Can Organic Amendments Improve Soil Physical Characteristics and Increase Maize Performances in Contrasting Soil Water Regimes?
Abstract
:1. Introduction
2. Material and Methods
2.1. Soil Column Preparation
- -
- chemical fertilizers (control treatment that was unamended–C),
- -
- chemical fertilizers + compost (compost treatment–P),
- -
- chemical fertilizers + vermicompost (vermicompost treatment–V).
2.2. Organic Amendments Preparation
2.3. Maize Transplanting
2.4. Control of the Soil Matric Potential by Irrigation
2.5. Plant and Soil Characteristics
2.6. Statistical Analyses
3. Results
3.1. Irrigation Volumes
3.2. Plant Development
3.3. Shoot and Root Biomass at Harvesting
3.4. Root System Distribution with Depth
3.5. Soil Physical Characteristics
4. Discussion
4.1. Water Stress Control
4.2. Benefit of OA Addition; Compost Vs Vermicompost
4.3. Organic Amendments Reduced Plant Water Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cherlet, M.; Hutchinson, C.; Reynolds, J.; Hill, J.; Sommer, S.; von Maltitz, G. (Eds.) World Atlas of Desertification; Publication Office of the European Union: Luxembourg, 2018; 248p, ISBN 978-92-79-75350-3. [Google Scholar]
- IPBES. The IPBES Assessment Report on Land Degradation and Restoration; Montanarella, L., Scholes, R., Brainich, A., Eds.; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2018; 744p. [Google Scholar]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustaina-ble Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Summary for Policymakers; IPCC: Geneva, Switzerland, 2020; 41p. [Google Scholar]
- Millennium Ecosystem Assessment (Program). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; ISBN 978-1-59726-040-4. [Google Scholar]
- Montanarella, L.; Vargas, R. Global governance of soil resources as a necessary condition for sustainable development. Curr. Opin. Environ. Sustain. 2012, 4, 559–564. [Google Scholar] [CrossRef]
- Montanarella, L. The Global Soil Partnership. IOP Conf. Ser. Earth Environ. Sci. 2015, 25, 12001. [Google Scholar] [CrossRef] [Green Version]
- IUCN. Land Degradation Neutrality: Implications and Opportunities for Conservation, Technical Brief, 2nd ed.; IUCN: Nairobi, Kenya, 2015; 19p. [Google Scholar]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.-F.; Ferrer, A.; Peigné, J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef] [Green Version]
- FAO. Final Report for the International Symposium on Agroecology for Food Security and Nutrition; FAO: Rome, Italy, 2015; 41p. [Google Scholar]
- FAO. FAO’S Work on Agroecology. A Pathway to Achieving the SDGs; FAO: Rome, Italy, 2018; p. 28. [Google Scholar]
- Awasthi, M.K.; Sarsaiya, S.; Wang, Q.; Wang, M.; Chen, H.; Ren, X.; Kumar, S.; Zhang, Z. Mitigation of global warming po-tential for cleaner composting. In Biosynthetic Technology and Environmental Challenges; Varjani, S.J., Parameswaran, B., Kumar, S., Khare, S.K., Eds.; Springer: Singapore, 2018; pp. 271–305. ISBN 978-981-10-7433-2. [Google Scholar]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Amundson, R.; Biardeau, L. Opinion: Soil carbon sequestration is an elusive climate mitigation tool. Proc. Natl. Acad. Sci. USA 2018, 115, 11652–11656. [Google Scholar] [CrossRef] [Green Version]
- Luangduangsitthideth, O.; Limnirankul, B.; Kramol, P. Farmers’ knowledge and perceptions of sustainable soil conservation practices in Paklay district, Sayabouly province, Lao PDR. Kasetsart J. Soc. Sci. 2018. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Zhang, S.; Wang, Y. What could promote farmers to replace chemical fertilizers with organic fertilizers? J. Clean. Prod. 2018, 199, 882–890. [Google Scholar] [CrossRef]
- Alexander, K.S.; Greenhalgh, G.; Moglia, M.; Thephavanh, M.; Sinavong, P.; Larson, S.; Jovanovic, T.; Case, P. What is technology adoption? Exploring the agricultural research value chain for smallholder farmers in Lao PDR. Agric. Hum. Values 2020, 37, 17–32. [Google Scholar] [CrossRef]
- Sanchez, P.A. Properties and Management of Soils in the Tropics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Huang, P.; Xie, S.-P.; Hu, K.; Huang, G.; Huang, R. Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci. 2013, 6, 357–361. [Google Scholar] [CrossRef]
- Fischer, E.M.; Sedláček, J.; Hawkins, E.; Knutti, R. Models agree on forced response pattern of precipitation and temperature extremes. Geophys. Res. Lett. 2014, 41, 8554–8562. [Google Scholar] [CrossRef] [Green Version]
- Sheldon, K.S. Climate Change in the Tropics: Ecological and Evolutionary Responses at Low Latitudes. Annu. Rev. Ecol. Evol. Syst. 2019, 50, 303–333. [Google Scholar] [CrossRef]
- Unver, O.; Wahaj, R.; Lorenzon, E.; Mohammadi, K.; Osias, J.R.; Reinders, F.; Wani, S.; Chuchra, J.; Lee, P.; Sangjun, I. Key and Smart Actions to Alleviate Hunger and Poverty through Irrigation and Drainage. Irrig. Drain. 2018, 67, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Nigussie, A.; Kuyper, T.W.; De Neergaard, A. Agricultural waste utilisation strategies and demand for urban waste compost: Evidence from smallholder farmers in Ethiopia. Waste Manag. 2015, 44, 82–93. [Google Scholar] [CrossRef]
- Yazdanpanah, N.; Mahmoodabadi, M.; Cerdà, A. The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands. Geoderma 2016, 266, 58–65. [Google Scholar] [CrossRef]
- Bundhoo, Z.M. Solid waste management in least developed countries: Current status and challenges faced. J. Mater. Cycles Waste Manag. 2018, 20, 1867–1877. [Google Scholar] [CrossRef]
- Geng, Y.; Cao, G.; Wang, L.; Wang, S. Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. PLoS ONE 2019, 14, e0219512. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Feng, W.-T.; He, X.-H.; Zhu, P.; Gao, H.-J.; Nan, S.; Xu, M. Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. J. Integr. Agric. 2017, 16, 937–946. [Google Scholar] [CrossRef]
- Mohamed, W.S.; Hammam, A.A. Poultry manure-derived biochar as a soil amendment and fertilizer for sandy soils under arid conditions. Egypt. J. Soil Sci. 2019, 59, 1–14. [Google Scholar] [CrossRef]
- Fornes, F.; Mendoza-Hernández, D.; García-De-La-Fuente, R.; Abad, M.; Belda, R.M. Composting versus vermicomposting: A comparative study of organic matter evolution through straight and combined processes. Bioresour. Technol. 2012, 118, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Larney, F.J.; Sullivan, D.M.; Buckley, K.E.; Eghball, B. The role of composting in recycling manure nutrients. Can. J. Soil Sci. 2006, 86, 597–611. [Google Scholar] [CrossRef]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2006; ISBN 978-3-540-31210-9. [Google Scholar]
- FCQAO. Methods Book for the Analysis of Compost; Federal Compost Quality Assurance Organization: Stuttgart, Germany, 2003; ISBN 978-3-928179-33-1. [Google Scholar]
- Ferreras, L.; Gomez, E.; Toresani, S.; Firpo, I.; Rotondo, R. Effect of organic amendments on some physical, chemical and biological properties in a horticultural soil. Bioresour. Technol. 2006, 97, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.; Singh, J.; Vig, A.P. Vermicompost as an effective organic fertilizer and biocontrol agent: Effect on growth, yield and quality of plants. Rev. Environ. Sci. Bio/Technol. 2015, 14, 137–159. [Google Scholar] [CrossRef]
- Eden, M.; Gerke, H.H.; Houot, S. Organic waste recycling in agriculture and related effects on soil water retention and plant available water: A review. Agron. Sustain. Dev. 2017, 37, 11. [Google Scholar] [CrossRef] [Green Version]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.-S.P. Response of plants to water stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [Green Version]
- Khalil, A.M.; Murchie, E.H.; Mooney, S. Quantifying the influence of water deficit on root and shoot growth in wheat using X-ray Computed Tomography. AoB Plants 2020, 12, plaa036. [Google Scholar] [CrossRef]
- Assouline, S.; Tessier, D.; Bruand, A. A conceptual model of the soil water retention curve. Water Resour. Res. 1998, 34, 223–231. [Google Scholar] [CrossRef]
- Novák, V.; Hlaváčiková, H. Applied Soil Hydrology, 1st ed.; Theory and Applications of Transport in Porous Media; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-01806-1. [Google Scholar]
- Bonachela, S.; González, A.M.; Fernández, M.; Cabrera-Corral, F.J. Vegetable Crops Grown under High Soil Water Availability in Mediterranean Greenhouses. Water 2020, 12, 1110. [Google Scholar] [CrossRef] [Green Version]
- Dowd, T.G.; Braun, D.M.; Sharp, R.E. Maize lateral root developmental plasticity induced by mild water stress. I: Genotypic variation across a high-resolution series of water potentials: Lateral root developmental plasticity. Plant Cell Environ. 2019, 42, 2259–2273. [Google Scholar] [CrossRef]
- Newby, A.F.; Altland, J.E.; Struve, D.K.; Pasian, C.C.; Ling, P.P.; Jourdan, P.S.; Kessler, J.R.; Carpenter, M. Integrating Moisture Characteristic Curves with Gravimetric Data in the Management of Substrate Moisture Content for Annual Vinca. HortScience 2018, 53, 1197–1202. [Google Scholar] [CrossRef] [Green Version]
- Valença, D.D.C.; De Carvalho, D.F.; Azevedo, R.A.; De Pinho, C.F.; Medici, L.O.; Reinert, F. Automatically controlled deficit irrigation of lettuce in “organic potponics”. Sci. Agricola 2018, 75, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.A.; Zarebanadkouki, M.; Kaestner, A.; Carminati, A. Measurements of water uptake of maize roots: The key function of lateral roots. Plant Soil 2016, 398, 59–77. [Google Scholar] [CrossRef]
- Cavero, J.; Medina, E.T.; Montoya, F. Sprinkler Irrigation Frequency Affects Maize Yield Depending on Irrigation Time. Agron. J. 2018, 110, 1862–1873. [Google Scholar] [CrossRef] [Green Version]
- Hirich, A.; Choukr-Allah, R.; Jacobsen, S.-E. Deficit Irrigation and Organic Compost Improve Growth and Yield of Quinoa and Pea. J. Agron. Crop. Sci. 2014, 200, 390–398. [Google Scholar] [CrossRef]
- Efeoğlu, B.; Ekmekçi, Y.; Çiçek, N. Physiological responses of three maize cultivars to drought stress and recovery. S. Afr. J. Bot. 2009, 75, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Parkash, V.; Singh, S. A Review on Potential Plant-Based Water Stress Indicators for Vegetable Crops. Sustainability 2020, 12, 3945. [Google Scholar] [CrossRef]
- El-Mageed, T.A.A.; El-Samnoudi, I.M.; Ibrahim, A.E.-A.M.; El Tawwab, A.R.A. Compost and mulching modulates morphological, physiological responses and water use efficiency in sorghum (bicolor L. Moench) under low moisture regime. Agric. Water Manag. 2018, 208, 431–439. [Google Scholar] [CrossRef]
- Zamani, J.; Afyuni, M.; Sepehrnia, N.; Schulin, R. Opposite effects of two organic wastes on the physical quality of an agricultural soil. Arch. Agron. Soil Sci. 2016, 62, 413–427. [Google Scholar] [CrossRef]
- Tognetti, C.; Laos, F.; Mazzarino, M.; Hernández, M. Composting vs. Vermicomposting: A Comparison of End Product Quality. Compos. Sci. Util. 2005, 13, 6–13. [Google Scholar] [CrossRef]
- Kalantari, S.; Hatami, S.; Ardalan, M.M.; Alikhani, H.A.; Shorafa, M. The Effect of Compost and Vermicompost of Yard Leaf Manure on Growth of Corn. Afr. J. Agric. Res. 2010, 5, 1317–1323. [Google Scholar]
- Oo, A.N.; Iwai, C.B.; Saenjan, P. Soil Properties and Maize Growth in Saline and Nonsaline Soils Using Cassava-Industrial Waste Compost and Vermicompost with or without Earthworms. Land Degrad. Dev. 2015, 26, 300–310. [Google Scholar] [CrossRef]
- Roy, S.; Arunachalam, K.; Dutta, B.K.; Arunachalam, A. Effect of organic amendments of soil on growth and productivity of three common crops viz. Zea mays, Phaseolus vulgaris and Abelmoschus esculentus. Appl. Soil Ecol. 2010, 45, 78–84. [Google Scholar] [CrossRef]
- Subedi, K.D.; Ma, B.L. Corn crop production: Growth, fertilization and yield. In Corn Crop Production Growth, Fertilization and Yield Corn Crop Production: Growth, Fertilization and Yield; Danforth, A.T., Ed.; Nova Publisher: New York, NY, USA, 2011; p. 84. [Google Scholar] [CrossRef]
- Latifah, O.; Ahmed, O.H.; Majid, N.M.A. Short Term Enhancement of Nutrients Availability in Zea mays L. Cultivation on an Acid Soil Using Compost and Clinoptilolite Zeolite. Compos. Sci. Util. 2017, 25, 22–35. [Google Scholar] [CrossRef]
- Manolikaki, I.; Diamadopoulos, E. Positive Effects of Biochar and Biochar-Compost on Maize Growth and Nutrient Availability in Two Agricultural Soils. Commun. Soil Sci. Plant Anal. 2019, 50, 512–526. [Google Scholar] [CrossRef]
- Ayanfeoluwa, O.E. Availability of nutrients from an accelerated compost for maize (Zea mays) production in two soil types. Commun. Soil Sci. Plant Anal. 2019, 50, 1476–1486. [Google Scholar] [CrossRef]
- Liu, J.; Schulz, H.; Brandl, S.; Miehtke, H.; Huwe, B.; Glaser, B. Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. Z. Pflanzenernähr. Bodenk. 2012, 175, 698–707. [Google Scholar] [CrossRef]
- Lynch, D.H.; Voroney, R.P.; Warman, P.R. Soil Physical Properties and Organic Matter Fractions Under Forages Receiving Composts, Manure or Fertilizer. Compos. Sci. Util. 2005, 13, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Mamo, M.; Moncrief, J.; Rosen, C.; Halbach, T. The Effect of Municipal Solid Waste Compost Application on Soil Water and Water Stress in Irrigated Corn. Compos. Sci. Util. 2000, 8, 236–246. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. Limited effect of organic matter on soil available water capacity: Limited Effect of Organic Matter on Soil Water Retention. Eur. J. Soil Sci. 2018, 69, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Clark, L.J.; Whalley, W.; Barraclough, P. How do roots penetrate strong soil? Plant Soil 2003, 255, 93–104. [Google Scholar] [CrossRef]
- Tardieu, F. Analysis of the spatial variability of maize root density. III. Effect of a wheel compaction on water extraction. Plant Soil 1988, 109, 257–262. [Google Scholar] [CrossRef]
- Sangakkara, U.R.; Amarasekera, P.; Stamp, P. Irrigation Regimes Affect Early Root Development, Shoot Growth and Yields of Maize (Zea mays L.) in Tropical Minor Seasons. Plant Soil Environ. 2010, 56, 228–234. [Google Scholar]
- Bengough, A.G.; McKenzie, B.M.; Hallett, P.D.; Valentine, T.A. Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. J. Exp. Bot. 2011, 62, 59–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doussan, C.; Pagès, L.; Pierret, A. Soil exploration and resource acquisition by plant roots: An architectural and modelling point of view. Agronomie 2003, 23, 419–431. [Google Scholar] [CrossRef]
- Frederickson, J.; Howell, G.; Hobson, A.M. Effect of pre-composting and vermicomposting on compost characteristics. Eur. J. Soil Biol. 2007, 43, S320–S326. [Google Scholar] [CrossRef]
- Way, D.A.; Katul, G.G.; Manzoni, S.; Vico, G. Increasing water use efficiency along the C3 to C4 evolutionary pathway: A stomatal optimization perspective. J. Exp. Bot. 2014, 65, 3683–3693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Values |
---|---|
Clay (g kg−1) | 223 |
Silt (g kg−1) | 306 |
Sand (g kg−1) | 471 |
pH (H2O) | 4.16 |
pH (KCl) | 4.09 |
OM (%) | 0.80 |
Total N (%) | 0.04 |
Available P (mg kg−1) | 2.24 |
Exchangeable K (mg kg−1) | 11.53 |
Parameters | Compost | Vermicompost |
---|---|---|
pH (H2O) | 7.1 ± 0.1 | 6.6 ± 0.3 |
C/N | 19.6 ± 1.0 | 20.1 ± 1.4 |
Organic carbon (OC (%)) | 31.2 ± 1.2 | 29.6 ± 2.1 |
Total N (%) | 1.60 ± 0.03 | 1.46 ± 0.09 |
Total P2O5 (%) | 1.45 ± 0.29 | 1.26 ± 0.21 |
Total K2O (%) | 0.77 ± 0.13 | 0.85 ± 0.14 |
Total Na (%) | 0.22 ± 0.06 | 0.20 ± 0.05 |
Total CaO (%) | 2.62 ± 0.18 | 2.34 ± 0.46 |
Total MgO (%) | 0.68 ± 0.08 | 0.69 ± 0.18 |
Total S (%) | 0.16 ± 0.03 | 0.22 ± 0.06 |
EC (dS m−1) | 2.0 ± 0.3 | 2.8 ± 0.6 |
Water Potential | Treatments and Codes | ||
---|---|---|---|
Chemical Fertilizer | Chemical Fertilizer + Compost | Chemical Fertilizer + Vermicompost | |
Ψ ≈ −150 hPa | Cd | Pd | Vd |
Ψ ≈ −500 hPa | Cw | Pw | Vw |
Plant Characteristics | DAP | Wet | Dry | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | P | V | C | P | V | ||||||||
av | sd | av | sd | av | sd | av | sd | av | sd | av | sd | ||
Plant height (cm) | 10 | 31.80 | 1.8 b | 38.90 | 4.2 a | 40.00 | 2.4 a | 32.30 | 1.9 b | 39.60 | 2.8 a | 37.90 | 2.9 a |
16 | 48.80 | 2.6 b | 68.90 | 3.7 a | 69.90 | 5.2 a | 43.20 | 3.3 c | 53.20 | 3.0 b | 52.10 | 3.0 b | |
41 | 150.60 | 6.1 b | 184.00 | 4.5 a | 181.60 | 7.5 a | 124.80 | 5.6 c | 153.00 | 5.4 b | 147.00 | 5.1 b | |
Number of leaves | 10 | 5.20 | 0.4 b | 5.80 | 0.4 ab | 6.00 | 0.0 a | 5.20 | 0.4 b | 5.80 | 0.4 ab | 6.00 | 0.0 a |
16 | 8.00 | 0.0 b | 9.00 | 0 a | 9.00 | 0.0 a | 7.20 | 0.4 c | 8.00 | 0.0 b | 8.20 | 0.4 b | |
41 | 18.00 | 0.0 cd | 20.00 | 0 a | 20.00 | 0.0 a | 16.00 | 0.0 d | 18.20 | 0.4 b | 17.80 | 0.4 bc | |
Total leaves length (cm) | 10 | 89.50 | 11.4 b | 104.90 | 14.5 ab | 110.70 | 10.2 a | 85.50 | 3.0 b | 100.80 | 13.9 ab | 102.80 | 10.2 ab |
16 | 178.20 | 13.2 b | 275.60 | 21.7 a | 277.30 | 17.0 a | 135.50 | 17.1 c | 202.60 | 12.9 b | 193.60 | 10.8 b | |
41 | 917.60 | 37.1 bc | 1178.40 | 31.1 a | 1135.00 | 58.1 a | 676.00 | 31.2 d | 980.60 | 27.3 bc | 905.80 | 49.1 c |
Biomass (g) | Wet | Dry | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | P | V | C | P | V | ||||||||||||
av | sd | av | sd | Δ (P/C) | av | sd | Δ (V/C) | av | sd | av | sd | Δ (P/C) | av | sd | Δ (V/C) | ||
Shoot | Flowers | 3.60 | 0.60 | 4.40 | 0.60 | 22% | 3.90 | 0.9 | 7% | 2.90 | 0.40 | 3.30 | 0.50 | 11% | 3.20 | 1 | 8% |
Stem | 41.90 | 1.4 b | 64.30 | 7.4 a | 54% | 63.90 | 4.4 a | 53% | 25.10 | 4.0 c | 42.60 | 4.3 b | 70% | 36.50 | 2.9 b | 45% | |
Leaves | 32.30 | 1.6 c | 51.90 | 5.4 a | 61% | 50.30 | 2.8 a | 55% | 24.50 | 3.1 d | 38.90 | 2.5 b | 59% | 33.00 | 3.5 bc | 35% | |
Corn ear | 19.00 | 4.9 c | 85.70 | 15.8 a | 351% | 70.40 | 8.5 a | 270% | 10.80 | 3.3 c | 48.10 | 5.4 b | 347% | 38.60 | 5.6 b | 259% | |
Total | 96.90 | 5.40 | 206.40 | 27.50 | 113% | 188.50 | 14.4 | 95% | 63.30 | 8.40 | 132.90 | 8.70 | 110% | 111.30 | 6.8 | 76% | |
Root | 37.10 | 13.40 | 92.70 | 20.40 | 150% | 72.20 | 21.4 | 95% | 18.00 | 4.50 | 31.60 | 6.90 | 76% | 24.50 | 1.50 | 36% |
Range of the Matric Potential | Pore Size μm | Water Content g water g−1 soil | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
hPa | pF | C | P | Δ (P/C) | V | Δ (V/C) | |||||
av | sd | av | sd | av | sd | ||||||
−10 | =>−30 | 1.0–1.5 | 300–100 | 0.033 | 0.012 | 0.083 | 0.020 | 153% | 0.088 | 0.0233 | 167% |
−30 | =>−100 | 1.5–2.0 | 100–30 | 0.035 | 0.009 | 0.065 | 0.011 | 83% | 0.067 | 0.0092 | 88% |
−100 | =>−300 | 2.0–2.5 | 30–10 | 0.052 | 0.006 | 0.049 | 0.009 | −6% | 0.047 | 0.0064 | −11% |
−300 | =>−1000 | 2.5–3.0 | 10–3 | 0.017 | 0.005 | 0.011 | 0.007 | −33% | 0.021 | 0.0064 | 23% |
−1000 | =>−3000 | 3.0–3.5 | 3–1 | 0.011 | 0.007 | 0.011 | 0.006 | 0% | 0.013 | 0.0099 | 17% |
−3000 | =>−16000 | 3.5–4.0 | 1–0.2 | 0.024 | 0.011 | 0.017 | 0.007 | −31% | 0.013 | 0.0123 | −44% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sisouvanh, P.; Trelo-ges, V.; Isarangkool Na Ayutthaya, S.; Pierret, A.; Nunan, N.; Silvera, N.; Xayyathip, K.; Hartmann, C. Can Organic Amendments Improve Soil Physical Characteristics and Increase Maize Performances in Contrasting Soil Water Regimes? Agriculture 2021, 11, 132. https://doi.org/10.3390/agriculture11020132
Sisouvanh P, Trelo-ges V, Isarangkool Na Ayutthaya S, Pierret A, Nunan N, Silvera N, Xayyathip K, Hartmann C. Can Organic Amendments Improve Soil Physical Characteristics and Increase Maize Performances in Contrasting Soil Water Regimes? Agriculture. 2021; 11(2):132. https://doi.org/10.3390/agriculture11020132
Chicago/Turabian StyleSisouvanh, Phimmasone, Vidhaya Trelo-ges, Supat Isarangkool Na Ayutthaya, Alain Pierret, Naoise Nunan, Norbert Silvera, Khampaseuth Xayyathip, and Christian Hartmann. 2021. "Can Organic Amendments Improve Soil Physical Characteristics and Increase Maize Performances in Contrasting Soil Water Regimes?" Agriculture 11, no. 2: 132. https://doi.org/10.3390/agriculture11020132
APA StyleSisouvanh, P., Trelo-ges, V., Isarangkool Na Ayutthaya, S., Pierret, A., Nunan, N., Silvera, N., Xayyathip, K., & Hartmann, C. (2021). Can Organic Amendments Improve Soil Physical Characteristics and Increase Maize Performances in Contrasting Soil Water Regimes? Agriculture, 11(2), 132. https://doi.org/10.3390/agriculture11020132