Mortierella Species as the Plant Growth-Promoting Fungi Present in the Agricultural Soils
Abstract
:1. Introduction
2. From the Pioneering Microorganisms to the Important Agricultural Inoculants
2.1. Isolation and Identification of Mortierella spp. from the Soils of the World
2.2. Mortierella Features Useful for Agricultural Inoculation
3. Plant Growth-Promoting Abilities of Mortierella Species
3.1. Mortierella Fungi—Effective in Increasing Bioavailable Forms of P in Agricultural Soils
3.2. Siderophore Producing Mortierella Species—Efficient in the Increase of Fe Bioavailability
3.3. Production of Phytoregulators by PGP-Mortierella Fungi
4. Endophytic Mortierella Strains
5. Contribution of the Mortierella Species in the Healthy Condition of Plants and Soils
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABA | abscisic acid |
ACC | 1-aminocyclopropane-1-carboxylate |
AMF | arbuscular mycorrhizal fungi |
CAS | chrome azurol S |
DW | dry weight |
GA | gibberellic acid |
IAA | indole-3-acetic acid |
JA | jasmonate acid |
PGP | plant growth-promoting |
PGPB | plant growth-promoting bacteria |
PGPR | plant growth-promoting rhizobacteria |
PGPF | plant growth-promoting fungi |
PGPM | plant growth-promoting microorganisms |
PSF | phosphate solubilizing fungi |
PSM | phosphate solubilizing microorganisms |
PUFAs | polyunsaturated fatty acids |
TCP | tricalcium phosphate |
Trp | L-tryptophane |
References
- Berg, G.; Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 2009, 68, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.L.; Mortimer, P.E.; Ferry Slik, J.W.; Zou, X.-M.; Xu, J.; Feng, W.-T.; Qiao, L. Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Divers 2014, 64, 305–315. [Google Scholar] [CrossRef]
- Malusá, E.; Sas-Paszt, L.; Ciesielska, J. Technologies for beneficial microorganisms inocula used as biofertilizers. Sci. World J. 2012, 2012, 491206. [Google Scholar] [CrossRef] [PubMed]
- Held, B.W.; Salomon, C.E.; Blanchette, R.A. Diverse subterranean fungi of an underground iron ore mine. PLoS ONE 2020, 15, e0234208. [Google Scholar] [CrossRef] [PubMed]
- Martino, E.; Prandi, L.; Fenoglio, I.; Bonfante, P.; Perotto, S.; Fubini, B. Soil fungal hyphae bind and attack asbestos fibers. Angew. Chem. Int. Ed. 2003, 42, 219–222. [Google Scholar] [CrossRef]
- Matei, G.; Matei, S.; Mocanu, V. Assessing the role of soil microbial communities of natural forest ecosystem. EuroBiotech J. 2020, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.T.; Park, S.W.; Pangging, M.; Lee, H.B. Molecular and morphological confirmation of three undescribed species of Mortierella from Korea. Mycobiology 2019, 47, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Ozimek, E.; Jaroszuk-Ściseł, J.; Bohacz, J.; Korniłłowicz-Kowalska, T.; Tyśkiewicz, R.; Słomka, A.; Nowak, A.; Hanaka, A. Synthesis of indoleacetic acid, gibberellic acid and ACC-deaminase by Mortierella strains promote winter wheat seedlings growth under different conditions. Int. J. Mol. Sci. 2018, 19, 3218. [Google Scholar] [CrossRef] [Green Version]
- Wani, Z.A.; Kumar, A.; Sultan, P.; Bindu, K.; Riyaz-Ul Hassan, S.; Ashraf, N. Mortierella alpina CS10E4, an oleaginous fungal endophyte of Crocus sativus L. enhances apocarotenoid biosynthesis and stress tolerance in the host plant. Sci. Rep. 2017, 7, 8598. [Google Scholar] [CrossRef]
- Daghino, S.; Murat, C.; Sizzano, E.; Girlanda, M.; Perotto, S. Fungal diversity is not determined by mineral and chemical differences in serpentine substrates. PLoS ONE 2012, 7, e44233. [Google Scholar] [CrossRef] [Green Version]
- Domsch, K.H.; Gams, W.; Anderson, T.-H. Compendium of Soil Fungi, 2nd ed.; IHW-Verlag: Eching, Germany, 2007; pp. 1–672. [Google Scholar]
- Grządziel, J.; Gałązka, A. Fungal biodiversity of the most common types of Polish soil in a long-term microplot experiment. Front. Microbiol. 2019, 10, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, Q.; Zhang, J.; Ma, C.; Wang, F.; Chen, Y.; Zhang, C.; Zhang, H.; Zhang, J. Characterization and variation of the rhizosphere fungal community structure of cultivated tetraploid cotton. PLoS ONE 2019, 14, e0207903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smit, E.; Leeflang, P.; Glandorf, B.; van Elsas, J.D.; Wernars, K. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl. Environ. Microbiol. 1999, 65, 2614–2621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, D.R.; Kim, S.W.; Adhikari, M.; Um, Y.H.; Kim, H.S.; Kim, C.; Lee, H.B.; Lee, Y.S. Three new records of Mortierella species isolated from crop field soil in Korea. Mycobiology 2015, 43, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Tian, J.; Bai, C.; Xiang, M.; Sun, J.; Liu, X. The biogeography of fungal communities in wetland sediments along the Changjiang River and other sites in China. ISME J. 2013, 7, 1299–1309. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Chen, L.; Redmile-Gordon, M.; Zhang, J.; Zhang, C.; Ning, Q.; Li, W. Mortierella elongata’s roles in organic agriculture and crop growth promotion in a mineral soil. Land Degrad. Dev. 2018, 29, 1642–1651. [Google Scholar] [CrossRef]
- Jiang, X.; Yu, H.; Xiang, M.; Liu, X.; Liu, X. Echinochlamydosporium variabile, a new genus and species of Zygomycota from soil nematodes. Fungal Divers 2011, 46, 43–51. [Google Scholar] [CrossRef]
- Osorio, N.W.; Habte, M.V.; Peláez, J.D.L. Effectiveness of a rock phosphate solubilizing fungus to increase soil solution phosphate impaired by the soil phosphate sorption capacity. Rev. Fac. Nal. Agr. 2015, 68, 7627–7636. [Google Scholar] [CrossRef]
- Gomes, E.C.Q.; Godinho, V.M.; Silva, D.A.S.; de Paula, M.T.R.; Vitoreli, G.A.; Zani, C.L.; Alves, T.M.A.; Junior, P.A.S.; Murta, S.M.F.; Barbosa, E.C.; et al. Cultivable fungi present in Antarctic soils: Taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles 2018, 22, 381–393. [Google Scholar] [CrossRef]
- Shimizu, S.; Jareonkitmongkol, S. Mortierella species (fungi): Production of C20 polyunsaturated fatty acids. In Medicinal and Aromatic Plants VIII. Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; Volume 33, pp. 308–325. [Google Scholar] [CrossRef]
- Kulhman, E.G. Variation in zygospore formation among species of Mortierella. Mycologia 1972, 64, 325–341. [Google Scholar] [CrossRef]
- Ham, M.P.; Smith, M.D. Fluorine balance studies on four infants. J. Nutr. 1954, 53, 15–223. [Google Scholar] [CrossRef] [PubMed]
- Atlas, R.M. Handbook of Media for Environmental Microbiology; CRC Press: Boca Raton, FL, USA, 1995; pp. 32–33. [Google Scholar]
- Lechevalier, M.P.; Lechevalier, H.A. A new genus of Actinomycetales: Waksmania gen. nov. J. Gen. Microbiol. 1957, 17, 104–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, D.; Zeng, J.; Zheng, Y.; Yu, X.; Chen, S. Microbial lipid production from xylose by Mortierella isabellina. Bioresour. Technol. 2013, 133, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, B.S.; Baijal, U. Species of Mortierella from India-III. Mycopathol. Mycol. Appl. 1963, 20, 49–54. [Google Scholar] [CrossRef]
- Tsao, P.H.; Guy, S.O. Inhibition of Mortierella and Pythium in a Phytophtora-isolation medium containing hymexazol. Phytopathology 1977, 67, 796–801. [Google Scholar] [CrossRef]
- Hýsek, J.; Brožová, J. The changes of soil microfungal spectrum simultaneous agricultural and forestry cultivation. Silva Gabreta 2001, 7, 185–190. [Google Scholar]
- Swer, H.; Dkhar, M.S.; Kayang, H. Fungal population and diversity in organically amended agricultural soils of Meghalaya, India. J. Org. Sys. 2011, 6, 3–12. [Google Scholar]
- Wagner, L.; Stielow, B.; Hoffmann, K.; Petkovits, T.; Papp, T.; Vágvölgyi, C.; de Hoog, G.S.; Verkley, G.; Voigt, K. A comprehensive molecular phylogeny of the Mortierellales (Mortierellomycotina) based on nuclear ribosomal DNA. Persoonia 2013, 30, 77–93. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.W.; Nguyen, T.T.T.; Lee, H.Y.M.H.; Kim, C.; Lee, H.B. Confirmation of two undescribed fungal species from Dokdo of Korea based on current classification system using multi loci. Mycobiology 2015, 43, 392–401. [Google Scholar] [CrossRef] [Green Version]
- Mares-Ponce de León, Y.; Muñoz-Castellanos, L.N.; Ruiz-Cisneros, M.F.; Pérez-Corral, D.A.; Ornelas-Paz, J.J.; Acosta-Muñiz, C.H.; Berlanga-Reyes, D.I.; Rios-Velasco, C. Morphological and molecular identification of Mortierella species associated to rhizosphere of apple trees with symptoms of root diseases. Mexican J. Phytopathol. 2017, 36, 184–195. [Google Scholar] [CrossRef] [Green Version]
- Silva, U.C.; Medeiros, J.D.; Leite, L.R.; Morais, D.K.; Cuadros-Orellana, S.; Oliveira, C.A.; de Paula Lana, U.G.; Gomes, E.A.; Dos Santos, V.L. Long-term rock phosphate fertilization impacts the microbial communities of maize rhizosphere. Front. Microbiol. 2017, 8, 1266. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Jing, T.; Chen, Y.; Wang, F.; Qi, D.; Feng, R.; Xie, J.; Li, H. Deciphering microbial diversity associated with Fusarium wilt-diseased and disease-free banana rhizosphere soil. BMC Microbiol. 2019, 19, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bian, X.; Xiao, S.; Zhao, Y.; Xu, Y.; Yang, H.; Zhang, L. Comparative analysis of rhizosphere soil physiochemical characteristics and microbial communities between rusty and healthy ginseng root. Sci. Rep. 2020, 10, 15756. [Google Scholar] [CrossRef]
- Hanaka, A.; Ozimek, E.; Majewska, M.; Rysiak, A.; Jaroszuk-Ściseł, J. Physiological diversity of Spitsbergen soil microbial communities suggests their potential as plant growth-promoting bacteria. Int. J. Mol. Sci. 2019, 20, 1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Scholl, L.; Kuyper, T.W.; Smits, M.M.; Landeweert, R.; Hoffland, E.; van Breemen, N. Rock-eating mycorrhizas: Their role in plant nutrition and biogeochemical cycles. Plant Soil 2008, 303, 35–47. [Google Scholar] [CrossRef]
- Daghino, S.; Martino, E.; Vurro, E.; Tomatis, M.; Girlanda, M.; Fubini, B.; Perotto, S. Bioweathering of chrysotile by fungi isolated in ophiolitic sites. FEMS Microbiol. Lett. 2008, 285, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Gadd, G.M. Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 2007, 111, 3–49. [Google Scholar] [CrossRef]
- Gadd, G.M. Metal transformations. In Fungi in Bioremediation; Gadd, G.M., Ed.; Cambridge University Press: Cambridge, UK, 2001; pp. 359–383. [Google Scholar]
- Font, E.; Veiga-Pires, C.M.; Pozo, C.; Carvallo, A.C.; de Siqueira Neto, P.; Camps, S.; Fabre, S.; Mirão, J. Magnetic fingerprint of southern Portuguese speleothems and implications for paleomagnetism and environmental magnetism. J. Geophys. Res. Solid Earth 2014, 119, 7993–8020. [Google Scholar] [CrossRef]
- Widden, P.; Parkinson, D. Populations of fungi in a high arctic ecosystem. Can. J. Bot. 1979, 57, 2408–2417. [Google Scholar] [CrossRef]
- Kurek, E.; Korniłłowicz-Kowalska, T.; Słomak, A.; Melke, J. Characteristics of soil filamentous fungi communities isolated from various micro−relief forms in the high Arctic tundra (Bellsund region, Spitsbergen). Polish Polar Res. 2007, 28, 57–73. [Google Scholar]
- Pugh, G.J.F.; Allsopp, D. Microfungi on Signy Island, South Orkney Islands. Br. Antarct. Surv. Bull. 1982, 57, 55–67. [Google Scholar]
- Schmidt, S.K.; Wilson, K.L.; Meyer, A.F.; Gebauer, M.M.; King, A.J. Phylogeny of ecophysiology of opportunistic “snow molds” from a subalpine forest ecosystem. Microb. Ecol. 2008, 56, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, S.; Hu, B.; Lin, L.; Zhang, Q. RNA-sequence analysis reveals the cold adaption mechanism of Mortierella isabellina M6-22. Int. J. Agric. Biol. 2018, 20, 415–421. [Google Scholar] [CrossRef]
- Werner, S.; Peršoh, D.; Rambold, G. New aspects of the biology of Mortierella alliacea. Mycol. Progress 2016, 15, 1293–1301. [Google Scholar] [CrossRef]
- Fröhlich-Nowoisky, J.; Hill, T.C.J.; Pummer, B.G.; Yordanova, P.; Franc, G.D.; Pöschl, U. Ice nucleation activity in the widespread soil fungus Mortierella alpina. Biogeosciences 2015, 12, 1057–1071. [Google Scholar] [CrossRef] [Green Version]
- Bergero, R.; Girlanda, M.; Varese, G.; Intili, D.; Luppi, A.M. Psychrooligotrophic fungi from Arctic soils of Franz Joseph Land. Polar Biol. 1999, 21, 361–368. [Google Scholar] [CrossRef]
- Lee, J.-S.; Nam, B.; Lee, H.B.; Choi, Y.-J. Molecular phylogeny and morphology reveal the underestimated diversity of Mortierella (Mortierellales) in Korea. Kor. J. Mycol. 2018, 46, 375–382. [Google Scholar] [CrossRef]
- Johnson, J.M.; Ludwig, A.; Furch, A.C.U.; Mithöfer, A.; Scholz, S.; Reichelt, M.; Oelmüller, R. The beneficial root-colonizing fungus Mortierella hyalina promotes the aerial growth of Arabidopsis and activates calcium-dependent responses that restrict Alternaria brassicae-induced disease development in roots. Mol. Plant Microbe Interact. 2019, 32, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Lindahl, B.D.; Ihrmark, K.; Boberg, J.; Trumbore, S.E.; Högberg, P.; Stenlid, J.; Finlay, F.D. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. N. Phytol. 2007, 173, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Mäkipää, R.; Rajala, T.; Schigel, D.; Rinne, K.T.; Pennanen, T.; Abrego, N.; Ovaskainen, O. Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs. ISME J. 2017, 11, 1964–1974. [Google Scholar] [CrossRef] [Green Version]
- Gawas-Sakhalkar, P.; Singh, S.M. Fungal community associated with Arctic moss, Tetraplodon mimoides and its rhizosphere: Bioprospecting for production of industrially useful enzymes. Curr. Sci. 2011, 100, 1701–1705. [Google Scholar]
- Varnaitė, R.; Paškevičius, A.; Raudonienė, V. Cellulose degradation in rye straw by micromycetes and their complexes. Ekologija 2008, 54, 29–31. [Google Scholar] [CrossRef]
- Jackson, R.M. Studies of fungi in pasture soils. III. Physiological studies on some fungal isolates from the root surface and from organic debris. N. Z. J. Agric. Res. 1965, 8, 878–888. [Google Scholar] [CrossRef] [Green Version]
- De Tender, C.; Mesuere, B.; Van der Jeugt, F.; Haegeman, A.; Ruttink, T.; Vandecasteele, B.; Dawyndt, P.; Debode, J.; Kuramae, E.E. Peat substrate amended with chitin modulates the N-cycle, siderophore and chitinase responses in the lettuce rhizobiome. Sci. Rep. 2019, 9, 9890. [Google Scholar] [CrossRef]
- Tanaka, Y.; Aki, T.; Hidaka, Y.; Furuya, Y.; Kawamoto, S.; Shigeta, S.; Ono, K.; Suzuki, O. Purification and characterization of a novel fungal α-glucosidase from Mortierella alliacea with high starch-hydrolytic activity. Biosci. Biotech. Bioch. 2002, 66, 2415–2423. [Google Scholar] [CrossRef]
- Cao, G.; Guan, Z.; Liu, F.G.; Liao, X.; Cai, Y. Arachidonic acid production by Mortierella alpina using raw crop materials. Acta Sci. Pol. Technol. Aliment. 2015, 14, 133–143. [Google Scholar] [CrossRef]
- Naziya, B.; Murali, M.; Amruthesh, K.N. Plant growth-promoting fungi (PGPF) instigate plant growth and induce disease resistance in Capsicum annuum L. upon infection with Colletotrichum capsici (Syd.) Butler & Bisby. Biomolecules 2020, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.M.; Sultana, F. Application and mechanisms of plant growth promoting fungi (PGPF) for phytostimulation. In Organic Agriculture; Das, S.K., Ed.; IntechOpen Limited: London, UK, 2020; pp. 1–30. [Google Scholar] [CrossRef]
- Jahagirdar, S.; Kambrekar, D.N.; Navi, S.S.; Kunta, M. Plant growth-promoting fungi: Diversity and classification. In Bioactive Molecules in Plant Defense Signaling in Growth and Stress; Jogaiah, S., Abdelrahman, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 25–34. [Google Scholar]
- Frąc, M.; Lipiec, J.; Usowicz, B.; Oszust, K.; Brzezińska, M. Structural and functional microbial diversity of sandy soil under cropland and grassland. Peer J. 2020, 8, e9501. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, M.; Zhang, J.; Hu, Y.; Dunjiang, C.; Guo, J.; Wu, D.; Sun, G. Soil physicochemical properties and the rhizosphere soil fungal community in a mulberry (Morus alba L.)/alfalfa (Medicago sativa L.) intercropping system. Forests 2019, 10, 167. [Google Scholar] [CrossRef] [Green Version]
- Osorio, N.W.; Habte, M. Synergistic influence of an arbuscular mycorrhizal fungus and a P solubilizing fungus on growth and P uptake of Leucaena leucephala in an oxisol. Arid Land Res. Manag. 2001, 15, 263–274. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, X.; Li, G.; Qi, P. Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol. Fertil. Soils 2011, 47, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.S.; Li, G.; Qin, F.F.; Zhou, M.X.; Qin, P.; Pan, S.M. Castor bean growth and rhizosphere soil property response to different proportions of arbuscular mycorrhizal and phosphate-solubilizing fungi. Ecol. Res. 2014, 29, 181–190. [Google Scholar] [CrossRef]
- Tamayo-Velez, A.; Osorio, N.W. Co-inoculation with an arbuscular mycorrhizal fungus and a phosphate-solubilizing fungus promotes the plant growth and phosphate uptake of avocado plantlets in a nursery. Botany 2017, 95, 539–545. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Bonito, G.; Hsu, C.; Hameed, K.; Vilgalys, R.; Liao, H.-L. Mortierella elongata increases plant biomass among non-leguminous crop species. Agronomy 2020, 10, 754. [Google Scholar] [CrossRef]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2013, 2, 587–600. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, R.; Yandigeri, M.S.; Kashyap, S.; Alagawadi, A.R. Effect of salt on survival and P-solubilization potential of phosphate solubilizing microorganisms from salt affected soils. Saudi J. Biol. Sci. 2012, 19, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Whitelaw, M.A. Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv. Agron. 2000, 69, 99–151. [Google Scholar] [CrossRef]
- Osorno, L.; Osorio, N.W. Effect of carbon and nitrogen source and concentration on rock phosphate dissolution induced by fungi. J. Appl. Biotechnol. 2014, 2, 32–42. [Google Scholar] [CrossRef]
- Osorio, N.W.; Habte, M. Phosphate desorption from the surface of soil mineral particles by a phosphate-solubilizing fungus. Biol. Fertil. Soils 2013, 49, 481–486. [Google Scholar] [CrossRef]
- Onweremadu, E.U. Predicting phosphorus sorption characteristics in highly weathered soils of South-Eastern Nigeria. Res. J. Environ. Sci. 2007, 1, 47–55. [Google Scholar]
- do Carmo Horta, M.; Torrent, J. Phosphorus desorption kinetics in relation to phosphorus forms and sorption properties of Portuguese acid soils. Soil Sci. 2007, 172, 631–638. [Google Scholar] [CrossRef] [Green Version]
- Osorno, L.; Osorio, N.W.; Habte, M. Phosphate desorption by a soil fungus in selected Hawaiian soils differing in their mineralogy. Trop. Agric. 2018, 95, 154–166. [Google Scholar]
- Devêvre, O.; Garbaye, J.; Botton, B. Release of complexing organic acids by rhizosphere fungi as a factor in Norway spruce yellowing in acidic soils. Mycol. Res. 1996, 100, 1367–1374. [Google Scholar] [CrossRef]
- Certini, G.; Corti, G.; Ugolini, F.C. Vertical trends of oxalate concentration in two soils under Abies alba from Tuscany (Italy). J. Plant Nutr. Soil Sci. 2000, 163, 173–177. [Google Scholar] [CrossRef]
- Ström, L.; Owen, A.G.; Godbold, D.L.; Jones, D.L. Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots. Soil Biol. Biochem. 2002, 34, 703–710. [Google Scholar] [CrossRef]
- Anstoetz, M.; Rose, T.J.; Clark, M.W.; Yee, L.H.; Raymond, C.A.; Vancov, T. Novel applications for oxalate phosphate-amine metal-organic frameworks (OPA-MOFs): Can an iron based OPA-MOF be used as slow release fertilizer? PLoS ONE 2015, 10, e0144169. [Google Scholar] [CrossRef]
- Malusà, E.; Pinzari, F.; Canfora, L. Efficacy of biofertilizers: Challenges to improve crop production. In Microbial Inoculants in Sustainable Agricultural Productivity; Singh, D., Singh, H., Prabha, R., Eds.; Springer: New Delhi, India, 2016; pp. 17–40. [Google Scholar] [CrossRef]
- Ceci, A.; Pinzari, F.; Russo, F.; Maggi, O.; Persiani, A.M. Saprotrophic soil fungi to improve phosphorus solubilisation and release: In vitro abilities of several species. Ambio 2018, 47, 30–40. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Ruan, C.H.; Qin, P.; Seliskar, D.M.; Gallagher, J.L. Kosteletzkya virginica, a halophytic species with potential for agroecotechnology in Jiangsu Province. China Ecol. Engin. 2003, 21, 271–276. [Google Scholar] [CrossRef]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Giovannin, L.; Palla, M.; Agnolucci, M.; Avio, L.; Sbrana, C.; Turrini, A.; Giovannetti, M. Arbuscular mycorrhizal fungi and associated microbiota as plant biostimulants: Research strategies for the selection of the best performing inocula. Agronomy 2020, 10, 106. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, E.; Holmstrom, S.J.M. Siderophores in environmental research: Roles and applications: Minireview. Microb. Biotechnol. 2014, 7, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Bozarth, R.F.; Goenaga, A. Purification and properties of mycoferritin from Mortierella alpina. Can. J. Microbiol. 1972, 18, 619–622. [Google Scholar] [CrossRef] [PubMed]
- Thicken, A.; Winkclmann, G. Rhizoferrin: A complexone type siderophore of the Mucorales and Entomophthorales (Zygomycetes). FEMS Microbiol. Lett. 1992, 94, 37–42. [Google Scholar] [CrossRef]
- Johnstone, T.C.; Nolan, E.M. Beyond iron: Non-classical biological functions of bacterial siderophores. Dalton Trans. 2015, 14, 6320–6339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, M.; Sarkar, S.; Sarkar, B.; Sharma, B.K.; Bhattacharjee, S.; Tribedi, P. Microbial siderophores and their potential applications: A review. Environ. Sci. Pollut. Res. Int. 2016, 23, 3984–3999. [Google Scholar] [CrossRef] [PubMed]
- Watteau, F.; Berthelin, J. Microbial dissolution of iron and aluminium from soil minerals: Efficiency and specificity of hydroxamate siderophores compared to aliphatic acids. Eur. J. Soil Biol. 1994, 30, 1–9. [Google Scholar]
- Hussein, K.A.; Joo, J.H. Zinc ions affect siderophore production by fungi isolated from the Panax ginseng rhizosphere. J. Microbiol. Biotechnol. 2019, 29, 105–113. [Google Scholar] [CrossRef]
- Davies, P.J. The plant hormones: Their nature, occurrence, and functions. In Plant Hormones; Davies, P.J., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 1–15. [Google Scholar] [CrossRef]
- Tudzynski, B.; Sharon, A. Biosynthesis, biological role and application of fungal phytohormones. In Industrial Applications. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research); Osiewacz, H.D., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 10, pp. 183–211. [Google Scholar] [CrossRef]
- Depuydt, S.; Hardtke, C.S. Hormone signalling crosstalk in plant growth regulation. Curr. Biol. 2011, 21, R365–R373. [Google Scholar] [CrossRef]
- Hanaka, A.; Nowak, A.; Plak, A.; Dresler, S.; Ozimek, E.; Jaroszuk-Ściseł, J.; Wójciak-Kosior, M.; Sowa, I. Bacterial isolate inhabiting Spitsbergen soil modifies the physiological response of Phaseolus coccineus in control conditions and under exogenous application of methyl jasmonate and copper excess. Int. J. Mol. Sci. 2019, 20, 1909. [Google Scholar] [CrossRef] [Green Version]
- Souza, R.; Ambrosini, A.; Passaglia, L.M. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 2015, 38, 401–419. [Google Scholar] [CrossRef] [PubMed]
- Basse, C.W.; Lottspeich, F.; Steglich, W.; Kahmann, R. Two potential indole-3-acetalde-hyde dehydrogenases in the pythopathogenic fungus Ustilago maydis. Eur. J. Biochem. 1996, 242, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.; Riov, J.; Sharon, M. Indole-3-acetic acid biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene. App. Environ. Microbiol. 1998, 64, 5030–5032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munné-Bosch, S.; Müller, M. Hormonal cross-talk in plant development and stress responses. Front. Plant Sci. 2013, 4, 529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, X.; Ruyter-Spira, C.; Bouwmeester, H. The interaction between strigolactones and other plant hormones in the regulation of plant development. Front. Plant Sci. 2013, 4, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, J.A.; Benková, E. Cytokinin cross-talking during biotic and abiotic stress responses. Front. Plant Sci. 2013, 4, 451. [Google Scholar] [CrossRef] [Green Version]
- Kuźniar, A.; Włodarczyk, K.; Wolińska, A. Agricultural and other biotechnological applications resulting from trophic plant-endophyte interactions. Agronomy 2019, 9, 779. [Google Scholar] [CrossRef] [Green Version]
- Marusig, D.; Tombesi, S. Abscisic acid mediates drought and salt stress responses in Vitis vinifera—A review. Int. J. Mol. Sci. 2020, 21, 8648. [Google Scholar] [CrossRef]
- Woźniak, M.; Gałązka, A.; Tyśkiewicz, R.; Jaroszuk-Ściseł, J. Endophytic bacteria potentially promote plant growth by synthesizing different metabolites and their phenotypic/physiological profiles in the Biolog GEN III MicroPlateTM Test. Int. J. Mol. Sci. 2019, 20, 5283. [Google Scholar] [CrossRef] [Green Version]
- Czeczuga, B.; Muszyńska, E.; Godlewska, A.; Mazalska, B. Aquatic fungi and fungus-like organisms growing on seeds of 131 plant taxa. Nova Hedwigia 2009, 89, 451–467. [Google Scholar] [CrossRef]
- Kasai, K.; Morinaga, T.; Horikoshi, T. Fungal succession in the early decomposition process of pine cones on the floor of Pinus densiflora forests. Mycoscience 1995, 36, 325–334. [Google Scholar] [CrossRef]
- Manzotti, A.; Bergna, A.; Burow, M.; Jørgensen, H.J.L.; Cernava, T.; Berg, G.; Collinge, D.B.; Jensen, B. Insights into the community structure and lifestyle of the fungal root endophytes of tomato by combining amplicon sequencing and isolation approaches with phytohormone profiling. FEMS Microbiol. Ecol. 2020, 96, fiaa052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansel, P.J.; Young, T.W.K. Association of Mortierella chlamydospora and Mortierella indohii with plants in culture. Microbios. Lett. 1982, 19, 193–244. [Google Scholar]
- Liao, H.L.; Bonito, G.; Rojas, J.A.; Hameed, K.; Wu, S.; Schadt, C.W.; Labbé, J.; Tuskan, G.A.; Martin, F.; Grigoriev, I.V.; et al. Fungal endophytes of Populus trichocarpa alter host phenotype, gene expression, and rhizobiome composition. Mol. Plant Microbe Interact. 2019, 32, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Perera, R.H.; Hyde, K.D.; Maharachchikumbura, S.S.N.; Jones, E.B.G.; McKenzie, E.H.C.; Stadler, M.; Lee, H.B.; Samarakoon, M.C.; Ekanayaka, A.H.; Camporesi, E.; et al. Fungi on wild seeds and fruits. Mycosphere 2020, 11, 2108–2480. [Google Scholar] [CrossRef]
- Márquez, S.; Bills, G.F.; Domínguez Acuña, L.; Zabalgogeazcoa, I. Endophytic mycobiota of leaves and roots of the grass Holcus lanatus. Fungal Divers 2010, 41, 115–123. [Google Scholar] [CrossRef]
- Ferreira, A.; Rodrigues, M.; Fortuna, A.; Falcão, A.; Alves, G. Huperzine A from Huperzia serrata: A review of its sources, chemistry, pharmacology and toxicology. Phytochem. Rev. 2016, 15, 51–85. [Google Scholar] [CrossRef]
- Petrini, O.; Fisher, P.J.; Petrini, L.E. Fungal endophytes of bracken (Pteridium aquilinum), with some reflections on their use in biological control. Sydowia 1992, 44, 282–293. [Google Scholar]
- Yokoya, K.; Postel, S.; Fang, R.; Sarasan, V. Endophytic fungal diversity of Fragaria vesca, a crop wild relative of strawberry, along environmental gradients within a small geographical area. Peer J. 2017, 5, e2860. [Google Scholar] [CrossRef]
- Wani, Z.A.; Mirza, D.N.; Arora, P.; Riyaz-ul-Hassan, S. Molecular phylogeny, diversity, community structure, and plant growth promoting properties of fungal endophytes associated with corms of saffron plant: An insight into the microbiome of Crocus sativus Linn. Fungal Biol. 2016, 120, 1509–1524. [Google Scholar] [CrossRef]
- Eroshin, V.K.; Dedyukhina, E.G. Effect of lipids from Mortierella hygrophila on plant resistance to phytopathogens. World J. Microbiol. Biotechnol. 2002, 18, 165–167. [Google Scholar] [CrossRef]
- Xu, L.; Ravnskov, S.; Larsen, J.; Nicolaisen, M. Linking fungal communities in roots, rhizosphere, and soil to the health status of Pisum sativum FEMS Microbiol. Ecol. 2012, 82, 736–745. [Google Scholar] [CrossRef] [Green Version]
- Jaroszuk-Ściseł, J.; Kurek, E.; Słomka, A.; Janczarek, M.; Rodzik, B. Activities of cell wall degrading enzymes in autolyzing cultures of three Fusarium culmorum isolates: Growth-promoting, deleterious and pathogenic to rye (Secale cereale). Mycologia 2011, 103, 929–945. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Li, R.; Ren, Y.; Liu, C.Q.; Wu, H.; Jousset, A.; Shen, Q. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease. Soil Biol. Bioch. 2017, 107, 198–207. [Google Scholar] [CrossRef]
- Yu, C.; Hu, X.; Deng, W.; Li, Y.; Han, G.; Ye, C. Soil fungal community comparison of different mulberry genotypes and the relationship with mulberry fruit sclerotiniosis. Sci. Rep. 2016, 6, 28365. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, S.; Wang, Y.; Li, Y.; Li, P.; Chen, L.; Jie, X.; Hu, D.; Feng, B.; Yue, K.; et al. Rare fungus, Mortierella capitata, promotes crop growth by stimulating primary metabolisms related genes and reshaping rhizosphere bacterial community. Soil Biol. Biochem. 2020, 151, 108017. [Google Scholar] [CrossRef]
- Sakuradani, E.; Ando, A.; Ogawa, J.; Shimizu, S. Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpina breeding. Appl. Microbiol. Biotechnol. 2009, 84, 1–10. [Google Scholar] [CrossRef]
- Trytek, M.; Fiedurek, J. A novel psychrotrophic fungus, Mortierella minutissima, for D-limonene biotransformation. Biotechnol. Lett. 2005, 27, 149–153. [Google Scholar] [CrossRef]
- Robinson, C.H. Cold adaptation in Arctic and Antarctic fungi. New Phytol. 2001, 151, 341–353. [Google Scholar] [CrossRef]
- Figueredo, H.M.; Gonçalves, V.N.; Godinho, V.M.; Lopes, D.V.; Oliveira, F.S.; Rosa, L.H. Diversity and ecology of cultivable fungi isolated from the thermal soil gradients in Deception Island, Antarctica. Extremophiles 2020, 24, 219–225. [Google Scholar] [CrossRef]
- Dyal, S.D.; Narine, S.S. Implications for the use of Mortierella fungi in the industrial production of essential fatty acids. Food Res. Int. 2005, 38, 445467. [Google Scholar] [CrossRef]
- Zlotek, U.; Wójcik, W. Effect of arachidonic acid elicitation on lettuce resistance towards Botrytis cinerea. Sci. Hortic. 2014, 179, 16–20. [Google Scholar] [CrossRef]
- Tagawa, M.; Tamaki, H.; Manome, A.; Koyama, O.; Kamagata, Y. Isolation and characterization of antagonistic fungi against potato scab pathogens from potato field soils. FEMS Microbiol. Lett. 2010, 305, 136–142. [Google Scholar] [CrossRef] [PubMed]
Mortierella Species | Crop/Cultivar | Country (Area) | Ref. |
---|---|---|---|
Mortierella sp. (1–5) strains; M. alpina; M. hyalina; M. isabellina; M. spinosa; M. ramanniana var. angulispora; M. ramanniana var. ramanniana | soil samples from avocado and citrus field | Nd | [28] |
M. polycephala | wheat rhizosphere soil (Triticum aestivum cv. Baldus) | Netherlands (Utrecht) | [14] |
Mortierella sp. | soil samples from potato | Czech Republic (Lipovà near Kašperské Hory) | [29] |
M. elongata; M. gamsii; M. nanna; M. parvispora | soil samples from maize (Zea mays) | India (Meghalaya) | [30] |
M. gamsii; M. nanna; M. parvispora | soil samples from French bean (Phaseolus vulgaris) | India (Meghalaya) | [30] |
M. chienii | soil samples from bamboo grove | Taiwan (near Tainan) | [31] |
M. polygoonia | soil samples from Solanum tuberosum | Netherlands (Wegeningen) | [32] |
M. ambigua; M. indohii; M. zychae | soil samples from agricultural fields | Korea | [15] |
M. elongata | soil samples from maize | China | [17] |
M. alpina; M. gamsii; M. capitata; Mortierella sp. | soil samples from apple orchards (Malus domestica) | Mexico (Chihuahua) | [33] |
Mortierella sp. | rhizosphere soil samples from maize and sorghum | Brazil (Minas Gerais) | [34] |
Mortierella sp. | rhizosphere soil samples from Gossypium species— G. hirsutum cv. TM-1 G. barbadense cv. Hai 7124 | China (Shandong) | [13] |
Mortierella sp. | soil samples from banana (Musa acuminata Cavendish cv. Brazil) farms | China (Hainan) | [35] |
Mortierella sp. | soil samples from ginseng (Panax ginseng) farm | China (Jilin) | [36] |
Mortierella sp. (Co-Inoculants) | Origin of Mortierella sp. | Host Crops | Effect on Plant and Soil | Ref. |
---|---|---|---|---|
Mortierella sp. (G. aggregatum) | rhizospheric soil from mature L. leucocephala grown in Hawaii | leucaena (L. leucocephala) |
| [66] |
Mortierella sp. (G. mosseae and/or G. aggregatum) | salt-affected coastal soil in China | Virginia saltmarsh mallow (Kosteletzkya virginica) as a potential seed crop for saline soils |
| [67] |
Mortierella sp. (G. mosseae) | salt-affected coastal soil in China | castor bean (Ricinus communis cv. “Zi Bi”) |
| [68] |
M. elongata | soil from 35-year experiment | corn (Zea mays) |
| [17] |
Mortierella sp. strain HI-27 (Rhizoglomus fasciculatum) | rhizospheric soil from mature L. leucocephala grown in Hawaii | avocado (Persea americana cv. ‘Hass’) |
| [69] |
M. alpina CS10E4 | C. sativus grown in India | saffron crocus (Crocus sativus) |
| [9] |
M. elongata PMI 77 M. elongata PMI 94 M. elongata PMI 624 | Populus deltoides P. trichocarpa grown in the USA | watermelon (Citrullus lanatus) corn (Zea mays) tomato (Solanum lycopersicum) squash (Cucurbita) bahiagrass (Paspalum notatum) |
| [70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozimek, E.; Hanaka, A. Mortierella Species as the Plant Growth-Promoting Fungi Present in the Agricultural Soils. Agriculture 2021, 11, 7. https://doi.org/10.3390/agriculture11010007
Ozimek E, Hanaka A. Mortierella Species as the Plant Growth-Promoting Fungi Present in the Agricultural Soils. Agriculture. 2021; 11(1):7. https://doi.org/10.3390/agriculture11010007
Chicago/Turabian StyleOzimek, Ewa, and Agnieszka Hanaka. 2021. "Mortierella Species as the Plant Growth-Promoting Fungi Present in the Agricultural Soils" Agriculture 11, no. 1: 7. https://doi.org/10.3390/agriculture11010007
APA StyleOzimek, E., & Hanaka, A. (2021). Mortierella Species as the Plant Growth-Promoting Fungi Present in the Agricultural Soils. Agriculture, 11(1), 7. https://doi.org/10.3390/agriculture11010007