Effects of Different Carbohydrate Sources on Alfalfa Silage Quality at Different Ensiling Days
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silage Material and Ensiling
2.2. Fermentation Profile and Chemical Composition
2.3. Calculations
2.4. Statistical Analyses
3. Results
3.1. ChemicalCompositions of Alfalfa before Ensiling
3.2. Fermentation Characteristics ofAlfalfa after Different Durations of Ensiling
3.3. Chemical Composition of Alfalfa after Different Ensiling Days
3.4. Analysis of Correlation between WSC and the Fermentation Profiles and Chemical Compositions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coblentz, W.K.; Muck, R.E.; Borchardt, M.A.; Spencer, S.K.; Jokela, W.E.; Bertram, M.G.; Coffey, K.P. Effects of dairy slurry on silage fermentation characteristics and nutritive value of alfalfa. J. Dairy Sci. 2014, 97, 7197–7211. [Google Scholar] [CrossRef]
- Kung, L.; Taylor, C.C.; Lynch, M.P.; Neylon, J.M. The effect of treating alfalfa with Lactobacillus buchneri 40,788 on silage fermentation, aerobic stability, and nutritive value for lactating dairy cows. J. Dairy Sci. 2003, 86, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Dewhurst, R.J.; Fisher, W.J.; Tweed, J.K.; Wilkins, R.J. Comparison of grass and legume silages for milk production. 1. Production responses with different levels of concentrate. J. Dairy Sci. 2003, 86, 2598–2611. [Google Scholar] [CrossRef]
- Mcdonald, P.; Henderson, A.R. Buffering Capacity of Herbage Samples as a Factor in Ensilage. J. Sci. Food Agric. 1962, 13, 395–400. [Google Scholar] [CrossRef]
- Muck, R.E. Silage microbiology and its control through additives. Rev. Bras. Zootec. 2010, 39, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.S.; Wang, Y.P.; Yang, F.Y.; Wang, Y.; Zhang, H. Screening a Lactobacillus plantarum strain for good adaption in alfalfa ensiling and demonstrating its improvement of alfalfa silage quality. J. Appl. Microbiol. 2020, 129, 233–242. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, S.; Yun, Y.; Jia, T.; Yu, Z. Effect of 3-Phenyllactic Acid and 3-Phenyllactic Acid-Producing Lactic Acid Bacteria on the Characteristics of Alfalfa Silage. Agriculture 2019, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Su, R.N.; Ni, K.K.; Wang, T.W.; Yang, X.P.; Zhang, J.; Liu, Y.Y.; Shi, W.X.; Yan, L.; Jie, C.; Zhong, J. Effects of ferulic acid esterase-producing Lactobacillus fermentum and cellulase additives on the fermentation quality and microbial community of alfalfa silage. PeerJ 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Dong, Z.; Li, J.; Shao, T. Ensiling characteristics, in vitro rumen fermentation, microbial communities and aerobic stability of low-dry matter silages produced with sweet sorghum and alfalfa mixtures. J. Sci. Food Agric. 2019, 99, 2140–2151. [Google Scholar] [CrossRef]
- Agarussi, M.C.N.; Pereira, O.G.; da Silva, V.P.; Leandro, E.S.; Ribeiro, K.G.; Santos, S.A. Fermentative profile and lactic acid bacterial dynamics in non-wilted and wilted alfalfa silage in tropical conditions. Mol. Biol. Rep. 2019, 46, 451–460. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, Z.; Wang, X.G.; Tian, J.P. Effects of inoculants and environmental temperature on fermentation quality and bacterial diversity of alfalfa silage. Anim. Sci. J. 2018, 89, 1085–1092. [Google Scholar] [CrossRef]
- Tao, X.X.; Chen, S.F.; Zhao, J.; Wang, S.R.; Dong, Z.H.; Li, J.F.; Sun, F.X.; Shao, T. Effects of citric acid residue and lactic acid bacteria on fermentation quality and aerobic stability of alfalfa silage. Ital. J. Anim. Sci. 2020, 19, 744–752. [Google Scholar] [CrossRef]
- Ke, W.C.; Ding, W.R.; Ding, L.M.; Xu, D.M.; Zhang, P.; Li, F.H.; Guo, X.S. Influences of malic acid isomers and their application levels on fermentation quality and biochemical characteristics of alfalfa silage. Anim. Feed Sci. Technol. 2018, 245, 1–9. [Google Scholar] [CrossRef]
- Ke, W.C.; Ding, W.R.; Xu, D.M.; Ding, L.M.; Zhang, R.; Li, F.D.; Guo, X.S. Effects of addition of malic or citric acids on fermentation quality and chemical characteristics of alfalfa silage. J. Dairy Sci. 2017, 100, 8958–8966. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.P.; Li, Z.Z.; Yu, Z.; Zhang, Q.; Li, X.J. Interactive effect of inoculant and dried jujube powder on the fermentation quality and nitrogen fraction of alfalfa silage. Anim. Sci. J. 2017, 88, 633–642. [Google Scholar] [CrossRef]
- Wang, B.; Mao, S.Y.; Yang, H.J.; Wu, Y.M.; Wang, J.K.; Li, S.L.; Shen, Z.M.; Liu, J.X. Effects of alfalfa and cereal straw as a forage source on nutrient digestibility and lactation performance in lactating dairy cows. J. Dairy Sci. 2015, 98, 719. [Google Scholar] [CrossRef]
- Liu, J.; Pu, Y.Y.; Xie, Q.; Wang, J.K.; Liu, J.X. Pectin Induces an in vitro Rumen Microbial Population Shift Attributed to the Pectinolytic Treponema Group. Curr. Microbiol. 2015, 70, 67–74. [Google Scholar] [CrossRef]
- Besharati, M.; Shafipour, N.; Abdi, E.; Nemati, Z. Effects of supplementation alfalfa silage with molasses, orange pulp and Lactobacillus buchneri on in vitro dry matter digestibility and gas production. J. Biosci. Biotechnol. 2017, 6, 43–47. [Google Scholar]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- He, L.; Zhou, W.; Wang, Y.; Wang, C.; Chen, X.; Zhang, Q. Effect of applying lactic acid bacteria and cellulase on the fermentation quality, nutritive value, tannins profile and in vitro digestibility of Neolamarckia cadamba leaves silage. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1429–1436. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Murphy, R.P. A method for the extraction of plant samples and the determination of total soluble carbohydrates. J. Sci. Food Agric. 2010, 9. [Google Scholar] [CrossRef]
- Kilic, A. Silo Feed (Instruction, Education and Application Proposals); Bilgehan Press: Izmir, Turkey, 1986. [Google Scholar]
- Jeranyama, P.; Garcia, A.D. Understanding Relative Feed Value (RFV) and Relative Forage Quality (RFQ); SDSU: Brookings, SD, USA, 2004. [Google Scholar]
- Guo, G.; Yuan, X.J.; Li, L.X.; Wen, A.Y.; Shao, T. Effects of fibrolytic enzymes, molasses and lactic acid bacteria on fermentation quality of mixed silage of corn and hulless-barely straw in the Tibetan Plateau. Grassl. Sci. 2014, 60, 240–246. [Google Scholar] [CrossRef]
- Chen, L.; Guo, G.; Yuan, X.; Zhang, J.; Li, J.; Shao, T. Effects of applying molasses, lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of total mixed ration silage prepared with oat-common vetch intercrop on the Tibetan Plateau. J. Sci. Food Agric. 2016, 96, 1678–1685. [Google Scholar] [CrossRef]
- Denek, N.; Can, A.; Avci, M.; Aksu, T.; Durmaz, H. The effect of molasses-based pre-fermented juice on the fermentation quality of first-cut lucerne silage. Grass Forage Sci. 2011, 66, 243–250. [Google Scholar] [CrossRef]
- Yuan, X.; Wen, A.; Wang, J.; Guo, G.; Desta, S.T.; Shao, T. Effects of ethanol, molasses and Lactobacillus plantarum on the fermentation quality, in vitro digestibility and aerobic stability of total mixed ration silages in the Tibetan plateau of China. Anim. Sci. J. 2016, 87, 681–689. [Google Scholar] [CrossRef]
- Hashemzadeh-Cigari, F.; Khorvash, M.; Ghorbani, G.R.; Taghizadeh, A. The effects of wilting, molasses and inoculants on the fermentation quality and nutritive value of lucerne silage. S. Afr. J. Anim. Sci. 2011, 41, 377–388. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Ji, S.R.; Hou, C.; Tang, H.Y.; Wang, Q.; Shen, Y.X. Effects of chemical additives on the fermentation quality and N distribution of alfalfa silage in south of China. Anim. Sci. J. 2016, 87, 1472–1479. [Google Scholar] [CrossRef]
- Wang, B.; Gao, R.; Wu, Z.; Yu, Z. Functional Analysis of Sugars in Modulating Bacterial Communities and Metabolomics Profiles of Medicago sativa Silage. Front. Microbiol. 2020, 11, 641. [Google Scholar] [CrossRef]
- Wang, B.; Sun, Z.Q.; Yu, Z. Pectin Degradation is an Important Determinant for Alfalfa Silage Fermentation through the Rescheduling of the Bacterial Community. Microorganisms 2020, 8, 488. [Google Scholar] [CrossRef] [Green Version]
Items | Ensiling Day | ||||
---|---|---|---|---|---|
1 | 3 | 7 | 15 | 30 | |
pH | 0.11 | <0.01 | <0.01 | <0.01 | <0.01 |
LA | <0.01 | 0.05 | 0.01 | <0.01 | 0.01 |
AA | 0.28 | 0.16 | 0.18 | 0.97 | 0.26 |
PA | <0.01 | <0.01 | <0.01 | 0.22 | 0.01 |
LA:AA ratio | <0.01 | 0.15 | 0.88 | 0.53 | <0.01 |
AN | 0.44 | <0.01 | 0.72 | <0.01 | <0.01 |
Fleig’s point | 0.11 | <0.01 | <0.01 | <0.01 | <0.01 |
Items 1 | Additives | Ensiling Days | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | 7 | 15 | 30 | A | D | A × D 2 | |||
LA (g/kg DM) | CON | 6.45 cB | 41.58 aAB | 24.66 bBC | 29.02 bC | 44.26 aC | 1.151 | <0.001 | <0.001 | <0.001 |
PEC | 6.93 dB | 32.49 cB | 35.24 bcA | 41.28 bA | 58.32 aA | |||||
STA | 24.37 cA | 45.19 aA | 23.00 cC | 32.50 bBC | 45.39 aC | |||||
MOL | 24.88 dA | 41.33 bAB | 29.32 cdAB | 36.81 cbAB | 50.35 aBC | |||||
FRU | 19.35 dA | 46.04 abA | 32.43 cA | 40.71 bA | 52.47 aAB | |||||
AA (g/kg DM) | CON | 4.17 b | 21.63 a | 12.58 ab | 14.02 a | 20.85 a | 0.706 | 0.607 | <0.001 | 0.033 |
PEC | 8.07 | 17.14 | 18.30 | 14.67 | 18.76 | |||||
STA | 7.58 c | 27.21 a | 12.02 c | 13.97 bc | 20.46 ab | |||||
MOL | 7.84 c | 17.99 ab | 16.18 ab | 15.47 b | 20.37 a | |||||
FRU | 5.28 b | 16.78 a | 18.18 a | 15.60 a | 15.88 a | |||||
PA (g/kg DM) | CON | 0.00 cB | 1.08 cB | 1.76 cC | 5.30 b | 12.70 aAB | 0.522 | <0.001 | <0.001 | 0.087 |
PEC | 0.00 cB | 0.36 cB | 3.70 bB | 4.98 b | 10.69 aBC | |||||
STA | 0.00 dB | 1.02 cdB | 2.73 cBC | 6.22 b | 12.75 aAB | |||||
MOL | 2.58 dA | 3.65 dA | 5.09 cA | 8.15 b | 14.95 aA | |||||
FRU | 0.00 dB | 0.00 dB | 2.27 cC | 5.61 b | 9.13 aC | |||||
LA:AA ratio | CON | 1.87 B | 1.98 | 2.06 | 2.21 | 2.15 B | 0.082 | <0.001 | <0.001 | <0.001 |
PEC | 0.97 cB | 1.91 b | 2.01 b | 2.90 a | 3.12 aA | |||||
STA | 3.25 aA | 1.74 b | 1.92 b | 2.42 b | 2.24 bB | |||||
MOL | 3.18 aA | 2.40 b | 1.81 b | 2.38 b | 2.50 abB | |||||
FRU | 3.67 aA | 2.79 b | 1.82 c | 2.68 b | 3.31 aA |
Items 1 | Additives | Ensiling Days | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 3 | 7 | 15 | 30 | A | D | A × D 2 | |||
DM(g/kg) | CON | 318.5 a | 308.0 bB | 304.5 cC | 303.8 cB | 301.9 cB | 303.5 cB | 0.849 | <0.001 | <0.001 | <0.001 |
PEC | 318.5 ab | 319.8 aA | 314.2 bcB | 315.5 abcA | 313.2 cA | 314.5 bcA | |||||
STA | 318.5 a | 318.3 aA | 303.9 bB | 311.2 aA | 312.3 bA | 314.7 abA | |||||
MOL | 318.5 ab | 320.5 aA | 315.5 bB | 316.0 abA | 314.1 bA | 314.0 bA | |||||
FRU | 318.5 bc | 320.6 bA | 338.9 aA | 316.3 cA | 315.0 cA | 317.0 bcA | |||||
CP(g/kg DM) | CON | 194.4 b | 193.6 b | 201.1 a | 205.2 aA | 201.2 aA | 196.3 b | 0.648 | <0.001 | <0.001 | 0.010 |
PEC | 194.4 ab | 191.0 b | 198.1 a | 198.0 aAB | 194.1 abBC | 196.4 a | |||||
STA | 194.4 b | 190.5 b | 200.6 a | 195.1 bB | 192.5 bC | 194.4 b | |||||
MOL | 194.4 | 190.7 | 198.9 | 199.6 AB | 196.6 B | 198.3 | |||||
FRU | 194.4 | 182.6 | 194.9 | 183.6 C | 191.8 C | 195.1 | |||||
NDF(g/kg DM) | CON | 377.8 ab | 386.4 a | 373.6 abA | 354.6 b | 381.8 ab | 389.3 a | 2.283 | 0.002 | <0.001 | 0.218 |
PEC | 377.8 | 364.6 | 348.6 B | 347.1 | 377.8 | 370.7 | |||||
STA | 377.8 a | 368.5 ab | 349.0 bB | 346.4 b | 368.0 ab | 391.3 a | |||||
MOL | 377.8 a | 355.0 bc | 355.8 bcB | 346.0 c | 370.8 ab | 364.8 abc | |||||
FRU | 377.8 a | 355.1 ab | 319.7 cC | 347.7 b | 375.0 a | 373.9 a | |||||
ADF(g/kg DM) | CON | 285.2 | 290.3 | 288.3 A | 277.7 | 282.2 | 292.1 | 1.614 | <0.001 | <0.001 | 0.002 |
PEC | 285.2 | 274.1 | 266.1 B | 269.8 | 280.8 | 278.5 | |||||
STA | 285.2 | 278.9 | 273.9 B | 263.5 | 276.3 | 288.3 | |||||
MOL | 285.2 | 270.3 | 277.5 AB | 270.2 | 277.3 | 277.9 | |||||
FRU | 285.2 a | 272.2 a | 229.8 bC | 267.5 a | 274.0 a | 284.5 a |
Items 1 | Ensiling Day | ||||
---|---|---|---|---|---|
1 | 3 | 7 | 15 | 30 | |
DM | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
CP | 0.08 | 0.33 | 0.01 | <0.01 | 0.18 |
NDF | 0.23 | <0.01 | 0.94 | 0.56 | 0.37 |
ADF | 0.29 | <0.01 | 0.69 | 0.69 | 0.43 |
WSC | <0.01 | <0.01 | <0.01 | 0.07 | <0.01 |
RFV | 0.26 | <0.01 | 0.90 | 0.69 | 0.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, R.; Wang, B.; Jia, T.; Luo, Y.; Yu, Z. Effects of Different Carbohydrate Sources on Alfalfa Silage Quality at Different Ensiling Days. Agriculture 2021, 11, 58. https://doi.org/10.3390/agriculture11010058
Gao R, Wang B, Jia T, Luo Y, Yu Z. Effects of Different Carbohydrate Sources on Alfalfa Silage Quality at Different Ensiling Days. Agriculture. 2021; 11(1):58. https://doi.org/10.3390/agriculture11010058
Chicago/Turabian StyleGao, Run, Bing Wang, Tingting Jia, Ying Luo, and Zhu Yu. 2021. "Effects of Different Carbohydrate Sources on Alfalfa Silage Quality at Different Ensiling Days" Agriculture 11, no. 1: 58. https://doi.org/10.3390/agriculture11010058
APA StyleGao, R., Wang, B., Jia, T., Luo, Y., & Yu, Z. (2021). Effects of Different Carbohydrate Sources on Alfalfa Silage Quality at Different Ensiling Days. Agriculture, 11(1), 58. https://doi.org/10.3390/agriculture11010058