The Application of Machine Learning for Cultivar Discrimination of Sweet Cherry Endocarp
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Image Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naderiboldaji, M.; Khadivi khub, A.; Tabatabaeefar, A.; Ghasemi Varnamkhasti, M.; Zamani, Z. Some Physical Properties of Sweet Cherry (Prunus avium L.) Fruit. Am. Eurasian J. Agric. Environ. Sci. 2008, 3, 513–520. [Google Scholar]
- Zhang, X.; Zhang, L.; Zhang, Q.; Xu, J.; Liu, W.; Dong, W. Comparative transcriptome profiling and morphology provide insights into endocarp cleaving of apricot cultivar (Prunus armeniaca L.). BMC Plant Biol. 2017, 17, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Straccia, M.C.; Siano, F.; Coppola, R.; La Cara, F.; Volpe, M.G. Extraction and Characterization of Vegetable Oils from Cherry Seed by Different Extraction Processes. Chem. Eng. Trans. 2012, 27, 391–396. [Google Scholar]
- Senica, M.; Stampar, F.; Veberic, R.; Mikulic-Petkovsek, M. Transition of phenolics and cyanogenic glycosides from apricot and cherry fruit kernels into liqueur. Food Chem. 2016, 203, 483–490. [Google Scholar] [CrossRef]
- Doğantürk, M.; Canbay, H.S. Oil ratio and fatty acıd composition of cherry seed oil. Turk. J. Health Sci. Life 2019, 2, 21–24. [Google Scholar]
- Demirbas, A. Biodiesel from kernel oil of sweet cherry (Prunus avium L.) seed. Energy Source. Part A 2016, 38, 2503–2509. [Google Scholar] [CrossRef]
- Aqil, Y.; Ouassor, I.; Belmaghraoui, W.; El Hajjaji, S. Prunus avium kernel oil characterization: A comparative study of four varieties from Sefrou, Morocco. OCL 2020, 27, 1–5. [Google Scholar] [CrossRef]
- Radenkovs, V.; Feldmane, D. Profile of lipophilic antioxidants in the by-products recovered from six cultivars of sour cherry (Prunus cerasus L.). Nat. Prod. Res. 2017, 31, 2549–2553. [Google Scholar] [CrossRef]
- Depypere, L.; Chaerle, P.; Mijnsbrugge, K.V.; Goetghebeur, P. Stony endocarp dimension and shape variation in Prunus section Prunus. Ann. Bot. 2007, 100, 1585–1597. [Google Scholar] [CrossRef]
- Frigau, L.; Antoch, J.; Bacchetta, G.; Sarigu, M.; Ucchesu, M.; Alves, C.h.Z.; Mola, F. A Statistical Approach to the Morphological Classification of Prunus sp. Seeds. Plant Biosyst. 2019. [Google Scholar] [CrossRef]
- Abdullah, M.Z. Image Acquisition Systems. In Computer Vision Technology for Food Quality Evaluation, 2nd ed.; Sun, D.-W., Ed.; Academic Press/Elsevier Inc.: San Diego, CA, USA, 2016; pp. 3–43. [Google Scholar]
- Ropelewska, E. Evaluation of wheat kernels infected by fungi of the genus Fusarium based on morphological features. J. Food Saf. 2019, 39, e12623. [Google Scholar] [CrossRef]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda—A software package for image texture analysis. Comput. Meth. Prog. Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Fernández, L.; Castillero, C.; Aguilera, J.M. An application of image analysis to dehydration of apple discs. J. Food Eng. 2005, 67, 185–193. [Google Scholar] [CrossRef]
- Armi, L.; Fekri-Ershad, S. Texture image analysis and texture classification methods—A review. Int. Online J. Image Process. Pattern Recogn. 2019, 2, 1–29. [Google Scholar]
- Ibraheem, N.A.; Hasan, M.M.; Khan, R.Z.; Mishra, P.K. Understanding Color Models: A Review. ARPN J. Sci. Technol. 2012, 2, 265–275. [Google Scholar]
- Zapotoczny, P. Discrimination of wheat grain varieties using image analysis: Morphological features. Eur. Food Res. Technol. 2011, 233, 769–779. [Google Scholar] [CrossRef] [Green Version]
- Bouckaert, R.R.; Frank, E.; Hall, M.; Kirkby, R.; Reutemann, P.; Seewald, A.; Scuse, D. WEKA Manual for Version 3-9-1; University of Waikato: Hamilton, New Zealand, 2016. [Google Scholar]
- Witten, I.H.; Frank, E. Data mining. In Practical Machine Learning Tools and Techniques, 2nd ed.; Elsevier: San Francisco, CA, USA, 2005. [Google Scholar]
- Sarigu, M.; Grillo, O.; Lo Bianco, M.; Ucchesu, M.; d’Hallewin, G.; Loi, M.C.; Venora, G.; Bacchetta, G. Phenotypic identification of plum varieties (Prunus domestica L.) by endocarps morpho-colorimetric and textural descriptors. Comput. Electron. Agric. 2017, 136, 25–30. [Google Scholar] [CrossRef]
- Beyaz, A.; Öztürk, R. Identification of olive cultivars using image processing techniques. Turk. J. Agric. For. 2016, 40, 671–683. [Google Scholar] [CrossRef]
- Milatović; D; Đurović; D; Milivojević; J Stone and kernel characteristics as elements in identification of apricot cultivars. Voćarstvo 2006, 40, 311–319.
- Kim, S.H.; Nam, J.I.; Kim, C.W. Analysis of Qualitative and Quantitative Traits to Identify Different Chinese Jujube Cultivars. Plant Breed. Biotechnol. 2019, 7, 175–185. [Google Scholar] [CrossRef]
- Zheng, Y.; Crawford, G.W.; Chen, X. Archaeological evidence for peach (Prunus persica) cultivation and domestication in China. PLoS ONE 2014, 9, e106595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afonso, S.; Oliveira, I.V.; Meyer, A.S.; Aires, A.; Saavedra, M.J.; Gonçalves, B. Phenolic Profile and Bioactive Potential of Stems and Seed Kernels of Sweet Cherry Fruit. Antioxidants 2020, 9, 1295. [Google Scholar] [CrossRef] [PubMed]
- Ropelewska, E. Classification of the pits of different sour cherry cultivars based on the surface textural features. J. Saudi Soc. Agric. Sci. 2020. [Google Scholar] [CrossRef]
Parameters | ||
---|---|---|
Linear Dimensions | Shape Factors | Moments of Inertia |
L-length | SigR-standard deviation of all radii | M2x-horizontal second order moment of inertia |
S-width | RH-Haralick ratio | M2y-vertical second order moment of inertia |
Lsz-length of the skeletonized object | RB-Blair—Bliss ratio | M2xy-second order moment of inertia |
FE-area of circumscribing ellipse on the object | RM-Malinowska ratio | |
LmaxE-maximal length of the ellipse axis on the object | RF-Feret ratio (Fh/Fv) | |
LminE-minimal length of the ellipse axis on the object | RFf-Feret ratio (Fmax/Fmin) | |
Fd2-area of circumscribing circle | Rc-circularity (Rc1/Rc2) | |
D2-radius of circumscribing circle | Rc1-circularity (2√(F/π)) | |
Ul-profile specific perimeter | Rc2-circularity (Ug/π) | |
Mmax-Martin’s maximal radius | W1-elliptic shape factor | |
Mmin-Martin’s minimal radius | W2-circular shape factor | |
Fv-vertical Feret diameter | W3-circularity | |
Uw-convex perimeter | W4-folding factor | |
Ug-object boundary specific perimeter | W5b-mean thickness factor | |
Spol-equivalent circular area diameter | W7-elongation and irregularity ratio | |
SxL-area of circumscribing rectangle (length x width) | W8-rectangular aspect ratio | |
S2-minimal width | W9-area ratio | |
Ft-total object specific area | W10-radius ratio | |
Fh-horizontal Feret diameter | W11-diameter range | |
Fmax-maximal Feret diameter | W12-roundness ((4π F)/(π Smax2))) | |
Fmin-minimal Feret diameter | W13-roundness (Smax/F) | |
W14-roundness (F/Smax3) | ||
W15-roundness (4F/(π Smin Smax)) |
Classifier | Accuracy (%) | |||
---|---|---|---|---|
‘Kordia’ vs. ‘Lapins’ | ‘Kordia’ vs. ‘Büttner’s Red’ | ‘Lapins’ vs. ‘Büttner’s Red’ | ‘Kordia’ vs. ‘Lapins’ vs. ‘Büttner’s Red’ | |
bayes.BayesNet | 100 | 100 | 90 | 92 |
functions.Logistic | 100 | 100 | 92 | 94 |
meta.Multi Class Classifier | 100 | 100 | 92 | 94 |
rules.PART | 100 | 100 | 87 | 93 |
trees.LMT | 100 | 100 | 93 | 95 |
Classifier | Accuracy (%) | |||
---|---|---|---|---|
‘Kordia’ vs. ‘Lapins’ | ‘Kordia’ vs. ‘Büttner’s Red’ | ‘Lapins’ vs. ‘Büttner’s Red’ | ‘Kordia’ vs. ‘Lapins’ vs. ‘Büttner’s Red’ | |
RGB color space | ||||
bayes.BayesNet | 100 | 100 | 87 | 90 |
functions.Logistic | 100 | 100 | 91 | 94 |
meta.Multi Class Classifier | 100 | 100 | 91 | 94 |
rules.PART | 100 | 100 | 86 | 91 |
trees.LMT | 100 | 100 | 89 | 94 |
Lab color space | ||||
bayes.BayesNet | 100 | 100 | 87 | 91 |
functions.Logistic | 100 | 100 | 90 | 94 |
meta.Multi Class Classifier | 100 | 100 | 90 | 94 |
rules.PART | 100 | 100 | 90 | 92 |
trees.LMT | 100 | 100 | 92 | 94 |
XYZ color space | ||||
bayes.BayesNet | 100 | 100 | 83 | 90 |
functions.Logistic | 100 | 100 | 89 | 90 |
meta.Multi Class Classifier | 100 | 100 | 92 | 92 |
rules.PART | 100 | 100 | 84 | 89 |
trees.LMT | 100 | 100 | 87 | 92 |
Classifier | Accuracy (%) | |||
---|---|---|---|---|
‘Kordia’ vs. ‘Lapins’ | ‘Kordia’ vs. ‘Büttner’s Red’ | ‘Lapins’ vs. ‘Büttner’s Red’ | ‘Kordia’ vs. ‘Lapins’ vs. ‘Büttner’s Red’ | |
Color channel R | ||||
meta.Multi Class Classifier | 100 | 100 | 81 | 88 |
Color channel G | ||||
meta.Multi Class Classifier | 100 | 100 | 84 | 90 |
Color channel B | ||||
meta.Multi Class Classifier | 100 | 100 | 82 | 86 |
Color channel L | ||||
trees.LMT | 100 | 100 | 84 | 89 |
Color channel a | ||||
trees.LMT | 100 | 100 | 83 | 89 |
Color channel b | ||||
trees.LMT | 100 | 100 | 83 | 88 |
Color channel X | ||||
meta.Multi Class Classifier | 100 | 100 | 83 | 88 |
Color channel Y | ||||
meta.Multi Class Classifier | 100 | 100 | 83 | 89 |
Color channel Z | ||||
meta.Multi Class Classifier | 100 | 100 | 82 | 87 |
Classifier | Accuracy (%) | |||
---|---|---|---|---|
‘Kordia’ vs. ‘Lapins’ | ‘Kordia’ vs. ‘Büttner’s Red’ | ‘Lapins’ vs. ‘Büttner’s Red’ | ‘Kordia’ vs. ‘Lapins’ vs. ‘Büttner’s Red’ | |
bayes.BayesNet | 99 | 95 | 87 | 87 |
functions.Logistic | 98 | 95 | 94 | 92 |
meta.Multi Class Classifier | 98 | 95 | 94 | 92 |
rules.PART | 98 | 93 | 89 | 87 |
trees.LMT | 99 | 94 | 94 | 93 |
Classifier | Accuracy (%) | |||
---|---|---|---|---|
‘Kordia’ vs. ‘Lapins’ | ‘Kordia’ vs. ‘Büttner’s Red’ | ‘Lapins’ vs. ‘Büttner’s Red’ | ‘Kordia’ vs. ‘Lapins’ vs. ‘Büttner’s Red’ | |
bayes.BayesNet | 100 | 100 | 95 | 96 |
functions.Logistic | 100 | 100 | 95 | 98 |
meta.Multi Class Classifier | 100 | 100 | 95 | 97 |
rules.PART | 100 | 100 | 91 | 94 |
trees.LMT | 100 | 100 | 96 | 97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ropelewska, E. The Application of Machine Learning for Cultivar Discrimination of Sweet Cherry Endocarp. Agriculture 2021, 11, 6. https://doi.org/10.3390/agriculture11010006
Ropelewska E. The Application of Machine Learning for Cultivar Discrimination of Sweet Cherry Endocarp. Agriculture. 2021; 11(1):6. https://doi.org/10.3390/agriculture11010006
Chicago/Turabian StyleRopelewska, Ewa. 2021. "The Application of Machine Learning for Cultivar Discrimination of Sweet Cherry Endocarp" Agriculture 11, no. 1: 6. https://doi.org/10.3390/agriculture11010006
APA StyleRopelewska, E. (2021). The Application of Machine Learning for Cultivar Discrimination of Sweet Cherry Endocarp. Agriculture, 11(1), 6. https://doi.org/10.3390/agriculture11010006