Effects of Sorghum Silage in Lactating Buffalo Cow Diet: Biochemical Profile, Milk Yield, and Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Milk Analyses
2.3. Blood Analyses
2.4. Statistical Analysis
3. Results
3.1. Silages
3.2. Milk
3.3. Blood
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ISMEA, XVIII Rapporto Ismea-Qualivita, l’indagine socio-economica del comparto italiano agroalimentare e vitivinicolo DOP IGP. 2020. Available online: https://www.qualivita.it/rapporto-ismea-qualivita-2020/ (accessed on 3 June 2020).
- Cattani, M.; Guzzo, N.; Mantovani, R.; Bailoni, L. Effects of total replacement of corn silage with sorghum silage on milk yield, composition, and quality. J. Anim. Sci. Biotechnol. 2017, 15, 8. [Google Scholar] [CrossRef] [Green Version]
- Maunder, A.B. Sorghum Worldwide. In Sorghum and Millet Diseases; Leslie, J.F., Ed.; Iowa State Press: Iowa City, IA, USA, 2002; pp. 11–17. [Google Scholar]
- Colombini, J.D.; Galassi, G.; Crovetto, G.M.; Rapetti, L. Milk production, nitrogen balance, and fiber digestibility prediction of corn, whole plant grain sorghum, and forage sorghum silages in the dairy cow. J. Dairy Sci. 2012, 95, 4457–4467. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, G.; Trinchese, G.; Musco, N.; Infascelli, F.; De Filippo, C.; Mastellone, V.; Morittu, V.M.; Lombardi, P.; Tudisco, R.; Grossi, M.; et al. Milk from cows fed a diet with a high forage: Concentrate ratio improves inflammatory state, oxidative stress, and mitochondrial function in rats. J. Dairy Sci. 2018, 101, 1843–1851. [Google Scholar] [CrossRef]
- Trinchese, G.; Cavaliere, G.; Penna, E.; De Filippo, C.; Cimmino, F.; Catapano, A.; Musco, N.; Tudisco, R.; Lombardi, P.; Infascelli, F.; et al. Milk from cow fed with high forage/concentrate ratio diet: Beneficial effect on rat skeletal muscle inflammatory state and oxidative stress through modulation of mitochondrial functions and AMPK activity. Front. Phys. 2019, 9, 1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gammone, M.A.; Riccioni, G.; Parrinello, G.; D’Orazio, N. Omega-3 Polyunsaturated Fatty Acids: Benefits and Endpoints in Sport. Nutrients 2018, 11, 46. [Google Scholar] [CrossRef] [Green Version]
- Calabrò, S.; Cutrignelli, M.I.; Piccolo, G.; Bovera, F.; Zicarelli, F.; Gazaneo, M.P.; Infascelli, F. In vitro fermentation kinetics of fresh and dried silage. Anim. Feed Sci. Tech. 2005, 123–124, 129–137. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3598. [Google Scholar] [CrossRef]
- Sauvant, D.; Noziere, P. La quantification des principaux phénomènes digestifs chez les ruminants: Les relations utilisées pour rénover les systèmes d’unités d’alimentation énergétique et protéique. Prod. Anim. 2013, 26, 327–346. [Google Scholar] [CrossRef] [Green Version]
- Folch, J.; Lees, M.; Sloone Stanley, G.H. A simple method for the determination and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Hara, A.; Radin, N.S. Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 1978, 90, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Tudisco, R.; Grossi, M.; Calabrò, S.; Cutrignelli, M.I.; Musco, N.; Addi, L.; Infascelli, F. Influence of pasture on goat milk fatty acids and Stearoyl-CoA desaturase gene expression in milk somatic cells. Small Rum Res. 2014, 122, 38–43. [Google Scholar] [CrossRef]
- Bittante, G.; Andrighetto, I.; Ramanzin, M. Fondamenti di Zootecnica; Liviana Editrice: Padova, Italy, 1990. [Google Scholar]
- Getachew, G.; Putnam, D.H.; De Ben, C.M.; De Peters, E.J. Potential of Sorghum as an Alternative to Corn Forage. Am. J. Plant Sci. 2016, 7, 1106–1121. [Google Scholar] [CrossRef] [Green Version]
- Calabrò, S.; Tudisco, R.; Grossi, M.; Gonzales, O.J.; Caiazzo, C.; Guglielmelli, A.; Piccolo, V.; Infascelli, F.; Cutrignelli, M.I. Nutritive value of silages utilized in buffalo nutrition. Rev. Vet. 2010, 21, 683–685. [Google Scholar]
- Grant, R.J.; Haddad, S.G.; Moore, K.J.; Pedersen, J.F. Brown midrib sorghum silage for midlactation dairy cows. J. Dairy Sci. 1995, 78, 1070–1980. [Google Scholar] [CrossRef]
- Morand-Fehr, P.; Tran, G. La fraction lipidique des aliments et les corps gras utilisés en alimentation animale. INRA Prod. Anim. 2001, 14, 285–302. [Google Scholar] [CrossRef]
- Hassanat, F.; Gervais, R.; Julien, C.; Massé, D.I.; Lettat, A.; Chouinard, P.Y.; Petit, H.V.; Benchaar, C. Replacing alfalfa silage with corn silage in dairy cow diets: Effects on enteric methane production, ruminal fermentation, digestion, N balance, and milk production. J. Dairy Sci. 2013, 96, 4553–4567. [Google Scholar] [CrossRef]
- Miron, J.; Zuckerman, E.; Adin, G.; Solomon, R.; Shoshani, E.; Nikbachat, M.; Yosef, E.; Zenou, A.; Weinberg, Z.G.; Chena, Y.; et al. Comparison of two forage sorghum varieties with corn and the effect of feeding their silages on eating behaviour and lactation performance of dairy cows. Anim. Feed Sci. Tech. 2007, 139, 23–39. [Google Scholar] [CrossRef]
- Barile, V.L.; Tripaldi, C.; Pizzoferrato, L.; Pacelli, C.; Palocci, G.; Allegrini, S.; Maschio, M.; Mattera, M.; Manzi, P.; Borghese, A. Effects of different diets on milk yield and quality of lactating buffaloes: Maize versus sorghum silage. Italian J. Anim. Sci. 2007, 6, 520–523. [Google Scholar] [CrossRef]
- Khosravi, M.; Rouzbehan, Y.; Rezaei, M.; Rezaei, J. Total replacement of corn silage with sorghum silage improves milk fatty acid profile and antioxidant capacity of Holstein dairy cows. J. Dairy Sci. 2018, 101, 10953–10961. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Liu, R.H.; Bond, D.R.; Russell, J.B. Effect of linoleic acid concentration on conjugated linoleic acid by Butyrivibrio fibrisolvens A38. Appl. Environ. Microbiol. 2000, 66, 5226–5230. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P. The importance of the ratio of omega-6/ omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Tudisco, R.; Chiofalo, B.; Lo Presti, V.; Morittu, V.M.; Moniello, G.; Grossi, M.; Musco, N.; Grazioli, R.; Mastellone, V.; Lombardi, P.; et al. Influence of feeding linseed on SCD activity in grazing goat mammary glands. Animals 2019, 9, 786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radostits, O.M.; Gay, C.C.; Hinchcliff, K.W.; Constable, P.D. Diseases of the abomasum. In Veterinary Medicine: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats, 10th ed.; Radostits, O.M., Gay, C.C., Hinchcliff, K.W., Constable, P.D., Eds.; Elsevier: Philadelphia, PA, USA, 2007; pp. 353–374. [Google Scholar]
- Hess, H.S.; Lascano, C.E.; Flórez, H. Blood and Milk Urea Nitrogen as a Tool to Monitor the Protein Nutrition of Cattle under Tropical Conditions; Institute of Animal Sciences, Animal Nutrition ETH: Zurich, Switzerland, 2000. [Google Scholar]
- Yang, Y.; Nan, Z.; Zhao, X.; Zhang, Y.; Han, R.; Yang, J.; Zhao, S.; Li, S.; Guo, T.; Zang, C.; et al. Metabolomic biomarkers identify differences in milk produced by Holstein cows and other minor dairy animals. J. Proteom. 2016, 136, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Butler, S.T.; Pelton, S.H.; Butler, W.R. Energy Balance, Metabolic Status, and the First Postpartum Ovarian Follicle Wave in Cows Administered Propylene Glycol. J. Dairy Sci. 2006, 89, 2938–2951. [Google Scholar] [CrossRef] [Green Version]
- Drackley, J.M.; Overton, T.R.; Douglas, N. Adaptations of glucose and log-chain fatty acid metabolism in liver of dairy cows during the periparturient period. J. Dairy Sci. 2001, 84, E100–E112. [Google Scholar] [CrossRef]
- Sciorsci, R.L.; Galgano, M.; Mutinati, M.; Rizzo, A. Oxidative state in the estrus cycle of the buffaloes: A preliminary study. Trop. Anim. Health Prod. 2020, 52, 1331–1334. [Google Scholar] [CrossRef]
Ingredients | SS | CS |
---|---|---|
Corn silage | - | 5.325 |
Sorghum silage | 5.000 | - |
Alfalfa hay | 3.670 | 3.450 |
Concentrate * | 6.500 | 6.225 |
Crude protein | 152.0 | 150.0 |
NEl, MJ/kg DM | 6.335 | 6.335 |
Chemical Characteristics | Sorghum Silage | Corn Silage | Alfalfa Hay | Concentrate * |
---|---|---|---|---|
DM (%) | 26.2 ± 0.4 | 28.5 ± 0.3 | - | - |
Crude protein | 80.2 ± 1.3 | 83.0 ± 1.6 | 161.0 ± 1.6 | 203.0 |
Ether extract | 32.2 ± 0.7 | 33.0 ± 0.6 | 20.0 ± 0.4 | 55.1 |
NDF | 569.3 ± 32.2 | 551.2 ± 34.1 | 439.0 ± 15.7 | 232.4 |
ADF | 360.1 ± 19.8 | 361.3 ± 21.6 | 313.0 ± 10.8 | 92.3 |
ADL | 31.0 ± 0.9 | 47.0 ± 1.1 | 52.0 ± 0.8 | 24.2 |
NEl MJ/kg DM | 5.125 ± 0.3 | 5.267 ± 0.2 | 5.480 ± 0.2 | 7.829 |
Fermentative Parameters | Sorghum Silage | Corn Silage |
---|---|---|
pH | 4.15 ± 0.2 | 4.03 ± 0.3 |
Lactic acid (g/kg DM) | 42.3 ± 1.6 | 46.0 ± 1.9 |
Acetic acid (g/kg DM) | 13.1 ± 0.5 | 15.0 ± 0.3 |
Propionic acid (g/kg DM) | 0.5 ± 0.01 | 0.5 ± 0.02 |
Butyric acid (g/kg DM) | 0.3 ± 0.002 | 0.2 ± 0.002 |
N-NH3 (g/kg total N) | 4.20 ± 0.4 | 5.30 ± 0.3 |
Fatty acid profile | ||
C14:0 | 0.40 ± 0.03 | 0.30 ± 0.03 |
C14:1 | 0.02 ± 0.001 | 0.02 ± 0.002 |
C16:0 | 20.8 ± 2.01 | 17.0 ± 2.13 |
C16:1 | 0.31 ± 0.02 | 0.20 ± 0.03 |
C18:0 | 2.4 ± 0.03 | 2.3 ± 0.03 |
C18:1 cis 9 | 26.6 ± 0.9 | 24.4 ± 0.8 |
C18:1 cis 11 | 1.12 ± 0.02 | 0.81 ± 0.02 |
C18:2 cis 9 cis 12 | 21.0 ± 0.8 | 35.8 ± 1.2 |
C18:3 cis 9 cis 12, cis 15 | 13.6 ± 1.10 | 5.8 ± 0.5 |
C20:0 | 1.31 ± 0.1 | 0.4 ± 0.06 |
C20:1 cis 11 | 0.3 ± 0.01 | 0.2 ± 0.01 |
C20:2 | 0.02 ± 0.01 | 0.02 ± 0.01 |
C22:0 | 0.98 ± 0.01 | 0.42 ± 0.01 |
C24:0 | 1.02 ± 0.04 | 0.72 ± 0.03 |
Milk Chemical Composition | SS | CS | Group Effect | Sampling Effect | G × S | SEM |
---|---|---|---|---|---|---|
DMI | 15.17 | 15.00 | NS | NS | NS | 2.1 |
Yield | 10.120 | 9.270 | * | * | * | 1.5 |
Fat | 8.52 | 8.38 | NS | NS | NS | 0.21 |
Protein | 4.70 | 4.68 | NS | NS | NS | 0.16 |
Lactose | 5.01 | 5.02 | NS | NS | NS | 0.12 |
Milk Fatty Acids Profile | SS | CS | Group Effect | Sampling Effect | G × S | SEM |
---|---|---|---|---|---|---|
C4:0 | 4.00 | 3.72 | NS | NS | NS | 0.97 |
C6:0 | 1.80 | 1.77 | NS | NS | NS | 0.38 |
C8:0 | 0.88 | 0.89 | NS | NS | NS | 0.20 |
C10:0 | 1.92 | 1.98 | NS | NS | NS | 0.56 |
C11:0 | 0.14 | 0.15 | NS | NS | NS | 0.02 |
C12:0 | 2.67 | 2.65 | NS | NS | NS | 0.53 |
C14:0 | 11.0 | 11.1 | NS | NS | NS | 1.53 |
C14:1 cis 9 | 0.24 | 0.28 | NS | NS | NS | 0.05 |
C15:0 | 0.78 | 0.74 | NS | NS | NS | 0.03 |
C15:1 | 0.18 | 0.17 | NS | NS | NS | 0.01 |
C16:0 | 31.40 | 32.00 | NS | NS | NS | 2.84 |
C16:1 cis 9 | 1.42 | 1.43 | NS | NS | NS | 0.20 |
C17:0 | 0.74 | 0.75 | NS | NS | NS | 0.05 |
C17:1 | 0.27 | 0.25 | NS | NS | NS | 0.02 |
C18:0 | 13.20 | 13.33 | NS | NS | NS | 0.62 |
C18:1 cis 9 | 3.09 | 3.08 | NS | NS | NS | 0.53 |
C18:1 trans 11 | 21.15 | 21.95 | NS | NS | NS | 0.90 |
C18:2 trans 9 trans 12 omega 6 | 0.15 | 0.24 | NS | NS | NS | 0.11 |
C18:2 cis 9 cis 12 omega 6 | 1.27 | 2.05 | ** | ** | ** | 0.87 |
C20:0 | 0.50 | 0.48 | NS | NS | NS | 0.04 |
C18:3 omega 3 | 0.20 | 0.19 | NS | NS | NS | 0.09 |
C22:0 | 0.21 | 0.24 | NS | NS | NS | 0.14 |
C24:0 | 0.22 | 0.19 | NS | NS | NS | 0.04 |
C22:6 omega 6 | 0.14 | 0.16 | NS | NS | NS | 0.02 |
CLA cis 9 trans 11 | 0.50 | 0.53 | NS | NS | NS | 0.18 |
CLA trans 10 cis 12 | 0.06 | 0.06 | NS | NS | NS | 0.01 |
SFA | 69.46 | 69.99 | NS | NS | NS | 3.51 |
MUFA | 26.35 | 27.16 | NS | NS | NS | 2.19 |
PUFA | 2.32 | 3.23 | ** | ** | ** | 0.54 |
∑ CLA | 0.56 | 0.59 | NS | NS | NS | 0.12 |
PUFA omega 6 | 1.56 | 2.45 | ** | ** | ** | 1.06 |
PUFA omega 3 | 0.20 | 0.19 | NS | NS | NS | 0.032 |
omega 6/omega 3 | 7.8 | 12.9 | ** | ** | ** | 1.02 |
Blood Chemistry | Units | SS | CS | Group Effect | SEM |
---|---|---|---|---|---|
BUN | mg/dL | 20.87 | 23.12 | NS | 2.87 |
CREA | mg/dL | 0.831 | 0.806 | NS | 0.121 |
GLU | mg/dL | 50.18 | 47.78 | NS | 8.69 |
AST | U/L | 43.45 | 38.09 | NS | 6.13 |
CHO | mg/dL | 58.56 | 66.90 | NS | 13.48 |
TRI | mg/dL | 59.88 | 65.13 | NS | 9.09 |
B-HBA | mg/dL | 9.62 | 8.06 | NS | 1.02 |
NEFA | mg/dL | 6.73 | 5.82 | NS | 0.781 |
d-ROMs | UCARR | 3224 | 3481 | NS | 1021 |
BAP | μmol/L | 38.9 | 44.6 | NS | 6.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tudisco, R.; Morittu, V.M.; Musco, N.; Grossi, M.; Iommelli, P.; D’Aniello, B.; Ferrara, M.; Infascelli, F.; Lombardi, P. Effects of Sorghum Silage in Lactating Buffalo Cow Diet: Biochemical Profile, Milk Yield, and Quality. Agriculture 2021, 11, 57. https://doi.org/10.3390/agriculture11010057
Tudisco R, Morittu VM, Musco N, Grossi M, Iommelli P, D’Aniello B, Ferrara M, Infascelli F, Lombardi P. Effects of Sorghum Silage in Lactating Buffalo Cow Diet: Biochemical Profile, Milk Yield, and Quality. Agriculture. 2021; 11(1):57. https://doi.org/10.3390/agriculture11010057
Chicago/Turabian StyleTudisco, Raffaella, Valeria Maria Morittu, Nadia Musco, Micaela Grossi, Piera Iommelli, Biagio D’Aniello, Maria Ferrara, Federico Infascelli, and Pietro Lombardi. 2021. "Effects of Sorghum Silage in Lactating Buffalo Cow Diet: Biochemical Profile, Milk Yield, and Quality" Agriculture 11, no. 1: 57. https://doi.org/10.3390/agriculture11010057
APA StyleTudisco, R., Morittu, V. M., Musco, N., Grossi, M., Iommelli, P., D’Aniello, B., Ferrara, M., Infascelli, F., & Lombardi, P. (2021). Effects of Sorghum Silage in Lactating Buffalo Cow Diet: Biochemical Profile, Milk Yield, and Quality. Agriculture, 11(1), 57. https://doi.org/10.3390/agriculture11010057