Genome-Wide Association Mapping through 90K SNP Array for Quality and Yield Attributes in Bread Wheat against Water-Deficit Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Germplasm Collection and Experimental Layout
2.2. Data Recording and Statistical Analysis
2.3. Genotyping of the Studied Germplasm
2.4. Population Structure and GWAS Analysis
2.5. Mapping SNPs and Identification of Candidate Genes
3. Results
3.1. Phenotypic Evaluation
3.2. Population Structure
3.3. Markers–Traits Associations for Yield and Quality Attributes
3.4. Flag Leaf Area (FLA)
3.5. Thousand Grain Weight (TGW)
3.6. Grain Yield per Plant (GYP)
3.7. Grain Protein Contents (GPC)
3.8. Gluten Contents (GLC)
3.9. Genome-Wide MTAs
3.10. Pleiotropic Locus
3.11. Mapping SNPs and Identification of Candidate Genes
4. Discussion
4.1. Phenotypic Evaluation
4.2. Population Structure Analysis
4.3. Markers–Traits Associations for Yield and Quality Attributes
4.4. Mapping SNPs and Identification of Candidate Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- ElBasyoni, I.; Saadalla, M.; Baenziger, S.; Bockelman, H.; Morsy, S. Cell membrane stability and association mapping for drought and heat tolerance in a worldwide wheat collection. Sustainability 2017, 9, 1606. [Google Scholar] [CrossRef] [Green Version]
- Dixon, J.; Braun, H.-J.; Kosina, P.; Crouch, J.H. Wheat Facts and Futures 2009; Cimmyt: Mexico City, Mexico, 2009. [Google Scholar]
- Ahmed, H.G.M.-D.; Zeng, Y.; Yang, X.; Anwaar, H.A.; Mansha, M.Z.; Hanif, C.M.S.; Ikram, K.; Ullah, A.; Suliman Alghanem, S.M. Conferring drought-tolerant wheat genotypes through morpho-physiological and chlorophyll indices at seedling stage. Saudi J. Biol. Sci. 2020, 27, 2116. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, S.; Lopes, M.; Dreisigacker, S.; Reynolds, M. Genetic analysis of multi-environmental spring wheat trials identifies genomic regions for locus-specific trade-offs for grain weight and grain number. Theor. Appl. Genet. 2018, 131, 999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulnaz, S.; Zulkiffal, M.; Sajjad, M.; Ahmed, J.; Musa, M.; Abdullah, M.; Ahsan, A.; Ur Rehman, A. Identifying Pakistani Wheat Landraces as Genetic Resources for Yield Potential, Heat Tolerance and Rust Resistance. Int. J. Agric. Biol. 2019, 21, 520–526. [Google Scholar]
- Li, Y.; Zhou, R.; Wang, J.; Liao, X.; Branlard, G.; Jia, J. Novel and favorable QTL allele clusters for end-use quality revealed by introgression lines derived from synthetic wheat. Mol. Breed. 2012, 29, 627–643. [Google Scholar] [CrossRef]
- Ahmed, H.G.M.-D.; Khan, A.S.; Kashif, M.; Khan, S.H. Genetic mechanism of leaf venation and stomatal traits for breeding drought tolerant lines in wheat. Bangladesh J. Bot. 2017, 46, 35–41. [Google Scholar]
- Pinto, R.S.; Reynolds, M.P.; Mathews, K.L.; McIntyre, C.L.; Olivares-Villegas, J.-J.; Chapman, S.C. Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor. Appl. Genet. 2010, 121, 1001–1021. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.G.M.-D.; Sajjad, M.; Li, M.; Azmat, M.A.; Rizwan, M.; Maqsood, R.H.; Khan, S.H. Selection Criteria for Drought-Tolerant Bread Wheat Genotypes at Seedling Stage. Sustainability 2019, 11, 2584. [Google Scholar] [CrossRef] [Green Version]
- Ogbonnaya, F.C.; Rasheed, A.; Okechukwu, E.C.; Jighly, A.; Makdis, F.; Wuletaw, T.; Hagras, A.; Ugueu, M.I.; Agbo, C. Genome-wide association study for agronomic and physiological traits in spring wheat evaluated in a range of heat prone environments. Theor. Appl. Genet. 2017, 130, 1819–1835. [Google Scholar] [CrossRef]
- Ain, Q.-U.; Rasheed, A.; Anwar, A.; Mahmood, T.; Imtiaz, M.; He, Z.; Xia, X.; Mahmood, T.; Quraishi, U.M. Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front. Plant Sci. 2015, 6, 743. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.; Hussain, M.; Siddique, K.H. Drought stress in wheat during flowering and grain-filling periods. Crit. Rev. Plant Sci. 2014, 33, 331–349. [Google Scholar] [CrossRef]
- Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 2017, 12, 064008. [Google Scholar] [CrossRef]
- Noorka, I.R.; Teixeira da Silva, J.A. Physical and morphological markers for adaptation of drought-tolerant wheat to arid environments. Pak. J. Agric. Sci. 2014, 51, 943–952. [Google Scholar]
- Qaseem, M.F.; Qureshi, R.; Muqaddasi, Q.H.; Shaheen, H.; Kousar, R.; Röder, M.S. Genome-wide association mapping in bread wheat subjected to independent and combined high temperature and drought stress. PLoS ONE 2018, 13, e0199121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Maskri, A.Y.; Sajjad, M.; Khan, S.H. Association Mapping: A Step Forward to Discovering New Alleles for Crop Improvement. Int. J. Agric. Biol. 2012, 14, 153–160. [Google Scholar]
- Tadesse, W.; Ogbonnaya, F.; Jighly, A.; Sanchez-Garcia, M.; Sohail, Q.; Rajaram, S.; Baum, M. Genome-wide association mapping of yield and grain quality traits in winter wheat genotypes. PLoS ONE 2015, 10, e0141339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, J.; Zhang, F.; Chong, X.; Song, A.; Guan, Z.; Fang, W.; Chen, F. Genome-wide association study identifies favorable SNP alleles and candidate genes for waterlogging tolerance in chrysanthemums. Hortic. Res. 2019, 6, 21. [Google Scholar] [CrossRef]
- Edae, E.A.; Byrne, P.F.; Haley, S.D.; Lopes, M.S.; Reynolds, M.P. Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor. Appl. Genet. 2014, 127, 791–807. [Google Scholar] [CrossRef]
- Lopes, M.; Dreisigacker, S.; Peña, R.; Sukumaran, S.; Reynolds, M.P. Genetic characterization of the wheat association mapping initiative (WAMI) panel for dissection of complex traits in spring wheat. Theor Appl. Genet. 2015, 128, 453–464. [Google Scholar] [CrossRef]
- Gupta, P.K.; Balyan, H.S.; Gahlaut, V. QTL analysis for drought tolerance in wheat: Present status and future possibilities. Agronomy 2017, 7, 5. [Google Scholar] [CrossRef]
- Bhatta, M.; Shamanin, V.; Shepelev, S.; Baenziger, P.S.; Pozherukova, V.; Pototskaya, I.; Morgounov, A. Marker-trait associations for enhancing agronomic performance, disease resistance, and grain quality in synthetic and bread wheat accessions in Western Siberia. G3 Genes Genomes, Genet. 2019, 9, 4209–4222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCartney, C.; Somers, D.; Lukow, O.; Ames, N.; Noll, J.; Cloutier, S.; Humphreys, D.G.; McCallum, B.D. QTL analysis of quality traits in the spring wheat cross RL4452 × ‘AC Domain’. Plant Breed. 2006, 125, 565–575. [Google Scholar] [CrossRef]
- Campbell, K.G.; Finney, P.L.; Bergman, C.J.; Gualberto, D.G.; Anderson, J.A.; Giroux, M.J.; Siritunga, D.; Zhu, J.; Gendre, F.; Roue, C.; et al. Quantitative trait loci associated with milling and baking quality in a soft × hard wheat cross. Crop. Sci. 2001, 41, 1275–1285. [Google Scholar] [CrossRef] [Green Version]
- Muller, J. Determining leaf surface area by means of a wheat osmoregulation water use: The challenge. Agricult. Meteorol. 1991, 14, 311–320. [Google Scholar]
- Liana, A.; Alda, S.; Fora, C.; Diana, M.; Gogoasa, I.; Bordean, D.; Carciu, G.; Cristea, T. Climatic conditions influence on the variation of quality indicators of some Romanian and foreign winter wheat cultivars. J. Horticult. For. Biotechnol. 2012, 16, 68–72. [Google Scholar]
- Alda, S.; Alda, L.; Turc, A.; Dragunescu, A.; Cristea, T.; Fora, C.; Draghici, G. Screening of 16 winter wheat cultivars for quality parameters, under conditions of Banat area (Romania). J. Horticult. For. Biotechnol. 2016, 20, 38–41. [Google Scholar]
- Payne, R. A Guide to ANOVA and Design in GenStat; VSN International: Hempstead, UK, 2008. [Google Scholar]
- Spss, I. IBM SPSS Statistics Version 21; Mass: International Business Machines Corp: Boston, MA, USA, 2012; p. 126. [Google Scholar]
- Dreisigacker, S.; Tiwari, R.; Sheoran, S. Laboratory Manual: ICAR-CIMMYT Molecular Breeding Course in Wheat 2013; ICAR: Haryana, India, 2013. [Google Scholar]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L.; et al. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014, 12, 787–796. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.K.; Stephens, M.; Rosenberg, N.A.; Donnelly, P. Association mapping in structured populations. Am. J. Hum. Genet. 2000, 67, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Earl, D.A.; von Holdt, B.M. Structure harvester: A website and program for visualizing structure output and implementing the Evanno method. Conserv. Genet. Res. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Lipka, A.E.; Tian, F.; Wang, Q.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z. GAPIT: Genome association and prediction integrated tool. Bioinformatics 2012, 28, 2397–2399. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Royal Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Yu, J.; Pressoir, G.; Briggs, W.H.; Bi, I.V.; Yamasaki, M.; Doebley, J.F.; McMullen, M.; Gaut, B.S.; Nielsen, D.M.; Holland, J.B.; et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Gen. 2006, 38, 203. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Gene Annotations and Ensembl Database Release 44. Available online: ftp://ftp.ensemblgenomes.org/pub/plants/release-44 (accessed on 15 February 2020).
- Anonymous. Uniprot Protein Database. Available online: https://www.uniprot.org/ (accessed on 25 February 2020).
- Rahman, M.; Barma, N.; Biswas, B.; Khan, A.; Rahman, J. Study on morpho-physiological traits in spring wheat (Triticum aestivum L.) Under rainfed condition. Bangladesh J. Agric. Res. 2016, 41, 235–250. [Google Scholar] [CrossRef]
- Yagdi, K.; Sozen, E. Heritability, variance components and correlations of yield and quality traits in durum wheat (Triticum durum Desf.). Pak. J. Bot 2009, 41, 753–759. [Google Scholar]
- Barnard, A.; Labuschagne, M.; Van Niekerk, H. Heritability estimates of bread wheat quality traits in the Western Cape province of South Africa. Euphytica 2002, 127, 115–122. [Google Scholar] [CrossRef]
- Zanetti, S.; Winzeler, M.; Feuillet, C.; Keller, B.; Messmer, M. Genetic analysis of bread-making quality in wheat and spelt. Plant Breed. 2001, 120, 13–19. [Google Scholar] [CrossRef]
- Budak, N. Heritability, correlation and genotype × year interactions of grain yield, test weight and protein content in durum wheats. Turk. J. Field Crop. 2000, 5, 35–40. [Google Scholar]
- Li, Y.-F.; Wu, Y.; Hernandez-Espinosa, N.; Peña, R.J. Heat and drought stress on durum wheat: Responses of genotypes, yield, and quality parameters. J. Cereal Sci. 2013, 57, 398–404. [Google Scholar] [CrossRef]
- Rakszegi, M.; Lovegrove, A.; Balla, K.; Láng, L.; Bedő, Z.; Veisz, O.; Shewry, P.R. Effect of heat and drought stress on the structure and composition of arabinoxylan and β-glucan in wheat grain. Carbohydr. Polym. 2014, 102, 557–565. [Google Scholar] [CrossRef]
- Liu, Y.; Bowman, B.; Hu, Y.-G.; Liang, X.; Zhao, W.; Wheeler, J.; Klassen, N.; Bockelman, H.; Bonman, J.M.; Chen, J. Evaluation of agronomic traits and drought tolerance of winter wheat accessions from the USDA-ARS national small grains collection. Agronomy 2017, 7, 51. [Google Scholar] [CrossRef]
- Rakszegi, M.; Darkó, É.; Lovegrove, A.; Molnár, I.; Láng, L.; Bedő, Z.; Molnar-Lang, M.; Shewry, P. Drought stress affects the protein and dietary fiber content of wholemeal wheat flour in wheat/Aegilops addition lines. PLoS ONE 2019, 14, e0211892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodig, D.; Zoric, M.; Kobiljski, B.; Savic, J.; Kandic, V.; Quarrie, S.; Barnes, J.D. Genetic and association mapping study of wheat agronomic traits under contrasting water regimes. Int. J. Mol. Sci. 2012, 13, 6167–6188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, D.E.; Chaitanya, K. Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants. Biol. Plant. 2016, 60, 201–218. [Google Scholar] [CrossRef]
- Jiang, D.; Xie, Z.-J.; Cao, W.-X.; Dai, T.-B.; Jing, Q. Effects of post-anthesis drought and waterlogging on photosynthetic characteristics, assimilates transportation in winter wheat. Acta Agron. Sin. 2004, 30, 175–182. [Google Scholar]
- Singh, S.; Gupta, A.K.; Kaur, N. Influence of drought and sowing time on protein composition, antinutrients, and mineral contents of wheat. Sci. World J. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.; Khan, A.S.; Khan, S.H.; Kashif, M. Genome wide allelic pattern and genetic diversity of spring wheat genotypes through SSR markers. Int. J. Agric. Biol. 2017, 19, 1559–1565. [Google Scholar]
- Yang, D.; Liu, Y.; Cheng, H.; Chang, L.; Chen, J.; Chai, S.; Li, M. Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes. BMC Genet. 2016, 17, 94. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Chen, Y.; Fu, L.; Zhou, S.; Chen, J.; Zhao, X.; Zhand, D.; Ouyang, S.; Wanh, Z.; Li, D.; et al. QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica 2016, 208, 337–351. [Google Scholar] [CrossRef]
- Zhao, C.; Bao, Y.; Wang, X.; Yu, H.; Ding, A.; Guan, C.; Cui, J.; Wu, Y.; Sun, H.; Zhai, D.; et al. QTL for flag leaf size and their influence on yield-related traits in wheat. Euphytica 2018, 214, 209. [Google Scholar] [CrossRef]
- Lozada, D.N.; Mason, R.E.; Babar, M.A.; Carver, B.F.; Guedira, G.-B.; Merrill, K.; Arguello, M.N.; Acuna, A.; Vieira, L.; Holder, A.; et al. Association mapping reveals loci associated with multiple traits that affect grain yield and adaptation in soft winter wheat. Euphytica 2017, 213, 222. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, F.; Yan, X.; Zhang, X.; Dong, Z.; Cui, D.; Chen, F. Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotechnol. J. 2017, 15, 953–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charmet, G.; Robert, N.; Perretant, M.; Gay, G.; Sourdille, P.; Groos, C.; Bernard, S.; Bernard, M. Marker assisted recurrent selection for cumulating QTLs for bread-making related traits. Euphytica 2001, 119, 89–93. [Google Scholar] [CrossRef]
- Suprayogi, Y.; Pozniak, C.J.; Clarke, F.; Clarke, J.; Knox, R.; Singh, A. Identification and validation of quantitative trait loci for grain protein concentration in adapted Canadian durum wheat populations. Theor. Appl. Genet. 2009, 119, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Heo, H.; Sherman, J. Identification of QTL for grain protein content and grain hardness from winter wheat for genetic improvement of spring wheat. Plant Breed. Biotechnol. 2013, 1, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Conti, V.; Roncallo, P.F.; Beaufort, V.; Cervigni, G.L.; Miranda, R.; Jensen, C.A.; Echenique, V.C. Mapping of main and epistatic effect QTLs associated to grain protein and gluten strength using a RIL population of durum wheat. J. Appl. Genet. 2011, 52, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Bai, G.; Chao, S.; Carver, B.; Wang, Z. Single nucleotide polymorphisms linked to quantitative trait loci for grain quality traits in wheat. Crop. J. 2016, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Patil, R.; Oak, M.; Tamhankar, S.; Rao, V. Molecular mapping of QTLs for gluten strength as measured by sedimentation volume and mixograph in durum wheat (Triticum turgidum L. ssp. durum). J. Cereal Sci. 2009, 49, 378–386. [Google Scholar] [CrossRef]
- Laido, G.; Marone, D.; Russo, M.A.; Colecchia, S.A.; Mastrangelo, A.M.; De Vita, P.; Papa, R. Linkage disequilibrium and genome-wide association mapping in tetraploid wheat (Triticum turgidum L.). PLoS ONE 2014, 9, e95211. [Google Scholar] [CrossRef] [Green Version]
- Quarrie, S.; Steed, A.; Calestani, C.; Semikhodskii, A.; Lebreton, C.; Chinoy, C.; Steele, N.; Pljevljakusic, D.; Waterman, E.; Weyen, J.; et al. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor. Appl. Genet. 2005, 110, 865–880. [Google Scholar] [CrossRef]
- Zhang, J.; Mason, A.S.; Wu, J.; Liu, S.; Zhang, X.; Luo, T.; Redden, R.; Batley, J.; Hu, L.; Yan, G. Identification of putative candidate genes for water stress tolerance in canola (Brassica napus). Front. Plant Sci. 2015, 6, 1058. [Google Scholar] [CrossRef] [Green Version]
- Czyczyło-Mysza, I.; Marcińska, I.; Skrzypek, E.; Chrupek, M.; Grzesiak, S.; Hura, T.; Stojalowski, S.; Myskow, B.; Milczarski, P.; Quarrie, S. Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability. Plant Genet. Res. 2011, 9, 291–295. [Google Scholar] [CrossRef]
- Alexander, L.M.; Kirigwi, F.M.; Fritz, A.K.; Fellers, J.P. Mapping and quantitative trait loci analysis of drought tolerance in a spring wheat population using amplified fragment length polymorphism and diversity array technology markers. Crop. Sci. 2012, 52, 253–261. [Google Scholar] [CrossRef]
- Pate, J.S.; Atkins, C.A.; White, S.T.; Rainbird, R.M.; Woo, K. Nitrogen nutrition and xylem transport of nitrogen in ureide-producing grain legumes. Plant Physiol. 1980, 65, 961–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herridge, D.F.; Atkins, C.A.; Pate, J.S.; Rainbird, R.M. Allantoin and allantoic acid in the nitrogen economy of the cowpea (Vigna unguiculata [L.] Walp.). Plant Physiol. 1978, 62, 495–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casartelli, A.; Melino, V.J.; Baumann, U.; Riboni, M.; Suchecki, R.; Jayasinghe, N.S.; Mendis, H.; Watanabe, M.; Erban, A.; Zuther, E.; et al. Opposite fates of the purine metabolite allantoin under water and nitrogen limitations in bread wheat. Plant Mol. Biol. 2019, 99, 477–497. [Google Scholar] [CrossRef] [Green Version]
- Yobi, A.; Wone, B.W.; Xu, W.; Alexander, D.C.; Guo, L.; Ryals, J.A.; Oliver, M.J.; Cushman, J.C. Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance. Mol. Plant 2013, 6, 369–385. [Google Scholar] [CrossRef] [Green Version]
- Rawlings, N.D.; Barrett, A.J. Evolutionary families of peptidases. Biochem. J. 1993, 290, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Soni, N.; Hegde, N.; Dhariwal, A.; Kushalappa, A.C. Role of laccase gene in wheat NILs differing at QTL-Fhb1 for resistance against Fusarium head blight. Plant Sci. 2020, 110574. [Google Scholar] [CrossRef]
- Kushwaha, H.R.; Joshi, R.; Pareek, A.; Singla-Pareek, S.L. MATH-domain family shows response toward abiotic stress in Arabidopsis and rice. Front. Plant Sci. 2016, 7, 923. [Google Scholar] [CrossRef] [Green Version]
- Maiyar, A.C.; Leong, M.L.; Firestone, G.L. Importin-α mediates the regulated nuclear targeting of serum-and glucocorticoid-inducible protein kinase (Sgk) by recognition of a nuclear localization signal in the kinase central domain. Mol. Biol. Cell 2003, 14, 1221–1239. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Islam, M.A.; Lin, H.; Ji, C.; Duan, Y.; Liu, P.; Zeng, Q.; Day, B.; Kang, Z.; Guo, J. Genome-wide identification of cyclic nucleotide-gated ion channel gene family in wheat and functional analyses of TaCNGC14 and TaCNGC16. Front. Plant Sci. 2018, 9, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klinghammer, M.; Tenhaken, R. Genome-wide analysis of the UDP-glucose dehydrogenase gene family in Arabidopsis, a key enzyme for matrix polysaccharides in cell walls. J. Exp. Bot. 2007, 58, 3609–3621. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhang, H.; Li, Y.; Ren, J.; Wang, X.; Niu, H.; Yin, J. Identification of changes in wheat (Triticum aestivum L.) seeds proteome in response to anti—Trx s gene. PLoS ONE 2011, 6, e22255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Traits | DF | FLA | TGW | GYP | GPC | GLC | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Source | N | D | N | D | N | D | N | D | N | D | |
REP | 2 | 679.72 | 0.9 | 1237.2 | 2.5 | 631.7 | 65.15 | 177.48 | 16.51 | 262.93 | 19.24 |
GET | 95 | 50.97 * | 62.30 * | 231.70 * | 211.60 * | 231.26 * | 265.80 * | 6.40 * | 6.38 * | 38.17 * | 40.24 * |
Env. | 1 | 8720.5 * | 22,681.9 * | 25,651.6 * | 37,542.9 * | 4263.4 * | 9777.2 * | 688.5 * | 170.4 * | 556.9 * | 55.9 * |
GET × Env | 95 | 13.45 ** | 26.00 ** | 44.30 ** | 50.60 ** | 47.61 ** | 12.27 ** | 0.71 ** | 1.06 ** | 2.02 ** | 3.28 ** |
Error | 382 | 1.91 | 4.2 | 7.1 | 12.6 | 3.38 | 7.22 | 0.55 | 2.58 | 1.41 | 4.76 |
Total | 575 | 29.44 | 56.81 | 99.25 | 116.98 | 57.93 | 67.97 | 3.36 | 3.3 | 9.46 | 10.52 |
Traits | FLA | TGW | GYP | GPC | GLC | |||||
---|---|---|---|---|---|---|---|---|---|---|
Environment | N | D | N | D | N | D | N | D | N | D |
Minimum | 28.50 | 19.02 | 42.25 | 33.66 | 21.30 | 15.21 | 13.01 | 12.92 | 22.51 | 24.23 |
Maximum | 44.83 | 35.02 | 58.19 | 47.47 | 38.11 | 32.02 | 15.43 | 16.92 | 30.06 | 31.78 |
Mean | 36.16 | 26.11 | 49.05 | 37.55 | 28.23 | 21.10 | 13.64 | 15.13 | 26.24 | 27.96 |
SE Mean | 0.35 | 0.32 | 0.69 | 0.72 | 0.70 | 0.72 | 0.12 | 0.12 | 0.25 | 0.25 |
C.V% | 9.58 | 11.90 | 16.00 | 25.66 | 32.42 | 46.75 | 8.35 | 7.53 | 9.31 | 8.74 |
Heritability | 0.90 | 0.83 | 0.92 | 0.85 | 0.96 | 0.92 | 0.80 | 0.45 | 0.90 | 0.74 |
Traits/Environments | FLA | TGW | GYP | GPC | |
---|---|---|---|---|---|
TGW | N | 0.73 ** | |||
D | 0.94 ** | ||||
GYP | N | 0.75 ** | 0.94 ** | ||
D | 0.92 ** | 0.93 ** | |||
GPC | N | −0.40 * | −0.55 ** | −0.55 ** | |
D | −0.57 ** | −0.56 ** | −0.56 ** | ||
GLC | N | −0.30ns | −0.51 ** | −0.53 ** | 0.66 ** |
D | −0.53 ** | −0.52 ** | −0.52 ** | 0.66 ** |
Trait | SNP | Chromosome | Position cm | p Value | FDR | R% | Effect Size |
---|---|---|---|---|---|---|---|
FLA | RAC875_s117925_244 | 5A | 15.53 | 0.000152 | 0.046088722 | 21.21 | 18.97880225 |
wsnp_BE591290B_Ta_2_7 | 1A | 133.3 | 0.000481 | 0.046088722 | 18.62 | 18.97880225 | |
RAC875_c701_88 | 7A | 42.08 | 0.000966 | 0.046669785 | 17.09 | 14.48017373 | |
Tdurum_contig42590_755 | 7A | 35.31 | 0.000982 | 0.028842356 | 17.06 | 36.71816409 | |
TGW | BobWhite_c23828_341 | 6B | 43.94 | 0.00028 | 0.028842356 | 18.22 | 36.71816409 |
wsnp_Ra_c3176_5975986 | 7B | 77.13 | 0.00045 | 0.028842356 | 17.15 | 36.71816409 | |
IAAV8743 | 1A | 100.83 | 0.000467 | 0.042546247 | 17.06 | 32.83662834 | |
RAC875_s117925_244 | 5A | 15.53 | 0.000608 | 0.042546247 | 16.46 | 29.78675617 | |
wsnp_CAP8_c334_304253 | 7B | 29.49 | 0.000717 | 0.042546247 | 16.1 | 29.78675617 | |
Excalibur_rep_c71254_415 | 5A | 84.58 | 0.000932 | 0.042546247 | 15.52 | 28.95796276 | |
GYP | BobWhite_c23828_341 | 6B | 43.94 | 0.000235 | 0.042546247 | 19.04 | 32.77703136 |
RAC875_s117925_244 | 5A | 15.53 | 0.000251 | 0.042546247 | 18.89 | 32.77703136 | |
Ra_c58279_684 | 2A | 78.03 | 0.000386 | 0.042546247 | 17.91 | 32.77703136 | |
wsnp_Ex_c5412_9564046 | 2A | 78.03 | 0.00039 | 0.042546247 | 17.89 | 32.77703136 | |
wsnp_Ex_c5412_9564478 | 2A | 76.9 | 0.000542 | 0.042546247 | 17.15 | 32.77703136 | |
Tdurum_contig5352_556 | 7B | 10.06 | 0.000595 | 0.042546247 | 16.94 | 32.77703136 | |
IAAV3414 | 7B | 72.74 | 0.000918 | 0.01871545 | 15.98 | 22.25384173 | |
Kukri_c55051_414 | 5A | 13.62 | 0.00093 | 0.01871545 | 15.95 | 22.25384173 | |
GPC | wsnp_Ex_rep_c107564_91144523 | 4D | 70.59 | 0.000232 | 0.01871545 | 17.52 | 22.25384173 |
BS00026471_51 | 3B | 5.79 | 0.000248 | 0.020393963 | 17.37 | 22.72232384 | |
GENE-0129_123 | 1B | 130.9 | 0.000574 | 0.020393963 | 15.42 | 22.72232384 | |
Excalibur_c63563_370 | 1B | 57.6 | 0.000712 | 0.020393963 | 14.94 | 25.76814422 | |
RAC875_rep_c111494_195 | 1B | 130.9 | 0.000855 | 0.020393963 | 14.52 | 25.76814422 | |
GLC | Excalibur_c19658_127 | 3D | 4.56 | 0.0001368 | 0.020393963 | 12.25 | 25.76814422 |
Kukri_c51540_490 | 2B | 116.91 | 0.0001502 | 0.020393963 | 12.04 | 25.76814422 | |
wsnp_CAP8_c334_304253 | 7B | 29.49 | 0.0001509 | 0.020393963 | 12.03 | 25.76814422 | |
BobWhite_c28971_184 | 1A | 101.19 | 0.0001558 | 0.020393963 | 11.96 | 25.76814422 | |
Excalibur_c10307_254 | 2A | 25.97 | 0.0001674 | 0.01527337 | 11.8 | 13.17481197 |
Trait | SNP | Chromosome | Position cm | p Value | FDR | R% | Effect Size |
---|---|---|---|---|---|---|---|
FLA | Tdurum_contig9144_222 | 1B | 171.31 | 0.000269 | 0.0112867 | 17.6 | 36.459737 |
Tdurum_contig43552_666 | 5D | 193.91 | 0.000825 | 0.0112867 | 15.05 | 36.459737 | |
wsnp_Ex_c955_1827719 | 1B | 171.31 | 0.000865 | 0.0112867 | 14.95 | 36.459737 | |
TGW | Excalibur_c53131_187 | 3A | 86.66 | 4.05 × 10−5 | 0.0112867 | 20.62 | 36.459737 |
BS00073011_51 | 3B | 71.34 | 0.000249 | 0.0112867 | 16.22 | 36.459737 | |
wsnp_Ex_c5547_9774195 | 3B | 71.34 | 0.000249 | 0.0112867 | 16.22 | 36.459737 | |
RAC875_c24515_602 | 4B | 89.44 | 0.000255 | 0.0225076 | 16.15 | 29.384517 | |
Tdurum_contig29286_319 | 5A | 94.1 | 0.000288 | 0.0225076 | 15.87 | 29.384517 | |
BS00063801_51 | 6B | 67.24 | 0.000336 | 0.026592 | 15.51 | 31.431627 | |
BS00011065_51 | 7D | 190.77 | 0.000394 | 0.0067095 | 15.14 | 7.696908 | |
BS00066248_51 | 4B | 105.67 | 0.000444 | 0.0067095 | 14.86 | 7.696908 | |
BobWhite_c47495_403 | 5B | 1.36 | 0.000488 | 0.0067095 | 14.63 | 7.696908 | |
GENE-4937_537 | 2D | 111.11 | 0.000504 | 0.0067095 | 14.56 | 7.696908 | |
RAC875_c53296_378 | 3B | 71.34 | 0.000515 | 0.0067095 | 14.51 | 7.696908 | |
D_F1BEJMU01A6MWB_163 | 3B | 137.84 | 0.000522 | 0.0067095 | 14.48 | 7.696908 | |
Kukri_c25194_153 | 6B | 49.47 | 0.000573 | 0.0196389 | 14.26 | 6.266148 | |
Tdurum_contig98215_420 | 5B | 153.6 | 0.000662 | 0.0208676 | 13.93 | 6.6649624 | |
Tdurum_contig35470_227 | 5B | 143.55 | 0.000673 | 0.0208676 | 13.89 | 6.5076334 | |
wsnp_BG263358A_Ta_2_3 | 1A | 101.19 | 0.000697 | 0.0238768 | 13.81 | 5.8854602 | |
Tdurum_contig62286_271 | 4B | 89.4 | 0.000713 | 0.0238768 | 13.76 | 5.8854602 | |
GYP | Tdurum_contig100702_265 | 4A | 138.76 | 2.78 × 10−5 | 0.0252037 | 23.88 | 6.3615376 |
BobWhite_c19429_95 | 7B | 133.59 | 0.000153 | 0.0252037 | 19.82 | 6.3615376 | |
Kukri_rep_c115898_504 | 1B | 80.58 | 0.000204 | 0.0238352 | 19.15 | 8.7950553 | |
BS00063551_51 | 1B | 158.59 | 0.000218 | 0.0238352 | 19 | 8.7950553 | |
Excalibur_c48047_90 | 3A | 101 | 0.000294 | 0.0238352 | 18.31 | 8.7950553 | |
Tdurum_contig62744_393 | 4A | 154.3 | 0.00054 | 0.0250971 | 16.93 | 8.3549964 | |
wsnp_Ex_c20495_29571203 | 1A | 95.55 | 0.000627 | 0.0250971 | 16.6 | 8.0903174 | |
IAAV6265 | 5D | 87.06 | 0.000799 | 0.0369636 | 16.06 | 8.9178498 | |
GPC | Tdurum_contig100702_265 | 4A | 138.76 | 1.37 × 10−5 | 0.0429996 | 25.47 | 7.5071168 |
BobWhite_c19429_95 | 7B | 133.59 | 0.000162 | 0.0429996 | 19.52 | 7.5071168 | |
Excalibur_c48047_90 | 3A | 101 | 0.000209 | 0.0364488 | 18.93 | 7.1299914 | |
RFL_Contig1445_1192 | 2B | 107.03 | 0.000584 | 0.0368977 | 16.59 | 7.1299914 | |
Kukri_c7658_229 | 3D | 143.01 | 0.00069 | 0.0386242 | 16.21 | 7.1299914 | |
RAC875_c28721_290 | 3A | 177.24 | 0.000763 | 0.0386242 | 15.99 | 6.3093446 | |
BS00063551_51 | 1B | 158.59 | 0.000913 | 0.0386242 | 15.59 | 6.3093446 | |
GLC | Tdurum_contig100702_265 | 4A | 138.76 | 9.49 × 10−6 | 0.0117506 | 27.55 | 21.615353 |
BobWhite_c19429_95 | 7B | 133.59 | 0.000178 | 0.0117506 | 20.58 | 21.615353 | |
Excalibur_c48047_90 | 3A | 101 | 0.000217 | 0.0117506 | 20.13 | 20.121538 | |
RAC875_c28721_290 | 3A | 177.24 | 0.000656 | 0.0117506 | 17.65 | 20.121538 | |
Kukri_c7658_229 | 3D | 143.01 | 0.000768 | 0.0117506 | 17.31 | 20.121538 | |
wsnp_Ex_c750_1474184 | 1B | 173.62 | 0.000779 | 0.0117506 | 17.27 | 19.291381 | |
Kukri_c46740_226 | 3D | 0.000814 | 0.0339177 | 17.18 | 19.291381 | ||
IAAV6265 | 5D | 87.06 | 0.000925 | 0.0424613 | 16.9 | 17.962338 | |
Tdurum_contig1631_240 | 1B | 171.31 | 0.000989 | 0.0424613 | 16.75 | 13.614016 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhu-Din Ahmed, H.G.; Sajjad, M.; Zeng, Y.; Iqbal, M.; Habibullah Khan, S.; Ullah, A.; Nadeem Akhtar, M. Genome-Wide Association Mapping through 90K SNP Array for Quality and Yield Attributes in Bread Wheat against Water-Deficit Conditions. Agriculture 2020, 10, 392. https://doi.org/10.3390/agriculture10090392
Muhu-Din Ahmed HG, Sajjad M, Zeng Y, Iqbal M, Habibullah Khan S, Ullah A, Nadeem Akhtar M. Genome-Wide Association Mapping through 90K SNP Array for Quality and Yield Attributes in Bread Wheat against Water-Deficit Conditions. Agriculture. 2020; 10(9):392. https://doi.org/10.3390/agriculture10090392
Chicago/Turabian StyleMuhu-Din Ahmed, Hafiz Ghulam, Muhammad Sajjad, Yawen Zeng, Muhammad Iqbal, Sultan Habibullah Khan, Aziz Ullah, and Malik Nadeem Akhtar. 2020. "Genome-Wide Association Mapping through 90K SNP Array for Quality and Yield Attributes in Bread Wheat against Water-Deficit Conditions" Agriculture 10, no. 9: 392. https://doi.org/10.3390/agriculture10090392
APA StyleMuhu-Din Ahmed, H. G., Sajjad, M., Zeng, Y., Iqbal, M., Habibullah Khan, S., Ullah, A., & Nadeem Akhtar, M. (2020). Genome-Wide Association Mapping through 90K SNP Array for Quality and Yield Attributes in Bread Wheat against Water-Deficit Conditions. Agriculture, 10(9), 392. https://doi.org/10.3390/agriculture10090392