a | 0.57 a | 55.29 a | 2.11 a | 74.88 a | 2.85 a | 68.45 a | 2.58 a | 10.90 a | 0.41 a |
Without OP level | 59.87 a | 2.44 a | 68.52 a | 2.79 a | 13.14 a | 0.53 a | 55.14 a | 2.25 a | 62.11 a | 2.54 a | 56.55 a | 2.30 a | 10.57 a | 0.43 a |
Without OP level + ENZ | 57.28 a | 2.16 a | 69.82 a | 2.65 a | 14.38 a | 0.54 a | 59.70 a | 2.25 a | 71.72 a | 2.71 a | 64.43 a | 2.44 a | 11.03 a | 0.41 a |
Standard errors | ±7.47 | ±0.30 | ±5.91 | ±70.23 | ±1.16 | ±0.05 | ±3.07 | ±0.09 | ±5.12 | ±0.17 | ±4.34 | ±0.14 | ±1.24 | ±0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayehban, P.; Seidavi, A.; Dadashbeiki, M.; Ghorbani, A.; de Araújo, W.A.G.; Durazzo, A.; Lucarini, M.; Gabrielli, P.; Omri, B.; Teixeira Albino, L.F.; et al. Olive Pulp and Exogenous Enzymes Feed Supplementation Effect on the Carcass and Offal in Broilers: A Preliminary Study. Agriculture 2020, 10, 359. https://doi.org/10.3390/agriculture10080359
Sayehban P, Seidavi A, Dadashbeiki M, Ghorbani A, de Araújo WAG, Durazzo A, Lucarini M, Gabrielli P, Omri B, Teixeira Albino LF, et al. Olive Pulp and Exogenous Enzymes Feed Supplementation Effect on the Carcass and Offal in Broilers: A Preliminary Study. Agriculture. 2020; 10(8):359. https://doi.org/10.3390/agriculture10080359
Chicago/Turabian StyleSayehban, Peyman, Alireza Seidavi, Mohammad Dadashbeiki, Ahmad Ghorbani, Wagner Azis Garcia de Araújo, Alessandra Durazzo, Massimo Lucarini, Paolo Gabrielli, Besma Omri, Luiz Fernando Teixeira Albino, and et al. 2020. "Olive Pulp and Exogenous Enzymes Feed Supplementation Effect on the Carcass and Offal in Broilers: A Preliminary Study" Agriculture 10, no. 8: 359. https://doi.org/10.3390/agriculture10080359
APA StyleSayehban, P., Seidavi, A., Dadashbeiki, M., Ghorbani, A., de Araújo, W. A. G., Durazzo, A., Lucarini, M., Gabrielli, P., Omri, B., Teixeira Albino, L. F., Souto, E. B., & Santini, A. (2020). Olive Pulp and Exogenous Enzymes Feed Supplementation Effect on the Carcass and Offal in Broilers: A Preliminary Study. Agriculture, 10(8), 359. https://doi.org/10.3390/agriculture10080359