Nitrogen Contents in Soil, Grains, and Straw of Hybrid Rice Differ When Applied with Different Organic Nitrogen Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of N Content in Soil, Straw, and Grains after Harvesting of Rice Crop
2.2. Statistical Analysis
3. Results
3.1. Total Soil Nitrogen after Rice Harvesting
3.2. Total Nitrogen Concentration in Rice Grains
3.3. Total Nitrogen Concentration in Rice Straw
4. Discussion
4.1. Nitrogen Concentration in Soil after Rice Harvest
4.2. Nitrogen Concentration in Rice Grains and Straw after Rice Harvest
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amanullah; Khalid, S.; Imran; Khan, H.A.; Arif, M.; Altawaha, A.R.; Adnan, M.; Fahad, S.; Parmar, B. Organic matter management in cereals based system: Symbiosis for improving crop productivity and soil health. In Sustainable Agriculture Reviews; Springer: Berlin/Heidelberg, Germany, 2019; pp. 67–92. [Google Scholar] [CrossRef]
- Hidaytullah; Amanullah. Sources, ratios and mixtures of organic and inorganic nitrogen influence plant height of hybrid rice (Oryza sativa) at various growth stages. EC Agric 2015, 2, 328–337. [Google Scholar]
- Zia, M.S.; Ali, A.; Aslam, M.; Baig, M.; Mann, R. Fertility issues and fertilizer management in rice wheat system. In Farm Research Notes for Asia and Far East; FAO: Roma, Italy, 1997; pp. 36–50. [Google Scholar]
- Fageria, N.K. Dry Matter Yield and Nutrient Uptake by Lowland Rice at Different Growth Stages. J. Plant Nutri. 2004, 27, 947–958. [Google Scholar] [CrossRef]
- Mann, R.; Garrity, D. Green manures in rice-wheat cropping systems in Asia. In Green Manure Production Systems for Asian Ricelands: Selected papers from the International Rice Research Conference; Ladha, J.K., Garrity, D.P., Eds.; International Rice Research Institute: Los Banos, Philippines, 1994; pp. 27–42. [Google Scholar]
- Amanullah; Iqbal, A.; Ali, A.; Fahad, S.; Parmar, B. Nitrogen source and rate management improve maize productivity of smallholders under semiarid climates. Front. Plant Sci. 2016, 7, 1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amanullah; Hidayatullah; Jan, A.; Shah, Z.; Khan, M.J.; Parmar, B.; Fahad, S. Organic carbon sources and nitrogen management improve biomass of hybrid rice (Oryza sativa l.) under nitrogen deficient condition. In Advances in Rice Research for Abiotic Stress Tolerance; Elsevier: Amsterdam, The Netherlands, 2019; pp. 447–467. [Google Scholar]
- Hidayatullah; Amanullah; Jan, A.; Shah, Z. Residual effect of organic nitrogen sources applied to rice on the subsequent wheat crop. Int. J. Agron. Plant Prod. 2013, 4, 620–631. [Google Scholar]
- Amanullah; Khattak, R.A.; Khalil, S.K. Plant Density and Nitrogen Effects on Maize Phenology and Grain Yield. J. Plant Nutr. 2009, 32, 246–260. [Google Scholar] [CrossRef]
- Amanullah; Hidayatullah. Influence of Organic and Inorganic Nitrogen on Grain Yield and Yield Components of Hybrid Rice in Northwestern Pakistan. Rice Sci. 2016, 23, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Yadav, D.; Kumar, A. Long-term effect of nutrient management on soil health and productivity of rice (Oryza sativa)-wheat (Triticum aestivum) system. Indian J. Agron. 2009, 54, 15–23. [Google Scholar]
- Amanullah; Khalid, S. Agronomy-Food Security-Climate Change and the Sustainable Development Goals. In Agronomy-Climate Change & Food Security; IntechOpen: Londen, UK, 2020. [Google Scholar] [CrossRef]
- Amanullah; Khalid, S.; Khalil, F.; Imranuddin. Influence of irrigation regimes on competition indexes of winter and summer intercropping system under semi-arid regions of Pakistan. Sci. Rep. 2020, 10, 8129. [Google Scholar] [CrossRef]
- Panhwar, Q.A.; Ali, A.; Naher, U.A.; Memon, M.Y. Fertilizer Management Strategies for Enhancing Nutrient Use Efficiency and Sustainable Wheat Production. In Organic Farming; Elsevier: Amsterdam, The Netherlands, 2019; pp. 17–39. [Google Scholar]
- Amanullah; Khan, A. Phosphorus and compost management influence maize (Zea mays) productivity under semiarid condition with and without phosphate solubilizing bacteria. Front. Plant Sci. 2015, 6, 1083. [Google Scholar] [CrossRef] [Green Version]
- Amanullah; Inamullah. Residual phosphorus and zinc influence wheat productivity under rice–wheat cropping system. SpringerPlus 2016, 5, 255. [Google Scholar] [CrossRef] [Green Version]
- Fageria, N.K.; Baligar, V.C. Enhancing Nitrogen Use Efficiency in Crop Plants. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2005; pp. 97–185. [Google Scholar]
- Amanullah; Khalid, S. Phenology, growth and biomass yield response of maize (Zea mays L.) to integrated use of animal manures and phosphorus application with and without phosphate solubilizing bacteria. J Microb. Biochem. Technol. 2015, 7, 439–444. [Google Scholar] [CrossRef]
- Fageria, N.K.; dos Santos, A.B.; Cobucci, T. Zinc Nutrition of Lowland Rice. Commun. Soil Sci. Plant Anal. 2011, 42, 1719–1727. [Google Scholar] [CrossRef]
- Amanullah; Inamullah; Alkahtani, J.; Elshikh, M.S.; Alwahibi, M.S.; Muhammad, A.; Khalid, S. Phosphorus and zinc fertilization improve productivity and profitability of rice cultivars under rice-wheat system. Agronomy 2020, 10, 1085. [Google Scholar] [CrossRef]
- Hossaen, M.; Shamsuddoha, A.; Paul, A.; Bhuiyan, M.; Zobaer, A. Efficacy of different organic manures and inorganic fertilizer on the yield and yield attributes of boro rice. Agriculturists 2011, 9, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Amanullah; Khan, S.-T.; Iqbal, A.; Fahad, S. Growth and productivity response of hybrid rice to application of animal manures, plant residues and phosphorus. Front. Plant Sci. 2016, 7, 1440. [Google Scholar]
- Latt, Y.K.; Myint, A.K.; Yamakawa, T.; Ogata, K. The effects of green manure (Sesbania rostrata) on the growth and yield of rice. J. Fac. Agric. Kyushu Univ. 2009, 54, 313–319. [Google Scholar]
- Shah, S.A.; Shah, S.M.; Wisal, M.; Shafi, M.; Haq, N.; Samreen, S.; Amir, M. Effect of integrated use of organic and inorganic nitrogen sources on wheat yield. Sarhad J. Agric. 2010, 26, 559–563. [Google Scholar]
- Sahrawat, K. Organic matter and mineralizable nitrogen relationships in wetland rice soils. Commun. Soil Sci.Plant Anal. 2006, 37, 787–796. [Google Scholar] [CrossRef]
- Kumar, V. Nitrogen economy in Indian mustard through use of Azotobacter chroococcum. Crop Res. 1994, 8, 449–452. [Google Scholar]
- Amanullah, K. Maize (Zea mays L.) genotypes differ in phenology, seed weight and quality (protein and oil contents) when applied with variable rates and source of nitrogen. J. Plant. Biochem. Physiol. 2016, 4, 164. [Google Scholar] [CrossRef] [Green Version]
- Myint, A.; Yamakawa, T.; Kajihara, Y.; Zenmyo, T. Application of different organic and mineral fertilizers on the growth, yield and nutrient accumulation of rice in a Japanese ordinary paddy field. Sci. World J. 2010, 5. [Google Scholar] [CrossRef]
- Nam, M.H.; Jeong, S.K.; Lee, Y.S.; Choi, J.M.; Kim, H.G. Effects of nitrogen, phosphorus, potassium and calcium nutrition on strawberry anthracnose. Plant Pathol. 2006, 55, 246–249. [Google Scholar] [CrossRef]
- Manna, M.C.; Ghosh, P.K.; Acharya, C.L. Sustainable crop production through management of soil organic carbon in semiarid and tropical India. J. Sustain. Agric. 2003, 21, 85–114. [Google Scholar] [CrossRef]
- Marschner, P. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 2003, 35, 453–461. [Google Scholar] [CrossRef]
- Leifeld, J.; Angers, D.A.; Chenu, C.; Fuhrer, J.; Katterer, T.; Powlson, D.S. Organic farming gives no climate change benefit through soil carbon sequestration. Proc. Natl. Acad. Sci. USA 2013, 110, E984. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, S.-M.; Sun, J.-H.; Zhou, L.-L.; Bao, X.-G.; Zhang, H.-G.; Zhang, F.-S. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl. Acad. Sci. USA 2007, 104, 11192–11196. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Tian, X.-H.; Li, X.-L.; Wang, S.-X. Effect of Zn application methods on Zn distribution and bioavailability in wheat pearling fractions of two wheat genotypes. J. Integr. Agric. 2017, 16, 1617–1623. [Google Scholar] [CrossRef] [Green Version]
- Amanullah; Inamullah; Alwahibi, M.S.; Elshikh, M.S.; Alkahtani, J.; Muhammad, A.; Khalid, S.; Imran; Ahmad, M.; Khan, N.; et al. Phosphorus and zinc fertilization improve zinc biofortification in grains and straw of coarse vs. fine rice genotypes. Agronomy 2020, 10, 1155. [Google Scholar] [CrossRef]
- Amanullah; Asif, M.; Almas, L.K.; Jan, A.; Shah, Z.; Rahman, H.U.; Khalil, S.K. Agronomic efficiency and profitability of P-fertilizers applied at different planting densities of maize in Northwest Pakistan. J. Plant Nutr. 2012, 35, 331–341. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H.; Deekey, D.A. Principles and Procedures of Statistics: A Biometrical Approach, 3rd ed.; McGraw Hill Book Co. Inc.: New York, NY, USA, 1997. [Google Scholar]
- Swarup, A.; Yaduvanshi, N. Effects of integrated nutrient management on soil properties and yield of rice in alkali soils. J. Indian Soc. Soil Sci. 2000, 48, 279–282. [Google Scholar]
- Lori, M.; Symnaczik, S.; Mäder, P.; De Deyn, G.; Gattinger, A. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression. PLoS ONE 2017, 12, e0180442. [Google Scholar] [CrossRef]
- Badgley, C.; Moghtader, J.; Quintero, E.; Zakem, E.; Chappell, M.J.; Aviles-Vazquez, K.; Samulon, A.; Perfecto, I. Organic agriculture and the global food supply. Renew. Agric. Food Syst. 2007, 22, 86–108. [Google Scholar] [CrossRef]
- Jan, A.; Amanullah; Noor, M. Wheat response to farm yard manure and nitrogen fertilization under moisture stress conditions. J. Plant Nutr. 2011, 34, 732–742. [Google Scholar] [CrossRef]
- Amanullah; Inamullah. Dry matter partitioning and harvest index differ in rice genotypes with variable rates of phosphorus and zinc nutrition. Rice Sci. 2016, 23, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Khaliq, T.; Mahmood, T.; Masood, A. Effectiveness of farmyard manure, poultry manure and nitrogen for corn (Zea mays L.) productivity. Int. J. Agric. Biol. 2004, 2, 260–263. [Google Scholar]
- Haque, M.M.; Hamid, A.; Bhuiyan, N. Nutrient uptake and productivity as affected by nitrogen and potassium application levels in maize/sweet potato intercropping system. Korean J. Crop Sci. 2001, 46, 1–5. [Google Scholar]
- Kirkby, E.A.; Bot, J.L.; Adamowicz, S.; Römheld, V. Nitrogen in physiology-an agronomic perspective and implications for the use of different nitrogen forms. In IFS Conference; International Fertiliser Society: York, UK, 2009. [Google Scholar]
Sources of Variance | Degree of Freedom | Sum of Squares | Mean Squares | F-Values | Significance |
---|---|---|---|---|---|
Years (Y) | 1 | 239,463.00 | 239,463.00 | 23.89 | ** |
Blocks (Years) | 6 | 60,119.96 | 10,019.99 | 1.60 | - |
Treatments | 25 | 1,808,013.00 | 72,320.51 | 11.60 | *** |
Control vs. Rest | (1) | 395,841.00 | 395,841.00 | 63.52 | *** |
Urea versus Pure OS (Organic Sources) | (1) | 42,508.59 | 42,508.59 | 6.82 | ** |
Among all OS (Sole + Mixtures) | (23) | 1,369,663.00 | 59,550.57 | 9.55 | *** |
Pure OS vs. Mixtures | <1> | 173,510.40 | 173,510.40 | 27.84 | *** |
Pure OS | <5> | 345,009.40 | 69,001.87 | 11.07 | *** |
Animal Manures (AM) versus Crop Residues (CR) | {1} | 314,604.08 | 314,604.10 | 50.49 | *** |
Mixtures | <17> | 851,143.30 | 50,067.25 | 8.03 | *** |
Ratios | {2} | 125,548.20 | 62,774.10 | 10.07 | *** |
Organic Sources in Mixtures | {5} | 700,659.20 | 140,131.80 | 22.48 | *** |
Ratios × Organic Sources | {10} | 24,935.90 | 2493.59 | 0.40 | ns |
Y × Treatments | 25 | 144,057.00 | 5762.28 | 0.92 | ns |
Y × Control vs. rest | (1) | 33,435.13 | 33,435.13 | 5.36 | * |
Y × Urea vs. Pure OS | (1) | 136.92 | 136.92 | 0.02 | ns |
Y × Among all OS | (23) | 110,485.00 | 4803.69 | 0.77 | ns |
Y × Pure OS versus Mixtures | <1> | 1172.77 | 1172.77 | 0.18 | ns |
Y × Pure OS | <5> | 13,045.67 | 2609.13 | 0.41 | ns |
Y × AM vs. CR | {1} | 7676.02 | 7676.02 | 1.23 | ns |
Y × Mixtures | <17> | 96,266.52 | 5662.73 | 0.90 | ns |
Y × Ratios | {2} | 5873.43 | 2936.71 | 0.47 | ns |
Y × Organic Sources in Mixtures | {5} | 22,614.72 | 4522.94 | 0.72 | ns |
Y × Ratios × Organic Sources | {10} | 67,778.36 | 6777.83 | 1.08 | ns |
Error | 150 | 934,639.10 | 6230.92 | ||
Total | 207 | 3,186,292 |
N Source | 2011 | 2012 | Mean |
---|---|---|---|
Cattle Manure | 748 | 803 | 775 |
Poultry Manure | 731 | 821 | 776 |
Sheep Manure | 664 | 789 | 726 |
Onion leaves | 586 | 618 | 602 |
Wheat Straw | 545 | 580 | 562 |
Berseem Straw | 603 | 653 | 628 |
Level of Significance | *** | *** | *** |
75U:25OS | 678 | 737 | 707 |
50U:50OS | 720 | 800 | 760 |
25U:75OS | 731 | 821 | 776 |
Level of Significance | * | ** | *** |
Urea + Organic sources | |||
Urea + Cattle Manure | 748 | 851 | 800 |
Urea + Poultry Manure | 751 | 863 | 807 |
Urea + Sheep Manure | 783 | 835 | 809 |
Urea + Onion Leaves | 705 | 777 | 741 |
Urea + Wheat Straw | 577 | 649 | 613 |
Urea + Berseem Straw | 695 | 739 | 717 |
Level of Significance | *** | *** | *** |
Planned Mean Comparison | |||
Control | 530 | 471 | 501 b |
Rest | 684 | 756 | 720 a |
Urea | 624 | 688 | 656 b |
Mixture | 710 | 786 | 748 a |
Pure OS | 646 | 711 | 678 b |
Mixture | 710 | 786 | 748 a |
Urea | 624 | 688 | 656 a |
Pure OS | 646 | 711 | 678 a |
Animal Manure | 749 | 839 | 794 a |
Crop Residues | 639 | 695 | 667 b |
Urea | 624 | 688 | 656 b |
Pure OS + Mix | 694 | 767 | 730 a |
Interactions | Significance | Interactions | Significance |
Y × OS | ns | Y × U vs. Mix | ns |
Y × ratios | ns | Y × OS versus Mix | ns |
Y × mixtures | ns | Y × AM versus CR | ns |
Y × control versus rest | * | Y × U versus OS + Mix | ns |
Y × urea versus OS | ns |
Sources of Variance | Degree of Freedom | Sum of Squares | Mean Squares | F-Values | Significance |
---|---|---|---|---|---|
Years (Y) | 1 | 0.46 | 0.46 | 16.07 | ** |
Blocks (Years) | 6 | 0.17 | 0.02 | 1.08 | - |
Treatments | 25 | 8.16 | 0.32 | 12.39 | *** |
Control versus Rest | (1) | 6.72 | 6.72 | 255.03 | *** |
Urea versus Pure OS (Organic Sources) | (1) | 0.14 | 0.14 | 5.48 | * |
Among all OS (Sole + Mixtures) | (23) | 1.29 | 0.05 | 2.14 | ** |
Pure OS versus Mixtures | <1> | 0.34 | 0.34 | 13.17 | *** |
Pure OS | <5> | 0.24 | 0.04 | 1.86 | ns |
Animal Manures (AM) versus Crop Residues (CR) | {1} | 0.18 | 0.18 | 6.85 | ** |
Mixtures | <17> | 0.70 | 0.04 | 1.57 | ns |
Ratios | {2} | 0.00 | 0.00 | 0.08 | ns |
Organic Sources in Mixtures | {5} | 0.68 | 0.13 | 5.18 | *** |
Ratios × Organic Sources | {10} | 0.01 | 0.00 | 0.06 | ns |
Y × Treatments | 25 | 0.37 | 0.01 | 0.56 | ns |
Y × Control versus rest | (1) | 0.10 | 0.10 | 4.03 | * |
Y × Urea versus Pure OS | (1) | 0.00 | 0.00 | 0.23 | ns |
Y × Among all OS | (23) | 0.26 | 0.01 | 0.43 | ns |
Y × Pure OS versus Mixtures | <1> | 0.05 | 0.05 | 2.15 | ns |
Y × Pure OS | <5> | 0.00 | 0.00 | 0.01 | ns |
Y × AM versus CR | {1} | 5.84 | 5.84 | 2.21 | ns |
Y × Mixtures | <17> | 0.20 | 0.01 | 0.45 | ns |
Y × Ratios | {2} | 0.17 | 0.08 | 3.22 | * |
Y × Organic Sources in Mixtures | {5} | 0.02 | 0.00 | 0.16 | ns |
Y × Ratios × Organic Sources | {10} | 0.01 | 0.00 | 0.04 | ns |
Error | 150 | 3.95 | 0.02 | ||
Total | 207 | 13.13 |
N Source | 2011 | 2012 | Mean |
---|---|---|---|
Cattle Manure | 1.45 | 1.51 | 1.48 |
Poultry Manure | 1.52 | 1.55 | 1.54 |
Sheep Manure | 1.41 | 1.45 | 1.43 |
Onion leaves | 1.37 | 1.41 | 1.39 |
Wheat Straw | 1.30 | 1.36 | 1.33 |
Berseem Straw | 1.34 | 1.38 | 1.36 |
Level of Significance | ns | ns | ns |
75U:25OS | 1.50 | 1.53 | 1.51 |
50U: 50OS | 1.45 | 1.59 | 1.52 |
25U:75OS | 1.43 | 1.62 | 1.52 |
Level of Significance | ns | ns | ns |
Urea + Organic sources | |||
Urea + Cattle Manure | 1.51 | 1.66 | 1.58 |
Urea + Poultry Manure | 1.54 | 1.68 | 1.61 |
Urea + Sheep Manure | 1.50 | 1.59 | 1.54 |
Urea + Onion Leaves | 1.45 | 1.56 | 1.50 |
Urea + Wheat Straw | 1.33 | 1.48 | 1.41 |
Urea + Berseem Straw | 1.42 | 1.52 | 1.47 |
Level of Significance | * | * | ns |
Planned Mean Comparison | |||
Control | 0.63 | 0.51 | 0.56 b |
Rest | 1.47 | 1.56 | 1.51 a |
Urea | 1.61 | 1.66 | 1.63 a |
Mixture | 1.46 | 1.58 | 1.52 b |
Pure OS | 1.40 | 1.44 | 1.42 b |
Mixture | 1.46 | 1.58 | 1.52 a |
Urea | 1.61 | 1.66 | 1.63 a |
Pure OS | 1.40 | 1.44 | 1.42 a |
Animal Manure | 1.50 | 1.61 | 1.55 a |
Crop Residues | 1.38 | 1.49 | 1.43 b |
Urea | 1.61 | 1.66 | 1.63 a |
Pure OS + Mix | 1.44 | 1.55 | 1.49 a |
Interactions | Significance | Interactions | Significance |
Y × OS | ns | Y x U versus Mix | ns |
Y × ratios | * | Y x OS versus Mix | ns |
Y × mixtures | ns | Y x AM versus CR | ns |
Y × control versus rest | *** | Y x U versus OS + Mix | ns |
Y × urea versus OS | ns |
Sources of Variance | Degree ofFreedom | Sum of Squares | Mean Squares | F-Values | Significance |
---|---|---|---|---|---|
Years (Y) | 1 | 0.16 | 0.16 | 14.06 | ** |
Blocks (Years) | 6 | 0.07 | 0.012 | 1.71 | - |
Treatments | 25 | 0.64 | 0.02 | 3.71 | *** |
Control versus Rest | (1) | 0.29 | 0.29 | 42.43 | *** |
Urea versus Pure OS (Organic Sources) | (1) | 0.02 | 0.02 | 3.27 | ns |
Among all OS (Sole + Mixtures) | (23) | 0.32 | 0.01 | 2.04 | ** |
Pure OS versus Mixtures | <1> | 0.05 | 0.05 | 8.24 | ** |
Pure OS | <5> | 0.02 | 0.00 | 0.74 | ns |
Animal Manures (AM) versus Crop Residues (CR) | {1} | 0.02 | 0.01 | 2.63 | ns |
Mixtures | <17> | 0.24 | 0.01 | 2.06 | * |
Ratios | {2} | 0.00 | 0.00 | 0.14 | ns |
Organic Sources in Mixtures | {5} | 0.18 | 0.03 | 5.34 | *** |
Ratios × Organic Sources | {10} | 0.05 | 0.00 | 0.81 | ns |
Y × Treatments | 25 | 0.28 | 0.01 | 1.62 | * |
Y × Control versus rest | (1) | 0.03 | 0.03 | 4.99 | * |
Y × Urea versus Pure OS | (1) | 0.00 | 0.00 | 0.53 | ns |
Y × Among all OS | (23) | 0.24 | 0.01 | 1.52 | ns |
Y × Pure OS versus Mixtures | <1> | 0.00 | 0.00 | 0.75 | ns |
Y × Pure OS | <5> | 0.00 | 0.00 | 0.17 | ns |
Y × AM versus CR | {1} | 0.00 | 0.00 | 0.52 | ns |
Y × Mixtures | <17> | 0.23 | 0.01 | 1.96 | * |
Y × Ratios | {2} | 0.09 | 0.04 | 6.80 | ** |
Y × Organic Sources in Mixtures | {5} | 0.00 | 0.00 | 0.16 | ns |
Y × Ratios × Organic Sources | {10} | 0.13 | 0.01 | 1.90 | * |
Error | 150 | 1.04 | 0.00 | ||
Total | 207 | 2.22 |
N Source | 2011 | 2012 | Mean |
---|---|---|---|
75U:25OS | 0.55 | 0.56 | 0.56 |
50U:50OS | 0.53 | 0.60 | 0.56 |
25U:75OS | 0.50 | 0.63 | 0.57 |
Level of Significance | * | * | ns |
“Cattle Manure | 0.52 | 0.57 | 0.54 |
Poultry Manure | 0.52 | 0.57 | 0.55 |
Sheep Manure | 0.50 | 0.59 | 0.54 |
Onion leaves | 0.51 | 0.54 | 0.52 |
Wheat Straw | 0.47 | 0.49 | 0.48 |
Berseem Straw | 0.49 | 0.53 | 0.51 |
Level of Significance | ns | ns | ns |
Urea + Organic sources | |||
Urea + Cattle Manure | 0.54 | 0.59 | 0.57 |
Urea + Poultry Manure | 0.59 | 0.67 | 0.63 |
Urea + Sheep Manure | 0.55 | 0.61 | 0.58 |
Urea + Onion Leaves | 0.49 | 0.58 | 0.54 |
Urea + Wheat Straw | 0.49 | 0.54 | 0.51 |
Urea + Berseem Straw” | 0.51 | 0.60 | 0.55 |
Level of Significance | ** | ns | * |
Planned Mean Comparison | |||
Control | 0.40 | 0.32 | 0.36 b |
Rest | 0.53 | 0.59 | 0.56 a |
Urea | 0.60 | 0.62 | 0.61 a |
Mixture | 0.53 | 0.60 | 0.56b |
Pure OS | 0.50 | 0.55 | 0.52 b |
Mixture | 0.53 | 0.60 | 0.56 a |
Urea | 0.60 | 0.62 | 0.61 a |
Pure OS | 0.50 | 0.55 | 0.52 b |
Animal Manure | 0.55 | 0.61 | 0.58 a |
Crop Residues | 0.49 | 0.56 | 0.53 a |
Urea | 0.60 | 0.62 | 0.61 a |
Pure OS + Mix | 0.52 | 0.58 | 0.55 b |
Interactions | Significance | Interactions | Significance |
Y × OS | ns | Y × U versus Mix | * |
Y × ratios | ** | Y × OS versus Mix | ns |
Y × mixtures | ns | Y × AM versus CR | ns |
Y × control versus rest | * | Y × U versus OS + Mix | ns |
Y × urea versus OS | * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amanullah; Ullah, H.; Soliman Elshikh, M.; Alwahibi, M.S.; Alkahtani, J.; Muhammad, A.; Khalid, S.; Imran. Nitrogen Contents in Soil, Grains, and Straw of Hybrid Rice Differ When Applied with Different Organic Nitrogen Sources. Agriculture 2020, 10, 386. https://doi.org/10.3390/agriculture10090386
Amanullah, Ullah H, Soliman Elshikh M, Alwahibi MS, Alkahtani J, Muhammad A, Khalid S, Imran. Nitrogen Contents in Soil, Grains, and Straw of Hybrid Rice Differ When Applied with Different Organic Nitrogen Sources. Agriculture. 2020; 10(9):386. https://doi.org/10.3390/agriculture10090386
Chicago/Turabian StyleAmanullah, Hidayat Ullah, Mohamed Soliman Elshikh, Mona S. Alwahibi, Jawaher Alkahtani, Asim Muhammad, Shah Khalid, and Imran. 2020. "Nitrogen Contents in Soil, Grains, and Straw of Hybrid Rice Differ When Applied with Different Organic Nitrogen Sources" Agriculture 10, no. 9: 386. https://doi.org/10.3390/agriculture10090386
APA StyleAmanullah, Ullah, H., Soliman Elshikh, M., Alwahibi, M. S., Alkahtani, J., Muhammad, A., Khalid, S., & Imran. (2020). Nitrogen Contents in Soil, Grains, and Straw of Hybrid Rice Differ When Applied with Different Organic Nitrogen Sources. Agriculture, 10(9), 386. https://doi.org/10.3390/agriculture10090386