Effects of Reduced Nitrogen Fertilization and Irrigation on Structure and Physicochemical Properties of Starch in Two Bread Wheat Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Design
2.2. Isolation of Starch and Determination of Amylose Content
2.3. Morphological Observation of Starch Granules
2.4. X-ray Diffraction (XRD) Analysis
2.5. Fourier Transformed Infrared (FT-IR) Analysis
2.6. Determination of Swelling Power
2.7. Determination of Thermal Properties
2.8. Statistical Analyses
3. Results and Discussion
3.1. Effects of Reduced N Fertilization and Irrigation on Starch Composition
3.2. Effects of Reduced N Fertilization and Irrigation on the Morphology of Starch Granules
3.3. Effects of Reduced N Fertilization and Irrigation on the Crystalline Structure of Starch
3.4. Effects of Reduced N Fertilization and Irrigation on Short-Range Molecular Order of Starch
3.5. Effects of Reduced N Fertilization and Irrigation on the Swelling Power of Starch
3.6. Effects of Reduced N Fertilization and Irrigation on the Thermal Properties of Starch
3.7. Correlation Analyses between Starch Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakke, A.; Vickers, Z. Consumer liking of refined and whole wheat breads. J. Food Sci. 2007, 72, S473–S480. [Google Scholar] [CrossRef] [PubMed]
- Shevkani, K.; Singh, N.; Bajaj, R.; Kaur, A. Wheat starch production, structure, functionality and applications—A review. Int. J. Food Sci. Technol. 2017, 52, 38–58. [Google Scholar] [CrossRef]
- Martínez-Sanz, M.; Gidley, M.J.; Gilbert, E.P. Application of X-ray and neutron small angle scattering techniques to study the hierarchical structure of plant cell walls: A review. Carbohydr. Polym. 2015, 125, 120–134. [Google Scholar]
- Blazek, J.; Copeland, L. Pasting and swelling properties of wheat flour and starch in relation to amylose content. Carbohydr. Polym. 2008, 71, 380–387. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N.; Isono, N.; Noda, T. Relationship of granule size distribution and amylopectin structure with pasting, thermal, and retrogradation properties in wheat starch. J. Agric. Food Chem. 2010, 58, 1180–1188. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Zhang, H.; Guo, B.; Xu, K.; Dai, Q.; Wei, C.; Zhou, G.; Huo, Z. Physicochemical properties of indica-japonica hybrid rice starch from Chinese cultivars. Food Hydrocoll. 2017, 63, 356–363. [Google Scholar] [CrossRef]
- Guo, Q.; He, Z.; Xia, X.; Qu, Y.; Zhang, Y. Effects of wheat starch granule size distribution on qualities of Chinese steamed bread and raw white noodles. Cereal Chem. 2014, 91, 623–630. [Google Scholar] [CrossRef]
- Cao, X.; Tong, J.; Ding, M.; Wang, K.; Wang, L.; Cheng, D.; Li, H.; Liu, A.; Liu, J.; Zhao, Z.; et al. Physicochemical properties of starch in relation to rheological properties of wheat dough (Triticum aestivum L.). Food Chem. 2019, 297, 125000. [Google Scholar] [CrossRef]
- Zi, Y.; Shen, H.; Dai, S.; Ma, X.; Ju, W.; Wang, C.; Guo, J.; Liu, A.; Cheng, D.; Li, J.; et al. Comparison of starch physicochemical properties of wheat cultivars differing in bread- and noodle-making quality. Food Hydrocoll. 2019, 93, 78–86. [Google Scholar] [CrossRef]
- Grahmann, K.; Govaerts, B.; Fonteyne, S.; Guzmán, C.; Soto, A.P.G.; Buerkert, A.; Verhulst, N. Nitrogen fertilizer placement and timing affects bread wheat (Triticum aestivum) quality and yield in an irrigated bed planting system. Nutr. Cycl. Agroecosyst. 2016, 106, 185–199. [Google Scholar] [CrossRef]
- Yan, S.; Wu, Y.; Fan, J.; Zhang, F.; Qiang, S.; Zheng, J.; Xiang, Y.; Guo, J.; Zou, H. Effects of water and fertilizer management on grain filling characteristics, grain weight and productivity of drip-fertigated winter wheat. Agric. Water Manag. 2019, 213, 983–995. [Google Scholar] [CrossRef]
- Kindred, D.R.; Verhoeven, T.M.O.; Weightman, R.M.; Swanston, J.S.; Agu, R.C.; Brosnan, J.M.; Sylvester-Bradley, R. Effects of cultivar and fertiliser nitrogen on alcohol yield, grain yield, starch and protein content, and protein composition of winter wheat. J. Cereal Sci. 2008, 48, 46–57. [Google Scholar] [CrossRef]
- Myers, A.M.; Morell, M.K.; James, M.G.; Ball, S.G. Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol. 2000, 122, 989–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupont, F.M.; Altenbach, S.B. Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. J. Cereal Sci. 2003, 38, 133–146. [Google Scholar] [CrossRef]
- Nowotna, A.; Gambuś, H.; Kratsch, G.; Krawontka, J.; Gambuś, F.; Sabat, R.; Ziobro, R. Effect of nitrogen fertilization on the physico-chemical properties of starch isolated from german Triticale cultivars. Stärke 2007, 59, 397–399. [Google Scholar] [CrossRef]
- Xiong, F.; Yu, X.; Zhou, L.; Zhang, J.; Jin, Y.; Li, D.; Wang, Z. Effect of nitrogen fertilizer on distribution of starch granules in different regions of wheat endosperm. Crop J. 2014, 2, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Shan, Y.; Xiao, X.; Zheng, J.; Luo, Q.; Ouyang, S.; Zhang, G. Effect of nitrogen and sulfur fertilization on accumulation characteristics and physicochemical properties of A- and B-wheat starch. J. Agric. Food Chem. 2013, 61, 2418–2425. [Google Scholar] [CrossRef]
- Xia, J.; Zhu, D.; Chang, H.; Yan, X.; Yan, Y. Effects of water-deficit and high-nitrogen treatments on wheat resistant starch crystalline structure and physicochemical properties. Carbohydr. Polym. 2020, 61, 115905. [Google Scholar] [CrossRef]
- Ahmadi, A.; Baker, D.A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul. 2001, 35, 81–91. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Wang, Z.; Xu, G.; Zhu, Q. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol. 2004, 135, 1621–1629. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Wang, C.; Guo, T.; Xie, Y.; Feng, W.; Li, S. Starch composition and its granules distribution in wheat grains in relation to post-anthesis high temperature and drought stress treatments. Stärke 2014, 66, 419–428. [Google Scholar] [CrossRef]
- Dai, Z.; Yin, Y.; Wang, Z. Activities of key enzymes involved in starch synthesis in grains of wheat under different irrigation patterns. J. Agric. Sci. 2009, 147, 437–444. [Google Scholar] [CrossRef]
- Li, F.; Xu, X.; He, Z.; Xiao, Y.; Chen, X.; Wang, Z. Dry matter accumulation and water use performance of winter wheat cultivar Zhongmai 175 under three limited irrigation levels. Sci. Agric. Sin. 2018, 51, 374–385. (In Chinese) [Google Scholar]
- Zhang, Y.; Guo, Q.; Feng, N.; Wang, J.; Wang, S.; He, Z. Characterization of A- and B-type starch granules in Chinese wheat cultivars. J. Integr. Agric. 2016, 15, 2203–2214. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yu, J.; Zhu, Q.; Yu, J.; Jin, F. Granular structure and allomorph position in C-type Chinese yam starch granule revealed by SEM, 13C CP/MAS NMR and XRD. Food Hydrocoll. 2009, 23, 426–433. [Google Scholar] [CrossRef]
- Wang, S.; Luo, H.; Zhang, J.; Zhang, Y.; He, Z.; Wang, S. Alkali-induced changes in functional properties and in vitro digestibility of wheat starch: The role of surface proteins and lipids. J. Agric. Food Chem. 2014, 62, 3636–3643. [Google Scholar] [CrossRef]
- Wang, S.; Copeland, L. Effect of alkali treatment on structure and function of pea starch granules. Food Chem. 2012, 135, 1635–1642. [Google Scholar] [CrossRef]
- Wang, S.; Copeland, L. New insights into loss of swelling power and pasting profiles of acid hydrolyzed starch granules. Stärke 2012, 64, 538–544. [Google Scholar] [CrossRef]
- Du, X.; Zhao, H.; Wang, J.; Liu, H.; Yang, L.; Xu, J.; Song, J. Changes in starch accumulation and activity of enzymes associated with starch synthesis under different nitrogen applications in Japonica rice in cold region. ACTA Agron. Sin. 2013, 38, 159–167. (In Chinese) [Google Scholar] [CrossRef]
- Lafiandra, D.; Riccardi, G.; Shewry, P.R. Improving cereal grain carbohydrates for diet and health. J. Cereal Sci. 2014, 59, 312–326. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Li, B.; Wang, L.; Chen, X.; Wang, W.; Gu, Y.; Wang, Z.; Xiong, F. Effect of drought stress on the development of endosperm starch granules and the composition and physicochemical properties of starches from soft and hard wheat. J. Sci. Food Agric. 2016, 96, 2746–2754. [Google Scholar] [CrossRef] [PubMed]
- Uthumporn, U.; Karim, A.A.; Fazilah, A. Defatting improves the hydrolysis of granular starch using a mixture of fungal amylolytic enzymes. Ind. Crops Prod. 2013, 43, 441–449. [Google Scholar] [CrossRef]
- Cheetham, N.W.H.; Tao, L. Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohydr. Polym. 1998, 36, 277–284. [Google Scholar] [CrossRef]
- Kim, H.S.; Huber, K.C. Physicochemical properties and amylopectin fine structures of A−and B−type granules of waxy and normal soft wheat starch. J. Cereal Sci. 2010, 51, 256–264. [Google Scholar] [CrossRef]
- Zeng, J.; Li, G.; Gao, H.; Ru, Z. Comparison of A and B starch granules from three wheat cultivars. Molecules 2011, 16, 10570–10591. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; Lin, L.; Man, J.; Zhao, L.; Wang, Z.; Wei, C. Different structural properties of high-amylose maize starch fractions varying in granule size. J. Agric. Food Chem. 2014, 62, 11711–11721. [Google Scholar] [CrossRef]
- Cai, J.; Man, J.; Huang, J.; Liu, Q.; Wei, W.; Wei, C. Relationship between structure and functional properties of normal rice starches with different amylose contents. Carbohydr. Polym. 2015, 125, 35–44. [Google Scholar] [CrossRef]
- Huang, J.; Lin, L.; Wang, J.; Wang, Z.; Liu, Q.; Wei, C. In vitro digestion properties of heterogeneous starch granules from high-amylose rice. Food Hydrocoll. 2016, 54, 10–22. [Google Scholar] [CrossRef]
- Hazard, B.; Trafford, K.; Lovegrove, A.; Griffiths, S.; Uauy, C.; Shewry, P. Strategies to improve wheat for human health. Nat. Food 2020, 1, 475–480. [Google Scholar] [CrossRef]
- Wei, C.; Qin, F.; Zhou, W.; Xu, B.; Chen, C.; Chen, Y.; Wang, Y.; Gu, M.; Liu, Q. Comparison of the crystalline properties and structural changes of starches from high-amylose transgenic rice and its wild type during heating. Food Chem. 2011, 128, 645–652. [Google Scholar] [CrossRef]
- Lu, D.; Cai, X.; Shi, Y.; Zhao, J.; Lu, W. Effects of waterlogging after pollination on the physicochemical properties of starch from waxy maize. Food Chem. 2015, 179, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.M.; Talbert, L.E.; Habernicht, D.K.; Lanning, S.P.; Sherman, J.D.; Carlson, G.; Giroux, M.J. Reduced amylose effects on bread and white salted noodle quality. Cereal Chem. 2004, 81, 188–193. [Google Scholar] [CrossRef]
- Zhang, K.; Lu, Q. Physicochemical properties of A- and B-type granules of wheat starch and effects on the quality of wheat-based noodle. J. Food Eng. 2017, 13, 20160437. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, L.; Zhu, Z.; Lu, H.; Zhou, X.; Qian, Y.; Li, Q.; Lu, Y.; Gu, M.; Liu, Q. Characterization of grain quality and starch fine structure of two Japonica rice (Oryza Sativa) cultivars with good sensory properties at different temperatures during the filling stage. J. Agric. Food Chem. 2016, 64, 4048–4057. [Google Scholar] [CrossRef]
- Kong, X.; Zhu, P.; Sui, Z.; Bao, J. Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations. Food Chem. 2015, 172, 433–440. [Google Scholar] [CrossRef]
- Sasaki, T.; Matsuki, J. Effect of wheat starch structure on swelling power. Cereal Chem. 1998, 75, 525–529. [Google Scholar] [CrossRef]
Trial | Cultivar | Amylose Content (%) | Relative Crystallinity (%) | 1045/1022 cm−1 | Swelling Power (g·g−1) |
---|---|---|---|---|---|
I | Zhongmai175-NNT | 30.78 ± 0.03 a | 19.40 ± 0.00 a | 0.69 ± 0.00 a | 7.30 ± 0.40 a |
Zhongmai175-NT | 29.96 ± 0.09 b | 18.67 ± 0.12 a | 0.68 ± 0.00 a | 7.20 ± 0.50 a | |
ANOVA (p-value) | <0.010 ** | 0.067 ns | 0.116 ns | 0.338 ns | |
Jingdong17-NNT | 29.97 ± 0.10 a | 19.93 ± 0.47 b | 0.67 ± 0.00 a | 7.50 ± 0.10 b | |
Jingdong17-NT | 29.48 ± 0.04 b | 21.40 ± 0.42 a | 0.66 ± 0.00 a | 8.30 ± 0.20 a | |
ANOVA (p-value) | <0.010 ** | <0.010 ** | 0.137 ns | <0.010 ** | |
II | Zhongmai175-NWT | 29.69 ± 0.27 a | 18.77 ± 0.54 b | 0.68 ± 0.00 a | 6.80 ± 0.10 b |
Zhongmai175-WT | 29.75 ± 0.07 a | 19.70 ± 0.42 a | 0.65 ± 0.01 b | 8.60 ± 0.10 a | |
ANOVA (p-value) | 0.213 ns | 0.044 * | <0.010 ** | <0.010 ** | |
Jingdong17-NWT | 30.10 ± 0.25 a | 20.70 ± 0.00 b | 0.68 ± 0.00 a | 7.80 ± 0.80 b | |
Jingdong17-WT | 30.31 ± 0.28 a | 21.77 ± 0.18 a | 0.67 ± 0.00 a | 8.60 ± 0.10 a | |
ANOVA (p-value) | 0.435 ns | <0.010 ** | 0.126 ns | <0.010 ** |
Trial | Cultivar | To (°C) b | Tp (°C) b | Tc (°C) b | ΔHgel (J/g) c |
---|---|---|---|---|---|
Ⅰ | Zhongmai175-NNT | 56.50 ± 0.08 a | 61.27 ± 0.04 a | 66.97 ± 0.04 a | 9.70 ± 0.14 b |
Zhongmai175-NT | 55.86 ± 0.16 b | 60.73 ± 0.04 b | 66.20 ± 0.00 b | 10.30 ± 0.28 a | |
ANOVA (p-value) | <0.010 ** | <0.010 ** | <0.010 ** | 0.031 * | |
Jingdong17-NNT | 55.20 ± 0.08 a | 60.30 ± 0.24 a | 66.50 ± 0.21 a | 9.20 ± 0.53 a | |
Jingdong17-NT | 55.43 ± 0.20 a | 60.56 ± 0.23 a | 66.56 ± 0.09 a | 9.10 ± 0.14 a | |
ANOVA (p-value) | 0.210 ns | 0.330 ns | 0.710 ns | 0.811 ns | |
Ⅱ | Zhongmai175-NWT | 56.80 ± 0.14 a | 61.50 ± 0.14 a | 67.33 ± 0.18 a | 9.00 ± 0.00 b |
Zhongmai175-WT | 56.10 ± 0.28 b | 60.93 ± 0.09 b | 66.63 ± 0.18 b | 9.67 ± 0.04 a | |
ANOVA (p-value) | 0.016 * | <0.010 ** | 0.021 * | <0.010 ** | |
Jingdong17-NWT | 55.80 ± 0.43 a | 60.80 ± 3.32 a | 66.97 ± 0.41 a | 9.10 ± 0.08 a | |
Jingdong17-WT | 55.67 ± 0.30 a | 60.67 ± 0.09 a | 66.90 ± 0.21 a | 9.63 ± 0.41 a | |
ANOVA (p-value) | 0.741 ns | 0.609 ns | 0.849 ns | 0.152 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, J.; Wang, S.; He, Z.; Zhang, Y. Effects of Reduced Nitrogen Fertilization and Irrigation on Structure and Physicochemical Properties of Starch in Two Bread Wheat Cultivars. Agriculture 2021, 11, 26. https://doi.org/10.3390/agriculture11010026
Tong J, Wang S, He Z, Zhang Y. Effects of Reduced Nitrogen Fertilization and Irrigation on Structure and Physicochemical Properties of Starch in Two Bread Wheat Cultivars. Agriculture. 2021; 11(1):26. https://doi.org/10.3390/agriculture11010026
Chicago/Turabian StyleTong, Jingyang, Shujun Wang, Zhonghu He, and Yan Zhang. 2021. "Effects of Reduced Nitrogen Fertilization and Irrigation on Structure and Physicochemical Properties of Starch in Two Bread Wheat Cultivars" Agriculture 11, no. 1: 26. https://doi.org/10.3390/agriculture11010026
APA StyleTong, J., Wang, S., He, Z., & Zhang, Y. (2021). Effects of Reduced Nitrogen Fertilization and Irrigation on Structure and Physicochemical Properties of Starch in Two Bread Wheat Cultivars. Agriculture, 11(1), 26. https://doi.org/10.3390/agriculture11010026