Effect of Bentonite and Barley Straw on the Restoration of the Biological Quality of Agriculture Soil Contaminated with the Herbicide Successor T 550 SE
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil
2.2. Experimental Materials
- The herbicide Successor T 550 SE. The product contains two active substances: terbuthylazine and pethoxamid, which are characterised in online resources (Table S1).
- Bentonite provided by CEBO Holland B.V. composed of sodium montmorillonite—93.85%, quartz—4%, feldspar—1%, calcite—1%, acrylic polymers 0.15%.
- Straw containing: 54.7% C, 0.33% N, 0.06% P, 0.23% K.
2.3. Experimental Design
2.4. Determination of Microbial Counts
2.5. Determination of Enzymatic Activity
2.6. Maize Response to the Herbicide
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gianessi, L.P. The increasing importance of herbicides in worldwide crop production. Pest Manag. Sci. 2013, 69, 1099–1105. [Google Scholar] [CrossRef]
- Peterson, M.A.; Collavo, A.; Ovejero, R.; Shivrain, V.; Walsh, M.J. The challenge of herbicide resistance around the world: A current summary. Pest Manag. Sci. 2018, 74, 2246–2259. [Google Scholar] [CrossRef]
- Green, J.M. Current state of herbicides in herbicide resistant crops. Pest Manag. Sci. 2014, 70, 1351–1357. [Google Scholar] [CrossRef]
- Owen, M.D. Diverse approaches to herbicide-resistant weed management. Weed Sci. 2016, 64, 570–584. [Google Scholar] [CrossRef] [Green Version]
- Howe, M.; Berrill, M.; Pauli, B.D.; Helbing, C.C.; Werry, K.; Veldhoen, N. Toxity of glyphosate-based to four North American frog species christina. Environ. Toxicol. Chem. 2004, 23, 1928–1938. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; Mesnage, R.; et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health 2016, 15, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, D.B.; Rose, M.T.; Rose, T.J.; Van Zwieten, L. Effect of glyphosate and a commercial formulation on soil functionality assessed by substrate induced respiration and enzyme activity. Eur. J. Soil Biol. 2018, 85, 64–72. [Google Scholar] [CrossRef]
- Rose, M.T.; Ng, E.L.; Weng, Z.H.; Wood, R.; Rose, T.J.; Van Zwieten, L. Minor effects of herbicides on microbial activity in agricultural soils are detected by N-transformation but not enzyme activity assays. Eur. J. Soil Biol. 2018, 87, 72–79. [Google Scholar] [CrossRef]
- Tomkiel, M.; Baćmaga, M.; Wyszkowska, J.; Kucharski, J.; Borowik, A. The effect of carfentrazone-ethyl on soil microorganisms and soil enzymes activity. Arch. Environ. Prot. 2015, 41, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Envion. Res. Pub. Heal. 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- Rodríguez-Cruz, M.S.; Pose-Juan, E.; Marín-Benito, J.M.; Igual, J.M.; Sánchez-Martín, M.J. Pethoxamid dissipation and microbial activity and structure in an agricultural soil: Effect of herbicide rate and organic residues. Appl. Soil Ecol. 2019, 140, 135–143. [Google Scholar] [CrossRef]
- Navarro, S.; Bermejo, S.; Vela, N.; Hernández, J. Rate of loss of simazine, terbuthylazine, isoproturon, and methabenzthiazuron during soil solarization. J. Agri. Food Chem. 2009, 57, 6375–6382. [Google Scholar] [CrossRef] [PubMed]
- Baillie, B.R.; Neary, D.G.; Gous, S.; Rolando, C.A. Aquatic fate of aerially applied hexazinone and terbuthylazine in a New Zealand planted forest. J. Sustain. Watershed Sci. Manag. 2015, 2, 118–129. [Google Scholar] [CrossRef]
- Velisek, J.; Stara, A.; Koutnik, D.; Machova, J. Effect of terbuthylazine-2-hydroxy at environmental concentrations on early life stages of common carp (Cyprinus carpio L.). BioMed Res. Int. 2014, 2014, 621304. [Google Scholar] [CrossRef] [Green Version]
- Haluzová, I.; Modrá, H.; Blahová, J.; Havelková, M.; Široká, Z.; Svobodová, Z. Biochemical markers of contamination in fish toxicity tests. Interdiscip. Toxicol. 2011, 4, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Arena, M.; Auteri, D.; Barmaz, S.; Bellisai, G.; Brancato, A.; Brocca, D.; Bura, L.; Byers, H.; Chiusolo, A.; Court, D.; et al. Peer review of the pesticide risk assessment of the active substance chlorothalonil. EFSA J. 2018, 16, e05126. [Google Scholar] [CrossRef]
- Álvarez, P.M.; Quiñones, D.H.; Terrones, I.; Rey, A.; Beltrán, F.J. Insights into the removal of terbuthylazine from aqueous solution by several treatment methods. Water Res. 2016, 98, 334–343. [Google Scholar] [CrossRef]
- Godwin, J.; Norsworthy, J.K.; Scott, R.C. Evaluation of pethoxamid-containing weed control programs in drill-seeded rice (Oryza sativa L.). Weed Technol. 2018, 32, 544–549. [Google Scholar] [CrossRef]
- García-Delgado, C.; Barba, V.; Marín-Benito, J.M.; Igual, J.M.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Simultaneous application of two herbicides and green compost in a field experiment: Implications on soil microbial community. Appl. Soil Ecol. 2018, 127, 30–40. [Google Scholar] [CrossRef]
- Plaza, C.; Hernandez, D.; Garcia-Gil, J.C.; Polo, A. Microbial activity in pig slurry-amended soils under semiarid conditions. Soil Biol. Biochem. 2004, 36, 1577–1585. [Google Scholar] [CrossRef]
- Liang, Y.; Yang, Y.; Yang, C.; Shen, Q.; Zhou, J.; Yang, L. Soil enzymatic activity and growth of rice and barley as influenced by organic manure in an anthropogenic soil. Geoderma 2003, 115, 149–160. [Google Scholar] [CrossRef]
- Chirak, E.L.; Orlova, O.V.; Aksenova, T.S.; Kichko, A.A.; Chirak, E.R.; Provorov, N.A.; Andronov, E.E. Dynamics of chernozem microbial community during biodegradation of cellulose and barley straw. Agric. Biol. 2017, 52, 588–596. [Google Scholar] [CrossRef] [Green Version]
- Lo, I.M.; Luk, A.F.; Yang, X. Migration of heavy metals in saturated sand and bentonite/soil admixture. J. Environ. Eng. 2004, 130, 906–909. [Google Scholar] [CrossRef]
- Hassan, M.S.; Abdel-Khalek, N.A. Beneficiation and applications of an Egyptian bentonite. Appl. Clay Sci. 1998, 13, 99–115. [Google Scholar] [CrossRef]
- Choo, K.Y.; Bai, K. Effects of bentonite concentration and solution pH on the rheological properties and long-term stabilities of bentonite suspensions. Appl. Clay Sci. 2015, 108, 182–190. [Google Scholar] [CrossRef]
- Abu-Jdayil, B. Rheology of sodium and calcium bentonite–water dispersions: Effect of electrolytes and aging time. Int. J. Miner. Process. 2011, 98, 208–213. [Google Scholar] [CrossRef]
- Choy, J.H.; Choi, S.J.; Oh, J.M.; Park, T. Clay minerals and layered double hydroxides for novel biological applications. Appl. Clay Sci. 2007, 36, 122–132. [Google Scholar] [CrossRef]
- Saha, S.; Dutta, D.; Karmakar, R.; Ray, D.P. Structure–toxicity relationship of chloroacetanilide herbicides: Relative impact on soil microorganisms. Environ. Toxicol. Pharmacol. 2012, 34, 307–314. [Google Scholar] [CrossRef]
- Rahmansyah, M.; Antonius, S.; Sulistinah, N. Phosphatase and urease instability caused by pesticides present in soil improved by grounded rice straw. J. Agric. Biol. Sci. 2009, 4, 56–62. [Google Scholar]
- Sanchez-Hernandez, J.C.; Sandoval, M.; Pierart, A. Short-term response of soil enzyme activities in a chlorpyrifos-treated mesocosm: Use of enzyme-based indexes. Ecol. Indic. 2017, 73, 525–535. [Google Scholar] [CrossRef]
- Kumar, S.; Chaudhuri, S.; Maiti, S.K. Soil dehydrogenase enzyme activity in natural and mine soil-a review. Middle East J. Sci. Res. 2013, 13, 898–906. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Baćmaga, M.; Boros, E.; Kucharski, J.; Wyszkowska, J. Enzymatic activity in soil contaminated with the Aurora 40 WG herbicide. Environ. Prot. Eng. 2012, 38, 91–102. [Google Scholar]
- Baćmaga, M.; Wyszkowska, J.; Kucharski, J. The biochemical activity of soil contaminated with fungicides. J. Environ. Sci. Health B 2019, 54, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Croker, J.; Poss, R.; Hartmann, C.; Bhuthorndharaj, S. Effects of recycled bentonite addition on soil properties, plant growth and nutrient uptake in a tropical sandy soil. Plant Soil 2004, 267, 155–163. [Google Scholar] [CrossRef]
- Yssaad, R.H.; Belkhodja, M. The effects of bentonite on the physic chemical characteristics of sandy soils in Algeria. J. Appl. Sci. 2007, 7, 2641–2645. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Kucharski, J.; Baćmaga, M.; Tomkiel, M.; Boros-Lajszner, E. The effect of organic fertilizers on the biochemical properties of soil contaminated with zinc. Plant Soil Environ. 2013, 59, 500–504. [Google Scholar] [CrossRef] [Green Version]
- Wyszkowski, M.; Ziółkowska, A. Compost, bentonite and calcium oxide used for alleviation of the impact of petroleum products on some soil properties. Pol. J. Nat. Sci. 2013, 28, 327–337. [Google Scholar]
- Kucharski, J.; Tomkiel, M.; Baćmaga, M.; Borowik, A.; Wyszkowska, J. Enzyme activity and microorganisms diversity in soil contaminated with the herbicide Boreal 58 WG. J. Environ. Sci. Health B 2016, 51, 446–454. [Google Scholar] [CrossRef]
- Sarathachandra, S.U.; Burch, G.; Cox, N.R. Growth patterns of bacterial communities in the rhizoplane and rhizosphere of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) in long-term pasture. Appl. Soil Ecol. 1997, 6, 293–299. [Google Scholar] [CrossRef]
- De Leij, F.A.; Whips, J.M.; Lynch, J.M. The use of colony development for the characterization of bacterial communities in soil and on roots. Microb. Ecol. 1993, 27, 81–97. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Kucharski, M.; Kucharski, J. Applicability of biochemical indices to quality assessmnet of soil polluted with heavy metal. J. Elementol. 2013, 18, 723–732. [Google Scholar] [CrossRef]
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hacks, H.; Hess, M.; Lancashire, P.D.; Schnock, U.; Stauss, R.; Boom, T.; et al. The BBCH system to coding the phenological growth stages of plants—history and publications. J. Kulturpflazen 2009, 61, 41–52. [Google Scholar]
- StatSoft, Inc. STATISTICA (Data Analysis Software System), version 13.1. 2016. Available online: www.statsoft.com (accessed on 20 February 2019).
- Orwin, H.; Wardle, D.A. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbance. Soil Biol. Biochem. 2004, 36, 1907–1912. [Google Scholar] [CrossRef]
- Rodríguez-Salgado, I.; Pérez-Rodríguez, P.; Santás, V.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Díaz-Raviña, M.; Fernández-Calviño, D. Carbon mineralization in acidic soils amended with an organo-mineral bentonite waste. J. Soil Sci. Plant Nutr. 2017, 17, 624–634. [Google Scholar] [CrossRef] [Green Version]
- Lauber, C.L.; Strickland, M.S.; Bradford, M.A.; Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 2008, 40, 2407–2415. [Google Scholar] [CrossRef]
- Dai, Q.; Zhao, Y.; Dong, F.; Wang, B.; Huang, Y. Interaction between bentonite and Bacillus litoralis strain SWU9. Appl. Clay Sci. 2014, 100, 88–94. [Google Scholar] [CrossRef]
- Ueshima, M.; Mogi, K.; Tazaki, K. Microbes associated with bentonite. J. Clay Sci. Soc. Jpn. 2000, 39, 171–183. [Google Scholar] [CrossRef]
- Fukunaga, S.; Jintoku, T.; Iwata, Y.; Nakayama, M.; Tsuji, T.; Sakaya, N.; Mogi, K.; Ito, M. Investigation of microorganisms in bentonite deposits. Geomicrobiol. J. 2005, 22, 361–370. [Google Scholar] [CrossRef]
- Nakano, M.; Kawamura, K. Estimating the corrosion of compacted bentonite by a conceptual model based on microbial growth dynamics. Appl. Clay Sci. 2010, 47, 43–50. [Google Scholar] [CrossRef]
- Heijnen, C.E.; Hok-A-Hin, C.H.; Van Veen, J.A. Improvements to the use of bentonite clay as a protective agent, increasing survival levels of bacteria introduced into soil. Soil Biol. Biochem. 1992, 24, 533–538. [Google Scholar] [CrossRef]
- Ritz, K.; Young, I.M. Interactions between soil structure and fungi. Mycologist. 2004, 18, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Thang, H.; Xiao, X.; Sun, J.; Guo, L.; Li, W.; Tang, W. Soil enzyme activities and soil microbe population as influenced by long-term fertilizer management during the barley growth in Human Province, China. Afr. J. Microbiol. Res. 2016, 10, 1720–1727. [Google Scholar] [CrossRef] [Green Version]
- Baćmaga, M.; Kucharski, J.; Wyszkowska, J.; Tomkiel, M. Biological properties of soil contaminated with the Aurora 40 WG herbicide. Pol. J. Nat. Sci. 2013, 28, 163–174. [Google Scholar]
- Zain, N.M.M.; Mohamad, R.B.; Sijam, K.; Morshed, M.M.; Awang, Y. Effects of selected herbicides on soil microbial populations in oil palm plantation of Malaysia: A microcosm experiment. Afr. J. Microbiol. Res. 2013, 7, 367–374. [Google Scholar]
- Zhang, J.; Qin, J.; Zhao, C.; Liu, C.; Xie, H.; Liang, S. Response of bacteria and fungi in soil microcosm under the presence of pesticide endosulfan. Water Air Soil Pollut. 2015, 226, 109. [Google Scholar] [CrossRef]
- Ayansina, A.D.V.; Oso, B.A. Effect to two commonly used herbicides on soil microflora at two different concentrations. Afr. J. Microbiol. Res. 2006, 5, 129–132. [Google Scholar]
- Tada, Y.; Ihmori, M.; Yamaguchi, J. Oligotrophic bacteria isolated from clinical materials. J. Clin. Microbiol. 1995, 33, 493–494. [Google Scholar] [CrossRef] [Green Version]
- Osman, J.R.; Dubow, M.S. Bacterial communities on the surface of oligotrophic (nutrient-poor) soils. Curr. Top. Biotechnol. 2018, 9, 31–44. [Google Scholar]
- Ho, A.; Lonardo, D.P.D.; Bodelier, P.L.E. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol. Ecol. 2017, 93, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Johnsen, K.; Jacobsen, C.S.; Torsvik, V.; Sørensen, J. Pesticide effects on bacterial diversity in agricultural soils–A review. Biol. Fertil. Soils 2001, 33, 443–453. [Google Scholar] [CrossRef]
- El Mujtar, V.; Muñoz, N.; Mc Cormick, B.P.; Pulleman, M.; Tittonell, P. Role and management of soil biodiversity for food security and nutrition; where do we stand? Glob. Food Secur. 2019, 20, 132–144. [Google Scholar] [CrossRef]
- Mahapatra, B.; Adak, T.; Patil, N.K.B.; Pandi, G.P.G.; Gowda, G.B.; Jambhulkar, N.N.; Yadav, M.K.; Panneerselvam, P.; Kumar, U.; Munda, S.; et al. Imidacloprid application changes microbial dynamics and enzymes in rice soil. Ecotoxicol. Environ. Saf. 2017, 144, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Arnosti, C.; Bell, C.; Moorhead, D.L.; Sinsabaugh, R.L.; Steen, A.D.; Stromberger, M.; Wallenstein, M.; Weintraub, M.N. Extracellular enzymes in terrestrial, freshwater, and marine environments: Perspectives on system variability and common research needs. Biogeochemistry 2014, 117, 5–21. [Google Scholar] [CrossRef]
- Caldwell, B.A. Enzyme activities as a component of soil biodiversity: A review. Pedobiologia 2005, 49, 637–644. [Google Scholar] [CrossRef]
- Niewiadomska, A.; Sulewska, H.; Wolna-Maruwka, A.; Warczewska, Z.; Budka, A.; Ratajczak, K. An assessment of the influence of selected herbicides on the microbial parameters of soil in maize (Zea Mays) Cultivation. Appl. Ecol. Environ. Res. 2018, 16, 4735–4752. [Google Scholar] [CrossRef]
- Yeşiloğlu, Y. Utilization of bentonite as a support material for immobilization of Candida rugosa lipase. Process Biochem. 2005, 40, 2155–2159. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Ren, G.; Khan, A.; Feng, Y.; Yang, G. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong. China. Soil Til. Res. 2018, 182, 94–102. [Google Scholar] [CrossRef]
- Mi, J.; Gregorich, E.G.; Xu, S.; McLaughlin, N.B.; Liu, J. Effects of a one-time application of bentonite on soil enzymes in a semi-arid region. Can. J. Soil Sci. 2018, 98, 542–555. [Google Scholar] [CrossRef]
- Baćmaga, M.; Borowik, A.; Kucharski, J.; Tomkiel, M.; Wyszkowska, J. Microbial and enzymatic activity of soil contaminated with a mixture of diflufenican + mesosulfuron-methyl + iodosulfuron-methyl-sodium. Environ. Sci. Pollut. Res. 2015, 22, 643–656. [Google Scholar] [CrossRef] [Green Version]
- Tejada, M.; Rodríguez-Morgado, B.; Paneque, P.; Parrado, J. Effects of foliar fertilization of a biostimulant obtained from chicken feathers on maize yield. Europ. J. Agron. 2018, 96, 54–59. [Google Scholar] [CrossRef]
- Nuss, E.T.; Tanumihardjo, S.A. Maize: A paramount staple crop in the context of global nutrition. Compr. Rev. Food Sci. Food Saf. 2010, 9, 417–436. [Google Scholar] [CrossRef]
- Ali, A.B.B.A.S.; Khan, M.A.; Saleem, A.S.H.I.Q.; Marwat, K.B.; Jan, A.U.; Jan, D.A.W.O.O.D.; Sattar, S.H.A.H.I.D. Performance and economics of growing maize under organic and inorganic fertilization and weed management. Pak. J. Bot. 2016, 48, 311–318. [Google Scholar]
- VanGessel, M.J.; Johnson, Q.R.; Scott, B.A. Evaluating postemergence herbicides, safener, and tolerant hybrids for corn response. Weed Technol. 2016, 30, 869–877. [Google Scholar] [CrossRef]
- VanGessel, M.J.; Johnson, Q.R.; Scott, B.A. Evaluating postemergence herbicides for relative corn safety. Crop Manag. 2009, 8, 1–8. [Google Scholar] [CrossRef]
- Vida, C.; De Vicente, A.; Cazorla, F.M. The role of organic amendments to soil for crop protection: Induction of suppression of soilborne pathogens. Ann. Appl. Biol. 2020, 176, 1–15. [Google Scholar] [CrossRef]
- Bonanomi, G.; Gaglione, S.A.; Cesarano, G.; Sarker, T.C.; Pascale, M.; Scala, F.; Zoina, A. Frequent applications of organic matter to agricultural soil increase fungistasis. Pedosphere 2017, 27, 86–95. [Google Scholar] [CrossRef]
- Joshi, V.; Suyal, A.; Srivastava, A.; Srivastava, P.C. Role of organic amendments in reducing leaching of sulfosulfuron through wheat crop cultivated soil. Emerg. Contam. 2019, 5, 4–8. [Google Scholar] [CrossRef]
- Seliman, A.F.; Lasheen, Y.F.; Youssief, M.A.E.; Abo-Aly, M.M.; Shehata, F.A. Removal of some radionuclides from contaminated solution using natural clay: Bentonite. J. Radioanal. Nucl. Chem. 2014, 300, 969–979. [Google Scholar] [CrossRef]
Object | Description |
---|---|
1 | without Successor T 550 SE and without the neutralising substances (control) |
2 | with Successor T 550 SE at a dose of 0.73 mg of the active substance per kg and without the neutralising substances |
3 | with Successor T 550 SE at a dose of 14.63 mg of the active substance per kg and without the neutralising substances |
4 | without Successor T 550 SE but with bentonite |
5 | with Successor T 550 SE at a dose of 0.73 mg of the active substance per kg and with bentonite |
6 | with Successor T 550 SE at a dose of 14.63 mg of the active substance per kg and with bentonite |
7 | without Successor T 550 SE but with finely ground barley straw |
8 | with Successor T 550 SE at a dose of 0.73 mg of the active substance per kg and with finely ground barley straw |
9 | with Successor T 550 SE at a dose of 14.63 mg of the active substance per kg and with finely ground barley straw |
Dose mg a.s./kg d.m. Soil | Object/Number of Days | |||||
---|---|---|---|---|---|---|
C30 | C60 | B30 | B60 | S30 | S60 | |
Organotrophic bacteria (109 cfu/kg d.m. soil) | ||||||
0 | 12.12 d | 28.36 cd | 34.12 c | 112.97 a | 64.99 b | 127.13 a |
0.73 | 11.11 d | 16.15 d | 20.27 cd | 110.94 a | 69.30 b | 123.21 a |
14.63 | 10.54 d | 14.12 d | 27.15 cd | 63.96 b | 64.05 b | 114.55 a |
Oligotrophic bacteria (109 cfu/kg d.m. soil) | ||||||
0 | 13.58 cd | 13.75 c | 13.782 c | 12.95 cde | 15.86 b | 16.02 b |
0.73 | 10.80 fg | 17.74 a | 11.78 defg | 10.51 g | 17.32 ab | 10.89 fg |
14.63 | 12.70 cde | 12.45 cdef | 13.47 cd | 10.77 fg | 11.67 efg | 6.60 h |
Sporeforming oligotrophic bacteria (108 cfu/kg d.m. soil) | ||||||
0 | 5.64 e | 4.32 fg | 4.61 f | 2.06 i | 8.77 c | 5.95 e |
0.73 | 14.88 a | 7.15 d | 4.58 f | 2.78 hi | 4.76 f | 3.54 gh |
14.63 | 10.04 b | 9.11 c | 2.71 hi | 4.04 fg | 7.54 d | 2.46 i |
Actinobacteria (109 cfu/kg d.m. soil) | ||||||
0 | 9.56 g | 34.51 ef | 90.31 bc | 68.87 d | 114.82 a | 96.97 b |
0.73 | 8.94 g | 22.10 fg | 41.95 e | 38.81 e | 78.75 cd | 76.58 cd |
14.63 | 7.07 g | 9.25 g | 12.37 g | 46.51 e | 78.51 cd | 71.47 d |
Fungi (107 cfu/kg d.m. soil) | ||||||
0 | 17.42 de | 47.45 a | 25.54 c | 41.42 b | 19.54 d | 30.51 c |
0.73 | 17.34 de | 39.65 b | 10.49 fg | 18.55 de | 15.39 def | 25.19 c |
14.63 | 16.29 def | 27.23 c | 6.53 gh | 4.45 h | 11.08 efg | 12.31 efg |
Dose mg a.s./kg d.m. Soil | Object/Number of Days | |||||
---|---|---|---|---|---|---|
C30 | C60 | B30 | B60 | S30 | S60 | |
Dehydrogenase (µmol TPF/kg d.m. soil/h) | ||||||
0 | 14.15 f | 30.18 b | 8.30 i | 18.53 e | 28.64 c | 33.59 a |
0.73 | 17.24 ef | 25.44 d | 6.14 j | 13.41 g | 32.87 a | 29.09 b |
14.63 | 12.24 h | 6.45 j | 4.18 k | 6.94 j | 27.35 c | 28.27 c |
Catalase (mol O2/kg d.m. soil/h) | ||||||
0 | 0.21 gh | 0.31 e | 0.25 f | 0.33 de | 0.45 a | 0.40 b |
0.73 | 0.20 h | 0.36 cd | 0.26 f | 0.21 gh | 0.45 a | 0.39 bc |
14.63 | 0.19 h | 0.21 gh | 0.25 f | 0.23 fg | 0.40 b | 0.41 ab |
Urease (mmol N-NH4/kg d.m. soil/h) | ||||||
0 | 0.61 e | 0.78 e | 0.90 de | 1.39 dc | 2.97 b | 3.20 ab |
0.73 | 0.69 e | 0.83 de | 0.70 e | 0.95 de | 3.05 b | 3.63 a |
14.63 | 0.60 e | 0.35 e | 0.88 de | 0.82 de | 3.08 b | 1.82 c |
Acid phosphatase (mmol PNP/kg d.m. soil/h) | ||||||
0 | 1.65 g | 3.12 f | 3.46 ef | 3.90 e | 6.50 b | 7.28 a |
0.73 | 0.88 h | 1.65 g | 3.49 ef | 4.33 d | 4.42 d | 7.66 a |
14.63 | 0.87 h | 1.63 g | 3.14 f | 3.57 e | 5.35 c | 6.91 b |
Alkaline phosphatase (mmol PNP/kg d.m. soil/h) | ||||||
0 | 2.98 fgh | 2.68 ghi | 6.16 dc | 5.40 d | 10.76 a | 6.70 bcd |
0.73 | 2.22 hi | 1.87 i | 6.63 dc | 4.76 e | 7.10 b | 8.53 b |
14.63 | 2.25 hi | 1.75 i | 6.39 dc | 3.79 fe | 10.12 a | 6.48 cd |
Arylsulfatase (mmol PNP/kg d.m. soil/h) | ||||||
0 | 0.14 c | 0.26 a | 0.02 e | 0.04 e | 0.03 e | 0.04 e |
0.73 | 0.11 cd | 0.21 b | 0.02 e | 0.03 e | 0.04 e | 0.02 e |
14.63 | 0.10 d | 0.20 b | 0.02 e | 0.03 e | 0.04 e | 0.04 e |
β-glucosidase (mmol PNP/kg d.m. soil/h) | ||||||
0 | 0.28 i | 0.47 b | 0.34 fgh | 0.33 h | 0.38 d | 0.42 c |
0.73 | 0.28 i | 0.49 a | 0.34 fgh | 0.35 fe | 0.29 i | 0.46 b |
14.63 | 0.28 i | 0.36 de | 0.33 h | 0.33 h | 0.24 j | 0.35 ef |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyszkowska, J.; Tomkiel, M.; Borowik, A.; Baćmaga, M.; Kucharski, J. Effect of Bentonite and Barley Straw on the Restoration of the Biological Quality of Agriculture Soil Contaminated with the Herbicide Successor T 550 SE. Agriculture 2021, 11, 27. https://doi.org/10.3390/agriculture11010027
Wyszkowska J, Tomkiel M, Borowik A, Baćmaga M, Kucharski J. Effect of Bentonite and Barley Straw on the Restoration of the Biological Quality of Agriculture Soil Contaminated with the Herbicide Successor T 550 SE. Agriculture. 2021; 11(1):27. https://doi.org/10.3390/agriculture11010027
Chicago/Turabian StyleWyszkowska, Jadwiga, Monika Tomkiel, Agata Borowik, Małgorzata Baćmaga, and Jan Kucharski. 2021. "Effect of Bentonite and Barley Straw on the Restoration of the Biological Quality of Agriculture Soil Contaminated with the Herbicide Successor T 550 SE" Agriculture 11, no. 1: 27. https://doi.org/10.3390/agriculture11010027
APA StyleWyszkowska, J., Tomkiel, M., Borowik, A., Baćmaga, M., & Kucharski, J. (2021). Effect of Bentonite and Barley Straw on the Restoration of the Biological Quality of Agriculture Soil Contaminated with the Herbicide Successor T 550 SE. Agriculture, 11(1), 27. https://doi.org/10.3390/agriculture11010027