Evaluation of Pigments, Phenolic and Volatile Compounds, and Antioxidant Activity of a Spontaneous Population of Portulaca oleracea L. Grown in Tunisia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site, Plant Material Collection, and Sample Preparation for Phytochemical Analyses
2.2. Moisture and Ash Determination
2.3. Chlorophylls and Carotenoids
2.4. Total Anthocyanins
2.5. Solvent Extraction Procedures for Antioxidant Compound Determination
2.6. Determination of Total Phenols and o-Diphenols
2.7. Determination of Total Flavonoids
2.8. Determination of Condensed Tannins
2.9. Volatile Compound Analyses
2.10. Antioxidant Activity
2.10.1. ABTS+ Radical Cation Scavenging Assay
2.10.2. Reducing Power Assay
2.10.3. Phosphomolybdenum Assay
2.11. Statistical Analyses
3. Results and Discussion
3.1. Proximate Composition
3.2. Phenolic Compounds
3.2.1. Total Phenols and o-Diphenols
3.2.2. Flavonoids Content
3.2.3. Tannins Content
3.3. Volatile Compounds
3.4. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Restuccia, A.; Lombardo, S.; Mauromicale, G. Impact of a cultivation system upon the weed seedbank size and composition in a mediterranean environment. Agriculture 2019, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Scavo, A.; Pandino, G.; Restuccia, A.; Lombardo, S.; Pesce, G.R.; Mauromicale, G. Allelopathic potential of leaf aqueous extracts from Cynara cardunculus L. On the seedling growth of two cosmopolitan weed species. Ital. J. Agron. 2019, 14, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Howe, P.; Zhou, Y.F.; Xu, Z.Q.; Hocart, C.; Zhang, R. Fatty acids and β-carotene in Australian purslane (Portulaca oleracea) varieties. J. Chromatogr. A 2000, 893, 207–213. [Google Scholar] [CrossRef]
- Samy, J.; Sugumaran, M.; Lee, K.L.W.; Wong, K.M. Herbs of Malaysia: An Introduction to the Medicinal, Culinary, Aromatic and Cosmetic Use of Herbs; Times Editions: Kuala Lumpur, Malaysia, 2005. [Google Scholar]
- Yang, X.; Ying, Z.; Liu, H.; Ying, X.; Yang, G. A new homoisoflavone from Portulaca oleracea L. and its antioxidant activity. Nat. Prod. Res. 2018, 6419, 1–7. [Google Scholar] [CrossRef]
- Xu, X.; Yu, L.; Chen, G. Determination of flavonoids in Portulaca oleracea L. by capillary electrophoresis with electrochemical detection. J. Pharm. Biomed. Anal. 2006, 41, 493–499. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, Y.; Liu, Y.; Xia, Y.; Tang, T. Analysis of flavonoids in Portulaca oleracea L. by UV-vis spectrophotometry with comparative study on different extraction technologies. Food Anal. Methods 2010, 3, 90–97. [Google Scholar] [CrossRef]
- Xiang, L.; Xing, D.; Wang, W.; Wang, R.; Ding, Y.; Du, L. Alkaloids from Portulaca oleracea L. Phytochemistry 2005, 66, 2595–2601. [Google Scholar] [CrossRef]
- Masoodi, M.H.; Ahmad, B.; Mir, S.R.; Zargar, B.A.; Tabasum, N. Portulaca oleracea L.: A Review. J. Pharm. Res. 2011, 44, 3044–3048. [Google Scholar]
- Zhang, J.; Chen, X.; de Hu, Z.; Ma, X. Quantification of noradrenaline and dopamine in Portulaca oleracea L. by capillary electrophoresis with laser-induced fluorescence detection. Anal. Chim. Acta 2002, 471, 203–209. [Google Scholar] [CrossRef]
- Rafieian-Kopaei, M.; Alesaeidi, S. Portulaca oleracea: A review study with anti-inflammatory and muscle relaxant perspective. Indian J. Med. Res. Pharm. Sci. 2016, 3, 50–59. [Google Scholar]
- Chan, K.; Islam, M.W.; Kamil, M.; Radhakrishnan, R.; Zakaria, M.N.M.; Habibullah, M.; Attas, A. The analgesic and anti-inflammatory effects of Portulaca oleracea L. subsp. sativa (Haw.) Celak. J. Ethnopharmacol. 2000, 73, 445–451. [Google Scholar] [CrossRef]
- Parry, O.; Okwuasaba, F.K.; Ejike, C. Skeletal muscle relaxant action of an aqueous extract of Portulaca oleracea in the rat. J. Ethnopharmacol. 1987, 19, 247–253. [Google Scholar] [CrossRef]
- Rashed, A.N.; Afifi, F.U.; Disi, A.M. Simple evaluation of the wound healing activity of a crude extract of Portulaca oleracea L. (growing in Jordan) in Mus musculus JVI-1. J. Ethnopharmacol. 2003, 88, 131–136. [Google Scholar] [CrossRef]
- Sicari, V.; Loizzo, M.R.; Tundis, R.; Mincione, A.; Pellicanò, T.M. Portulaca oleracea L. (Purslane) extracts display antioxidant and hypoglycaemic effects. J. Appl. Bot. Food Qual. 2018, 91, 39–46. [Google Scholar]
- Martins, W.B.; Rodrigues, S.A.; Silva Hatamy, K.; Dantas, C.G.; De Lucca Júnior, W.; Filho, L.X.; Cardoso, J.C.; Gomes, M.Z. Neuroprotective effect of Portulaca oleracea extracts against 6-hydroxydopamine-induced lesion of dopaminergic neurons. An. Acad. Bras. Cienc. 2016, 88, 1439–1450. [Google Scholar] [CrossRef] [Green Version]
- Malek, F.; Boskabady, M.H.; Boroushaki, M.T.; Tohidi, M. Bronchodilatory effect of Portulaca oleracea in airways of asthmatic patients. J. Ethnopharmacol. 2004, 93, 57–62. [Google Scholar] [CrossRef]
- Movahedian, A.; Ghannadi, A.; Vashirnia, M. Hypocholesterolemic effects of purslane extract on serum lipids in rabbits fed with high cholesterol levels. Int. J. Pharmacol. 2007, 3, 285–289. [Google Scholar]
- Lim, Y.Y.; Quah, E.P.L. Antioxidant properties of different cultivars of Portulaca oleracea. Food Chem. 2007, 103, 734–740. [Google Scholar] [CrossRef]
- Erkan, N. Antioxidant activity and phenolic compounds of fractions from Portulaca oleracea L. Food Chem. 2012, 133, 775–781. [Google Scholar] [CrossRef]
- Guoyin, Z.; Hao, P.; Min, L.; Wei, G.; Zhe, C.; Changquan, L. Antihepatocarcinoma effect of Portulaca oleracea L. in mice by PI3K/Akt/mTOR and Nrf2/HO-1/NF-κB pathway, Evidence-based Complement. Altern. Med. 2017, 2017, 1–11. [Google Scholar]
- Zhao, R.; Gao, X.; Cai, Y.; Shao, X.; Jia, G.; Huang, Y.; Qin, X.; Wang, J.; Zheng, X. Antitumor activity of Portulaca oleracea L. polysaccharides against cervical carcinoma in vitro and in vivo. Carbohydr. Polym. 2013, 96, 376–383. [Google Scholar] [CrossRef]
- Chen, J.; Shi, Y.P.; Liu, J.Y. Determination of noradrenaline and dopamine in Chinese herbal extracts from Portulaca oleracea L. by high-performance liquid chromatography. J. Chromatogr. A 2003, 1003, 127–132. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Zakaria, M.N.M.; Islam, M.W.; Chen, H.B.; Kamil, K.; Al-Attas, A. Neuropharmacological actions of Portulaca oleracea L. v. sativa (Hawk). J. Ethnopharmacol. 2011, 76, 171–176. [Google Scholar] [CrossRef]
- Yazici, I.; Türkan, I.; Sekmen, A.H.; Demiral, T. Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ. Exp. Bot. 2007, 61, 49–57. [Google Scholar] [CrossRef]
- Montoya-García, C.O.; Volke-Haller, V.H.; Trinidad-Santos, A.; Villanueva-Verduzco, C. Change in the contents of fatty acids and antioxidant capacity of purslane in relation to fertilization. Sci. Hortic. 2018, 234, 152–159. [Google Scholar] [CrossRef]
- Mohamed, A.I.; Hussein, A.S. Chemical composition of purslane (Portulaca oleracea). Plant Foods Hum. Nutr. 1994, 45, 1–9. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-3 fatty acids and antioxidants in edible wild plants. Biol. Res. 2004, 37, 263–277. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P.; Norman, H.A.; Gillaspy, J.E.; Duke, J.A. Common purslane: A source of omega-3 fatty acids and antioxidants. J. Am. Coll. Nutr. 1992, 11, 374–382. [Google Scholar] [CrossRef]
- Gallo, M.; Conte, E.; Naviglio, D. Analysis and comparison of the antioxidant component of Portulaca oleracea leaves obtained by different solid-liquid extraction techniques. Antioxidants 2017, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.A.; Juraimi, A.S.; Rafii, M.Y.; Abdul Hamid, A.; Aslani, F.; Hasan, M.M.; Mohd Zainudin, M.A.; Uddin, M.K. Evaluation of antioxidant compounds, antioxidant activities, and mineral composition of 13 collected purslane (Portulaca oleracea L.) accessions. Biomed. Res. Int. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Melilli, M.G.; Pagliaro, A.; Bognanni, R.; Scandurra, S.; Di Stefano, V. Antioxidant activity and fatty acids quantification in Sicilian purslane germplasm. Nat. Prod. Res. 2019, 1–8. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef]
- Sakai, N.; Inada, K.; Okamoto, M.; Shizuri, Y.; Fukuyama, Y. Portuloside A, a monoterpene glucoside, from Portulaca oleracea. Phytochemistry 1996, 42, 1625–1628. [Google Scholar] [CrossRef]
- Zhou, Y.; Xin, H.; Rahman, K.; Wang, S.; Peng, C.; Zhang, H. Portulaca oleracea L.: A review of phytochemistry and pharmacological effects. Biomed. Res. Int. 2015, 5, 11. [Google Scholar]
- Oliveira, I.; Valentão, P.; Lopes, R.; Andrade, P.B.; Bento, A.; Pereira, J.A. Phytochemical characterization and radical scavenging activity of Portulaca oleraceae L. leaves and stems. Microchem. J. 2009, 92, 129–134. [Google Scholar] [CrossRef]
- Palaniswamy, U.R.; McAvoy, R.J.; Bible, B. Oxalic acid concentrations in purslane (Portulaca oleraceae L.) is altered by the stage of harvest and the nitrate to ammonium ratios in hydroponics. Acta Hortic. 2004, 629, 299–305. [Google Scholar] [CrossRef]
- Habibian, M.; Sadeghi, G.; Karimi, A. Effects of purslane (Portulaca oleracea L.) powder on growth performance, blood indices, and antioxidant status in broiler chickens with triiodothyronine-induced ascites. Arch. Anim. Breed. 2017, 60, 315–325. [Google Scholar] [CrossRef]
- Golshan-Zoroofi, M.; Shahryar, H.A.; Chekani-Azar, S.; Ahadi, F. Effects of diet supplementation with purslane (Portulaca oleracea L.) on growth performance of Moghani lamb. J. Appl. Environ. Biol. Sci. 2013, 3, 115–118. [Google Scholar]
- Salah, K.B.H.; Chemli, R. Variabilité phénotypique de quelques populations de Pourpier (Portulaca oleracea L.) en Tunisie. Acta Bot. Gall. 2004, 151, 111–119. [Google Scholar] [CrossRef]
- Uddin, M.K.; Juraimi, A.S.; Ali, M.E.; Ismail, M.R. Evaluation of antioxidant properties and mineral composition of purslane (Portulaca oleracea L.) at different growth stages. Int. J. Mol. Sci. 2012, 13, 10257–10267. [Google Scholar] [CrossRef]
- Iranshahy, M.; Javadi, B.; Iranshahi, M.; Jahanbakhsh, S.P.; Mahyari, S.; Hassani, F.V.; Karimi, G. A review of traditional uses, phytochemistry and pharmacology of Portulaca oleracea L. Milad. J. Ethnopharmacol. 2017, 205, 158–172. [Google Scholar] [CrossRef] [PubMed]
- Almashad, A.; Ibrahim Ramadan, G.; Abdelrazek, R. Phytochemicals, antioxidant and volatile compounds evaluation of Egyptian purslane leaves, Arab Universities. J. Agric. Sci. 2020. [Google Scholar] [CrossRef]
- Aberoumand, A. Nutritional evaluation of edible portulaca oleracea as plant food. Food Anal. Methods 2009, 2, 204–207. [Google Scholar] [CrossRef] [Green Version]
- Chowdhary, C.V.; Meruva, A.N.K.; Elumalai, R.K.A. A review on phytochemical and pharmacological profile of Portulaca oleracea linn. (purslane). Int. J. Res. Ayurveda Pharm. 2013, 4, 34–37. [Google Scholar] [CrossRef]
- Sdouga, D.; Branca, F.; Kabtni, S.; Di Bella, C.M.; Trifi-farah, N.; Marghali, S. Morphological traits and phenolic compounds in Tunisian wild populations and cultivated varieties of Portulaca olearacea L. Agronmy 2020, 10, 948. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists. No. 934.06; AOAC: Rockville, MD, USA, 2000. [Google Scholar]
- Lombardo, S.; Pandino, G.; Mauromicale, G. Minerals profile of two globe artichoke cultivars as affected by NPK fertilizer regimes. Food Res. Int. 2017, 100, 95–99. [Google Scholar] [CrossRef]
- Abugri, D.A.; Tiimob, B.J.; Apalangya, V.A.; Pritchett, G.; McElhenney, W.H. Bioactive and nutritive compounds in Sorghum bicolor (Guinea corn) red leaves and their health implication. Food Chem. 2013, 138, 718–723. [Google Scholar] [CrossRef]
- Boyer, R. Modern Experimental Biochemistry, 3rd ed; Addison Wesley Longman, Inc.: San Francisco, CA, USA, 2000. [Google Scholar]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS. Food Anal. Chem. 2001, 3, 1–8. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Yasoubi, P.; Barzegar, M.; Sahari, M.A.; Azizi, M.H. Total phenolic contents and antioxidant activity of pomegranate (Punica granatum L.) peel extracts. J. Agric. Sci. Technol. 2007, 9, 35–42. [Google Scholar]
- Mancinelli, A.L.; Huang Yang, C.-P.; Lindquist, P.; Anderson, O.R.; Rabino, I. Photocontrol of anthocyanin synthesis III. The action of Streptomycin on the synthesis of chlorophyll and anthocyanin. Plant Physiol. 1975, 55, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Dabbou, S.; Dabbou, S.; Pandino, G.; Lombardo, S.; Mauromicale, G.; Chahdoura, H.; Gasco, L.; Helal, A.N. In vitro antioxidant activities and phenolic content in crop residues of Tunisian globe artichoke. Sci. Hortic. 2015, 190, 128–136. [Google Scholar]
- Montedoro, G.; Servili, M.; Baldioli, M.; Miniati, E. Simple and hydrolyzable phenolic compounds in virgin olive oil. 1. Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC. J. Agric. Food Chem. 1992, 40, 1571–1576. [Google Scholar] [CrossRef]
- Lombardo, S.; Restuccia, C.; Pandino, G.; Licciardello, F.; Muratore, G.; Mauromicale, G. Influence of an O3-atmosphere storage on microbial growth and antioxidant contents of globe artichoke as affected by genotype and harvest time. Innov. Food Sci. Emerg. Technol. 2015, 27, 121–128. [Google Scholar] [CrossRef]
- Dabbou, S.; Issaoui, M.; Servili, M.; Taticchi, A.; Sifi, S.; Montedoro, G.F.; Hammami, M. Characterisation of virgin olive oils from European olive cultivars introduced in Tunisia. Eur. J. Lipid Sci. Technol. 2009, 111, 392–401. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Julkunen-tiitto, R. Phenolic constituents in the leaves of Northern Willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 1985, 33, 213–217. [Google Scholar] [CrossRef]
- Dabbou, S.; Dabbou, S.; Flamini, G.; Pandino, G.; Gasco, L.; Helal, A.N. Phytochemical compounds from the crop byproducts of Tunisian globe artichoke cultivars. Chem. Biodivers. 2016, 13, 1475–1483. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas. Chromatography/Mass Spectrometry; Allured Publishing Corp.: Carol Stream, IL, USA, 1995. [Google Scholar]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and C arbowax 20M phases. J. Chromatogr. 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Jennings, W.; Shibamoto, T. Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas. Chromatography; Academic Press Inc.: New York, NY, USA, 1980. [Google Scholar]
- Massada, Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry; John Wiley and Sons, Inc.: New York, NY, USA, 1976. [Google Scholar]
- Stenhagen, E.; Abrahamsson, S.F.; McLafferty, W. Registry of Mass Spectral Data, 1st ed.; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Swigar, A.A.; Silverstein, R.M. Monoterpenes: Infrared, Mass, 1h Nmr, and 13c Nmr Spectra, and Kováts Indices; Aldrich Chemical Co.: Milwaukee, WI, USA, 1981. [Google Scholar]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 3, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Uddin, M.K.; Shukor Juraimi, A.; Anwar, F.; Hossain, M.A.; Alam, M.A. Effect of salinity on proximate mineral composition of purslane (Portulca oleracea L.). Aust. J. Crop. Sci. 2012, 6, 1732–1736. [Google Scholar]
- Bessrour, M.; Chelbi, N.; Moreno, D.A.; Chibani, F.; Abdelly, C.; Carvajal, M. Interaction of salinity and CaCO3 affects the physiology and fatty acid metabolism in Portulaca oleracea. J. Agric. Food Chem. 2018, 66, 6683–6691. [Google Scholar] [CrossRef]
- Silva, R.; Carvalho, I.S. In vitro antioxidant activity, phenolic compounds and protective effect against DNA damage provided by leaves, stems and flowers of Portulaca oleracea (Purslane). Nat. Prod. Commun. 2014, 9, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Santiago-Saenz, Y.O.; Fuentes Hernández, A.D.; Monroy-Torres, R.; Cortés-Cariño, R.; Jiménez-Alvarado, R. Physicochemical, nutritional and antioxidant characterization of three vegetables (Amaranthus hybridus L., Chenopodium berlandieri L., Portulaca oleracea L.) as potential sources of phytochemicals and bioactive compounds. J. Food Meas. Charact. 2018, 12, 2855–2864. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Mauromicale, G.; Williamson, G. Characterization of phenolic acids and flavonoids in leaves, stems, bracts and edible parts of globe artichokes. Acta Hortic. 2012, 942, 413–418. [Google Scholar] [CrossRef]
- Bors, W.; Michel, C.; Stettmaier, K. Electron paramagnetic resonance studies of radical species of proanthocyanidins and gallate esters. Arch. Biochem. Biophys. 2000, 374, 347–355. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Riedl, K.M.; Jones, G.A.; Sovik, K.N.; Ritchard, N.T.; Hartzfeld, P.; Riechel, T.L. High molecular weight plant polyphenolics (Tannins) as biological antioxidants. J. Agric. Food Chem. 1998, 4930, 1887–1892. [Google Scholar] [CrossRef]
- Eyob, S.; Martinsen, B.K.; Tsegaye, A.; Appelgren, M.; Skrede, G. Antioxidant and antimicrobial activities of extract and essential oil of korarima (Aframomum corrorima (Braun) P.C.M. Jansen). Afr. J. Biotechnol. 2008, 7, 2585–2592. [Google Scholar]
- Andarwulan, N.; Batari, R.; Agustini, D.; Bolling, B.; Wijaya, H. Flavonoid content and antioxidant activity of vegetables from Indonesia. Food Chem. 2010, 121, 1231–1235. [Google Scholar] [CrossRef] [Green Version]
- Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [Green Version]
- Lahbib, K.; Dabbou, S.; ELBok, S.; Pandino, G.; Lombardo, S.; Gazzah, M.E.L. Variation of biochemical and antioxidant activity with respect to the part of Capsicum annuum fruit from Tunisian autochthonous cultivars. Ind. Crops Prod. 2017, 104, 164–170. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The effect on tuber quality of an organic versus a conventional cultivation system in the early crop potato. J. Food Compos. Anal. 2017, 62, 189–196. [Google Scholar] [CrossRef]
- Pandino, G.; Meneghini, M.; Tavazza, R.; Lombardo, S.; Mauromicale, G. Phytochemicals accumulation and antioxidant activity in callus and suspension cultures of Cynara scolymus L. Plant. Cell Tissue Org. Cult. 2017, 128, 223–230. [Google Scholar] [CrossRef]
Leaves | Stems | |
---|---|---|
Ash (mg g−1 DM) | 33.83 ± 0.01 | 33.70 ± 0.16 |
Moisture (mg g−1) | 86.37 ± 0.74 | 89.93 ± 0.29 ** |
Chlorophyll a (mg g−1 DM) | 2.69 ± 0.05 | 0.33 ± 0.01 ** |
Chlorophyll b (mg g−1 DM) | 4.73 ± 0.09 | 0.58 ± 0.01 ** |
Total chlorophylls (mg g−1 DM) | 7.42 ± 0.13 | 0.91 ± 0.02 ** |
Total carotenoids (mg g−1 DM) | tr | tr |
Anthocyanins (µg g−1 DM) | 1.08 ± 0.49 | 4.61 ± 0.05 ** |
Phenolic Composition | Ethanolic Extract | Water Extract | ||
---|---|---|---|---|
Leaves | Stems | Leaves | Stems | |
Phenols | 13.92 ± 0.04 | 11.80 ± 0.26 ** | 2.45 ± 0.05 | 0.50 ± 0.05 ** |
o-Diphenols | 15.75 ± 0.22 | 14.59 ± 0.07 * | 2.32 ± 0.06 | 0.64 ± 0.06 ** |
Flavonoids | 16.26 ± 0.18 | 13.58 ± 0.11 ** | 2.83 ± 0.04 | 1.88 ± 0.01 * |
Tannins | 31.98 ± 0.64 | 11.59 ± 0.86 ** | 7.72 ± 0.17 | 6.52 ± 0.17 * |
Volatile Compounds | LRI | Leaves | Stems |
---|---|---|---|
Hexanal | 804 | 0.40 ± 0.01 | - |
Heptanal | 902 | 0.50 ± 0.10 | - |
2,5-dimethylpyrazine | 913 | 0.60 ± 0.01 | - |
2,3-dimethylpyrazine | 916 | 1.10 ± 0.01 | - |
benzaldehyde | 962 | 1.30 ± 0.10 | - |
6-methyl-5-hepten-2-one | 987 | 0.90 ± 0.01 | - |
2-pentylfuran | 994 | 1.05 ± 0.05 | 1.27 ± 0.06 * |
2,3,5-trimethylpyrazine | 1003 | 0.80 ± 0.10 | - |
limonene | 1032 | 17.30 ± 1.20 | 32.20 ± 5.50 ** |
(E)-2-octenal | 1062 | - | 1.30 ± 0.50 |
(E)-2-octen-1-ol | 1071 | - | 1.03 ± 0.50 |
(E,Z)-3,5-octadien-2-one | 1076 | 0.55 ± 0.05 | - |
(E,E)-3,5-octadien-2-one | 1095 | 0.50 ± 0.01 | - |
n-undecane | 1100 | 0.40 ± 0.01 | 1.30 ± 0.60 ** |
linalool | 1101 | 1.20 ± 0.20 | 0.70 ± 0.10 ** |
nonanal | 1104 | 3.85 ± 0.05 | 3.37 ± 0.45 |
2,6-dimethylcyclohexanol | 1110 | 6.45 ± 0.15 | 2.17 ± 0.15 ** |
3-nonen-2-one | 1142 | 0.65 ± 0.05 | - |
camphor | 1145 | 1.35 ± 0.05 | 0.97 ± 0.06 ** |
menthone | 1154 | 1.10 ± 0.10 | - |
menthol | 1174 | 1.05 ± 0.05 | - |
cis-dihydrocarvone | 1195 | 0.40 ± 0.01 | 0.60 ± 0.10 ** |
n-dodecane | 1200 | - | 0.77 ± 0.25 |
safranal | 1202 | 1.00 ± 0.01 | - |
decanal | 1206 | 0.50 ± 0.01 | 0.70 ± 0.10 ** |
β-cyclocitral | 1222 | 1.70 ± 0.21 | 0.50 ± 0.01 ** |
cumin aldehyde | 1241 | 1.90 ± 0.01 | 2.20 ± 0.40 |
carvone | 1244 | 45.80 ± 2.00 | 37.80 ± 6.20 |
cis-carvone oxide | 1262 | - | 1.80 ± 0.30 |
1-decanol | 1272 | - | 0.50 ± 0.01 |
trans-carvone oxide | 1276 | - | 0.90 ± 0.30 |
menthyl acetate | 1289 | 0.40 ± 0.01 | - |
n-tridecane | 1300 | - | 0.70 ± 0.01 |
undecanal | 1307 | - | 0.40 ± 0.01 |
β-caryophyllene | 1419 | 1.90 ± 0.20 | 4.67 ± 1.15 ** |
(E)-geranylacetone | 1454 | 0.40 ± 0.01 | - |
α-humulene | 1455 | - | 0.57 ± 0.15 |
ar-curcumene | 1484 | - | 0.57 ± 0.15 |
(E)-β-ionone | 1487 | 3.05 ± 0.25 | 0.60 ± 0.10 ** |
n-pentadecane | 1500 | - | 0.63 ± 0.06 |
dihydroactinolie | 1536 | 0.80 ± 0.10 | - |
Monoterpene hydrocarbons | - | 17.30 ± 1.20 | 32.20 ± 5.50 ** |
Oxygenated monoterpenes | - | 52.80 ± 1.70 | 44.97 ± 7.35 |
Sesquiterpene hydrocarbons | - | 1.90 ± 0.20 | 5.77 ± 1.45 ** |
Apocarotenoids | - | 6.75 ± 0.15 | 0.87 ± 0.35 ** |
Nitrogen derivatives | - | 2.50 ± 0.10 | - |
Non-terpene derivatives | - | 16.15 ± 0.55 | 12.40 ± 2.60 |
Total identified volatiles | - | 97.40 ± 0.40 | 96.17 ± 1.05 |
Ethanolic Extract | Water Extract | |||
---|---|---|---|---|
Leaves | Stems | Leaves | Stems | |
ABTS assay | 6.82 ± 0.06 | 5.31 ± 0.01 * | 6.03 ± 0.01 | 5.08 ± 0.06 ** |
Reducing power assay | 0.83 ± 0.10 | 1.55 ± 0.07 ** | 6.19 ± 0.03 | 10.51 ± 0.03 ** |
Phosphomolybdenum assay | 0.30 ± 0.02 | 0.46 ± 0.01 ** | 1.83 ± 0.13 | 2.66 ± 0.04 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabbou, S.; Lahbib, K.; Pandino, G.; Dabbou, S.; Lombardo, S. Evaluation of Pigments, Phenolic and Volatile Compounds, and Antioxidant Activity of a Spontaneous Population of Portulaca oleracea L. Grown in Tunisia. Agriculture 2020, 10, 353. https://doi.org/10.3390/agriculture10080353
Dabbou S, Lahbib K, Pandino G, Dabbou S, Lombardo S. Evaluation of Pigments, Phenolic and Volatile Compounds, and Antioxidant Activity of a Spontaneous Population of Portulaca oleracea L. Grown in Tunisia. Agriculture. 2020; 10(8):353. https://doi.org/10.3390/agriculture10080353
Chicago/Turabian StyleDabbou, Samia, Karima Lahbib, Gaetano Pandino, Sihem Dabbou, and Sara Lombardo. 2020. "Evaluation of Pigments, Phenolic and Volatile Compounds, and Antioxidant Activity of a Spontaneous Population of Portulaca oleracea L. Grown in Tunisia" Agriculture 10, no. 8: 353. https://doi.org/10.3390/agriculture10080353
APA StyleDabbou, S., Lahbib, K., Pandino, G., Dabbou, S., & Lombardo, S. (2020). Evaluation of Pigments, Phenolic and Volatile Compounds, and Antioxidant Activity of a Spontaneous Population of Portulaca oleracea L. Grown in Tunisia. Agriculture, 10(8), 353. https://doi.org/10.3390/agriculture10080353