Effect of Mixing Alfalfa with Whole-Plant Corn in Different Proportions on Fermentation Characteristics and Bacterial Community of Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Forages Harvesting and Ensiling
2.2. Silage Fermentation Profile and Chemical Determination
2.3. Silage Bacterial Diversity and Composition Analysis
2.4. Estimations
2.5. Statistical Analysis
3. Results
3.1. Chemical Composition of Alfalfa and Corn Prior to Ensiling
3.2. Fermentation Characteristics and Chemical Composition of Silage
3.3. Bacterial Diversity and Composition of Silage
4. Discussion
4.1. Chemical Composition of Alfalfa and Corn Prior to Ensiling
4.2. Fermentation Characteristics and Chemical Composition of Silage
4.3. Bacterial Diversity and Composition of Silage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wen, A.; Yuan, X.; Wang, J.; Desta, S.T.; Shao, T. Effects of four short-chain fatty acids or salts on dynamics of fermentation and microbial characteristics of alfalfa silage. Anim. Feed Sci. Technol. 2017, 223, 141–148. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, M.; Wang, X.; Yu, Z.; Na, R. Ensiling alfalfa with whole crop corn improves the silage quality and in vitro digestibility of the silage mixtures. Grassl. Sci. 2017, 63, 211–217. [Google Scholar] [CrossRef]
- Santos, M.C.; Kung, J. The effects of dry matter and length of storage on the composition and nutritive value of alfalfa silage. J. Dairy Sci. 2016, 99, 5466–5469. [Google Scholar] [CrossRef] [Green Version]
- McDonald, P.; Henderson, N.; Heron, S. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Kingston, UK, 1991. [Google Scholar]
- Wang, M.; Wang, L.; Yu, Z. Fermentation dynamics and bacterial diversity of mixed lucerne and sweet corn stalk silage ensiled at six ratios. Grass Forage Sci. 2019, 74, 264–273. [Google Scholar] [CrossRef]
- Wang, M.; Yu, Z.; Wu, Z.; Hannaway, D.B. Effect of Lactobacillus plantarum ‘KR107070’ and a propionic acid-based preservative on the fermentation characteristics, nutritive value and aerobic stability of alfalfa-corn mixed silage ensiled with four ratios. Grassl. Sci. 2018, 64, 51–60. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Jiang, Y.; Pech Cervantes, A.A.; Kim, D.H.; Oliveira, A.S.; Vyas, D.; Weinberg, Z.G.; Jeong, K.C.; Adesogan, A.T. Bacterial diversity and composition of alfalfa silage as analyzed by Illumina MiSeq sequencing: Effects of Escherichia coli O157:H7 and silage additives. J. Dairy Sci. 2018, 101, 2048–2059. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yu, Z.; Wang, X.; Tian, J. Effects of inoculants and environmental temperature on fermentation quality and bacterial diversity of alfalfa silage. Anim. Sci. J. 2018, 89, 1085–1092. [Google Scholar] [CrossRef]
- Chen, L.; Dong, Z.; Li, J.; Shao, T. Ensiling characteristics, in vitro rumen fermentation, microbial communities and aerobic stability of low-dry matter silages produced with sweet sorghum and alfalfa mixtures. J. Sci. Food Agric. 2019, 99, 2140–2151. [Google Scholar] [CrossRef]
- Ozturk, D.; Kizilsimsek, M.; Kamalak, A.; Canbolat, O.; Ozkan, C.O. Effects of ensiling alfalfa with whole-crop maize on the chemical composition and nutritive value of silage mixtures. Asian-Australas. J. Anim. Sci. 2006, 19, 526–532. [Google Scholar] [CrossRef]
- McCabe, M.S.; Cormican, P.; Keogh, K.; O’Connor, A.; O’Hara, E.; Palladino, R.A.; Kenny, D.A.; Waters, S.M. Illumina MiSeq phylogenetic amplicon sequencing shows a large reduction of an uncharacterised Succinivibrionaceae and an increase of the Methanobrevibacter gottschalkii clade in feed restricted cattle. PLoS ONE 2015, 10, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zhang, Q.; Liu, Z.; Yu, Z.; Nishino, N. Bacterial communities in alfalfa and corn silages produced in large-scale stack and bunker silos in China. Grassl. Sci. 2014, 60, 247–251. [Google Scholar] [CrossRef]
- Rossi, F.; Dellaglio, F. Quality of silages from Italian farms as attested by number and identity of microbial indicators. J. Appl. Microbiol. 2007, 103, 1707–1715. [Google Scholar] [CrossRef]
- McEniry, J.; O’Kiely, P.; Clipson, N.J.W.; Forristal, P.D.; Doyle, E.M. Bacterial community dynamics during the ensilage of wilted grass. J. Appl. Microbiol. 2008, 105, 359–371. [Google Scholar] [CrossRef]
- McGarvey, J.A.; Franco, R.B.; Palumbo, J.D.; Hnasko, R.; Stanker, L.; Mitloehner, F.M. Bacterial population dynamics during the ensiling of Medicago sativa (alfalfa) and subsequent exposure to air. J. Appl. Microbiol. 2013, 114, 1661–1670. [Google Scholar] [CrossRef]
- Gharechahi, J.; Kharazian, Z.A.; Sarikhan, S.; Jouzani, G.S.; Aghdasi, M.; Salekdeh, G.H. The dynamics of the bacterial communities developed in maize silage. Microb. Biotechnol. 2017, 10, 1663–1676. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W.; AOAC International. Official Methods of Analysis AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Murphy, R.P. A method for the extraction of plant samples and the determination of total soluble carbohydrates. J. Sci. Food Agric. 1958, 9, 714–717. [Google Scholar] [CrossRef]
- Knicky, M.; Spörndly, R. The ensiling capability of a mixture of sodium benzoate, potassium sorbate, and sodium nitrite. J. Dairy Sci. 2011, 94, 824–831. [Google Scholar] [CrossRef] [Green Version]
- Woolford, M.K. The Silage Fermentation; Marcel Dekker, Inc.: New York, NY, USA, 1984. [Google Scholar]
- Kung, L.; Robinson, J.R.; Ranjit, N.K.; Chen, J.H.; Golt, C.M.; Pesek, J.D. Microbial populations, fermentation end-products, and aerobic stability of corn silage treated with ammonia or a propionic acid-based preservative. J. Dairy Sci. 2000, 83, 1479–1486. [Google Scholar] [CrossRef]
- Flythe, M.D.; Russell, J.B. The effect of pH and a bacteriocin (bovicin HC5) on Clostridium sporogenes MD1, a bacterium that has the ability to degrade amino acids in ensiled plant materials. FEMS Microbiol. Ecol. 2004, 47, 215–222. [Google Scholar] [CrossRef]
- Liu, Q.; Shao, T.; Zhang, J. Determination of aerobic deterioration of corn stalk silage caused by aerobic bacteria. Anim. Feed Sci. Technol. 2013, 183, 124–131. [Google Scholar] [CrossRef]
- Cai, Y.; Benno, Y.; Ogawa, M.; Ohmomo, S.; Kumai, S.; Nakase, T. Influence of Lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. from forage crops on silage fermentation. Appl. Environ. Microb. 1998, 64, 2982–2987. [Google Scholar] [CrossRef] [Green Version]
- Ni, K.; Zhao, J.; Zhu, B.; Su, R.; Pan, Y.; Ma, J.; Zhou, G.; Tao, Y.; Liu, X.; Zhong, J. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresour. Technol. 2018, 265, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Muck, R.E. Recent advances in silage microbiology. Agric. Food Sci. 2013, 22, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Spoelstra, S.F. Degradation of nitrate by enterobacteria during silage fermentation of grass. Neth. J. Agric. Sci. 1987, 35, 43–54. [Google Scholar] [CrossRef]
- Dellaglio, F.; Torriani, S. DNA-DNA homology, physiological characteristics and distribution of lactic acid bacteria isolated from maize silage. J. Appl. Bacteriol. 1986, 60, 83–92. [Google Scholar] [CrossRef]
- Graf, K.; Ulrich, A.; Idler, C.; Klocke, M. Bacterial community dynamics during ensiling of perennial ryegrass at two compaction levels monitored by terminal restriction fragment length polymorphism. J. Appl. Microbiol. 2016, 120, 1479–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
g/kg DM | ||||||||
---|---|---|---|---|---|---|---|---|
Item | DM (g/kg FW) | WSC | NDF | ADF | Hemicellulose | CP | BC (mEq g/kg DM) | FC |
Alfalfa | 276.47 | 31.68 | 473.87 | 313.69 | 160.18 | 210.30 | 39.97 | 33.99 |
Corn | 328.43 | 125.50 | 449.46 | 228.84 | 220.62 | 99.15 | 20.22 | 82.49 |
Treatment 2,3 | p-Value 5 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Item 1 | C0 | C20 | C40 | C60 | C80 | C100 | SEM 4 | Linear | Quadratic | Cubic |
pH | 5.56 a | 4.78 b | 4.16 c | 3.93 d | 3.81 e | 3.65 f | 0.01 | <0.01 | <0.01 | <0.01 |
Lactic acid (g/kg DM) | 30.77 d | 74.54 c | 90.00 ab | 87.13 b | 92.04 a | 94.14 a | 0.95 | <0.01 | <0.01 | <0.01 |
Acetic acid (g/kg DM) | 37.29 a | 34.66 b | 27.27 c | 19.75 d | 15.76 e | 14.01 f | 0.52 | <0.01 | <0.01 | <0.01 |
Lactic acid to acetic acid ratio | 0.83 f | 2.15 e | 3.30 d | 4.42 c | 5.84 b | 6.72 a | 0.08 | <0.01 | 0.12 | 0.43 |
Propionic acid (g/kg DM) | 6.01 a | 3.27 c | 3.36 c | 3.52 c | 3.62 c | 4.72 b | 0.22 | 0.03 | <0.01 | 0.01 |
Butyric acid (g/kg DM) | 3.11 a | 2.11 b | 0.00 c | 0.00 c | 0.00 c | 0.00 c | 0.07 | <0.01 | <0.01 | 0.42 |
NH3-N (g/kg TN) | 196.89 a | 156.44 b | 95.05 c | 59.07 d | 42.09 e | 27.72 f | 1.88 | <0.01 | <0.01 | <0.01 |
Flieg score | 25 e | 61 d | 95 c | 98 b | 100 a | 100 a | 0.48 | <0.01 | <0.01 | <0.01 |
DM (g/kg FW) | 268.86 f | 283.97 e | 306.49 d | 322.46 c | 338.31 b | 347.58 a | 1.61 | <0.01 | <0.01 | 0.04 |
WSC (g/kg DM) | 7.68 f | 12.53 e | 23.35 d | 37.85 c | 46.62 b | 64.83 a | 0.67 | <0.01 | <0.01 | 0.25 |
CP (g/kg DM) | 183.90 a | 173.71 b | 159.36 c | 135.24 d | 109.40 e | 85.09 f | 1.49 | <0.01 | <0.01 | 0.36 |
Treatment 2,3 | p-Value 5 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Item 1 | C0 | C20 | C40 | C60 | C80 | C100 | SEM4 | Linear | Quadratic | Cubic |
Reads | 50,226 ab | 60,139 a | 53,456 a | 53,651 a | 40,260 bc | 36,385 c | 3393.70 | <0.01 | 0.01 | 0.16 |
Length | 445 b | 445 c | 443 c | 444 bc | 444 bc | 446 a | 0.37 | 0.01 | <0.01 | 0.63 |
Chao | 163 c | 171 c | 226 b | 238 ab | 259 a | 256 a | 8.15 | <0.01 | 0.03 | 0.10 |
Shannon | 2.45 d | 2.72 c | 2.94 b | 3.19 a | 3.31 a | 2.93 b | 0.04 | <0.01 | <0.01 | <0.01 |
Simpson | 0.18 a | 0.11 b | 0.10 bc | 0.08 cd | 0.07 d | 0.11 b | 0.01 | <0.01 | <0.01 | 0.59 |
OTU number | 134 e | 149 d | 181 c | 213 b | 222 b | 237 a | 3.66 | <0.01 | 0.02 | 0.03 |
Coverage (%) | 99.93 | 99.95 | 99.92 | 99.93 | 99.89 | 99.91 | 0.01 | <0.01 | 0.90 | 0.07 |
Treatment 1,2 | p-Value 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Item | C0 | C20 | C40 | C60 | C80 | C100 | SEM 3 | Linear | Quadratic | Cubic |
Actinobacteria | 2.35 c | 2.28 c | 7.92 a | 7.15 a | 7.04 a | 3.40 b | 0.34 | <0.01 | <0.01 | <0.01 |
Bacteroidetes | 0.09 c | 0.21 c | 0.44 c | 1.13 b | 1.89 a | 1.43 ab | 0.21 | <0.01 | 0.68 | 0.02 |
Firmicutes | 55.65 b | 43.53 c | 42.49 c | 37.44 c | 39.92 c | 72.83 a | 1.63 | <0.01 | <0.01 | <0.01 |
Proteobacteria | 41.89 b | 53.91 a | 49.04 a | 54.09 a | 50.95 a | 21.76 c | 1.69 | <0.01 | <0.01 | <0.01 |
Treatment 1,2 | p-Value 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Item | C0 | C20 | C40 | C60 | C80 | C100 | SEM 3 | Linear | Quadratic | Cubic |
Microbacteriaceae | 1.50 c | 1.98 c | 7.13 a | 6.19 b | 5.90 b | 1.97 c | 0.28 | < 0.01 | < 0.01 | < 0.01 |
Bacillaceae | 0.24 c | 0.23 c | 0.78 bc | 1.29 ab | 1.81 a | 0.29 c | 0.23 | 0.02 | <0.01 | <0.01 |
Enterococcaceae | 38.86 a | 15.15 b | 5.40 c | 2.61 d | 1.12 d | 0.50 d | 0.87 | <0.01 | <0.01 | <0.01 |
Lactobacillaceae | 8.24 c | 20.99 b | 27.92 ab | 26.31 ab | 25.68 ab | 33.46 a | 2.23 | <0.01 | 0.02 | <0.01 |
Lachnospiraceae | 0.00 b | 0.00 b | 0.03 b | 0.10 b | 0.54 b | 4.64 a | 0.24 | <0.01 | <0.01 | <0.01 |
Leuconostocaceae | 5.32 c | 5.04 c | 7.03 bc | 5.94 c | 9.62 b | 25.06 a | 0.93 | <0.01 | <0.01 | <0.01 |
Paenibacillaceae | 0.01 b | 0.06 b | 0.07 b | 0.54 b | 0.81 b | 7.94 a | 0.61 | <0.01 | <0.01 | <0.01 |
Aurantimonadaceae | 2.55 d | 7.23 ab | 8.34 a | 6.11 bc | 4.91 c | 0.82 d | 0.57 | <0.01 | <0.01 | 0.06 |
Enterobacteriaceae | 23.16 c | 30.71 a | 27.29 ab | 26.24 bc | 22.95 c | 12.68 d | 1.16 | <0.01 | <0.01 | 0.71 |
Methylobacteriaceae | 5.58 a | 3.85 b | 2.32 c | 2.37 c | 2.33 c | 1.04 d | 0.22 | <0.01 | <0.01 | <0.01 |
Moraxellaceae | 0.02 c | 0.02 c | 0.46 bc | 1.53 a | 2.06 a | 0.82 b | 0.18 | <0.01 | <0.01 | <0.01 |
Pseudomonadaceae | 0.02 b | 0.01 b | 0.25 b | 3.20 a | 4.17 a | 0.25 b | 0.35 | <0.01 | <0.01 | <0.01 |
Rhizobiaceae | 8.46 a | 8.37 a | 4.35 b | 3.82 b | 3.31 b | 0.81 c | 0.45 | <0.01 | 0.64 | 0.91 |
Rhodobacteraceae | 0.64 c | 1.43 b | 2.56 a | 2.43 a | 1.82 b | 0.09 d | 0.14 | 0.18 | <0.01 | 0.03 |
Sphingomonadaceae | 0.37 d | 0.84 c | 1.12 c | 1.65 b | 2.23 a | 0.98 c | 0.08 | <0.01 | <0.01 | <0.01 |
Xanthomonadaceae | 0.30 c | 0.35 c | 1.58 b | 5.44 a | 5.44 a | 0.66 c | 0.18 | <0.01 | <0.01 | <0.01 |
Treatment 1,2 | p-Value 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Item | C0 | C20 | C40 | C60 | C80 | C100 | SEM 3 | Linear | Quadratic | Cubic |
Curtobacterium | 0.36 c | 0.59 c | 1.98 a | 1.89 ab | 1.69 b | 0.47 c | 0.08 | <0.01 | <0.01 | <0.01 |
Bacillus | 0.23 c | 0.22 c | 0.74 bc | 1.23 ab | 1.77 a | 0.28 c | 0.23 | 0.02 | <0.01 | <0.01 |
Enterococcus | 38.86 a | 15.15 b | 5.40 c | 2.61 d | 1.12 d | 0.50 d | 0.87 | <0.01 | <0.01 | <0.01 |
Lactobacillus | 8.15 c | 20.94 b | 27.87 ab | 26.23 ab | 25.65 ab | 33.45 a | 2.29 | <0.01 | 0.03 | <0.01 |
Leuconostoc | 0.08 d | 0.15 d | 0.78 d | 1.97 c | 4.86 b | 13.73 a | 0.38 | <0.01 | <0.01 | <0.01 |
Paenibacillus | 0.00 b | 0.06 b | 0.07 b | 0.54 b | 0.80 b | 7.84 a | 0.62 | <0.01 | <0.01 | <0.01 |
Weissella | 5.24 bc | 4.89 bc | 6.26 b | 3.98 c | 4.77 bc | 11.34 a | 0.71 | <0.01 | <0.01 | <0.01 |
Acinetobacter | 0.02 c | 0.02 c | 0.46 bc | 1.53 a | 2.06 a | 0.82 b | 0.18 | <0.01 | <0.01 | <0.01 |
Aureimonas | 2.55 d | 7.23 ab | 8.34 a | 6.11 bc | 4.91 c | 0.82 d | 0.57 | <0.01 | <0.01 | 0.06 |
Enterobacter | 20.61 b | 24.88 a | 19.52 b | 19.18 b | 17.41 b | 11.51 c | 1.04 | <0.01 | <0.01 | 0.57 |
Methylobacterium | 5.54 a | 3.81 b | 2.31 c | 2.36 c | 2.31 c | 1.02 d | 0.22 | <0.01 | <0.01 | <0.01 |
Pantoea | 1.48 d | 4.39 c | 6.58 a | 5.53 b | 3.97 c | 0.47 e | 0.28 | 0.01 | <0.01 | 0.58 |
Pseudomonas | 0.02 b | 0.01 b | 0.25 b | 3.20 a | 4.17 a | 0.25 b | 0.35 | <0.01 | <0.01 | <0.01 |
Rhizobium | 8.45 a | 8.36 a | 4.34 b | 3.81 b | 3.26 b | 0.69 c | 0.45 | <0.01 | 0.72 | 0.87 |
Sphingomonas | 0.31 d | 0.72 c | 0.99 c | 1.42 b | 1.90 a | 0.86 c | 0.08 | <0.01 | <0.01 | <0.01 |
Stenotrophomonas | 0.30 c | 0.34 c | 1.56 b | 5.32 a | 5.24 a | 0.54 c | 0.17 | <0.01 | <0.01 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Gao, R.; Franco, M.; Hannaway, D.B.; Ke, W.; Ding, Z.; Yu, Z.; Guo, X. Effect of Mixing Alfalfa with Whole-Plant Corn in Different Proportions on Fermentation Characteristics and Bacterial Community of Silage. Agriculture 2021, 11, 174. https://doi.org/10.3390/agriculture11020174
Wang M, Gao R, Franco M, Hannaway DB, Ke W, Ding Z, Yu Z, Guo X. Effect of Mixing Alfalfa with Whole-Plant Corn in Different Proportions on Fermentation Characteristics and Bacterial Community of Silage. Agriculture. 2021; 11(2):174. https://doi.org/10.3390/agriculture11020174
Chicago/Turabian StyleWang, Musen, Run Gao, Marcia Franco, David B. Hannaway, Wencan Ke, Zitong Ding, Zhu Yu, and Xusheng Guo. 2021. "Effect of Mixing Alfalfa with Whole-Plant Corn in Different Proportions on Fermentation Characteristics and Bacterial Community of Silage" Agriculture 11, no. 2: 174. https://doi.org/10.3390/agriculture11020174
APA StyleWang, M., Gao, R., Franco, M., Hannaway, D. B., Ke, W., Ding, Z., Yu, Z., & Guo, X. (2021). Effect of Mixing Alfalfa with Whole-Plant Corn in Different Proportions on Fermentation Characteristics and Bacterial Community of Silage. Agriculture, 11(2), 174. https://doi.org/10.3390/agriculture11020174