Comparison of Highbush Blueberry (Vaccinium corymbosum L.) under Ridge and Pot Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Substrate Properties
2.3. Plant Volumes and Harvest
2.4. Sugar, Organic Acid and Phenolics Extraction
2.5. Analytical Methods
2.6. Statistics
3. Results
3.1. Substrate Properties
3.2. Plant Volume and Yield
3.3. Sugar and Organic Acid Content
3.4. Phenolics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Retamales, J.B.; Hancock, J.F. Blueberries, 2nd ed.; Cabi: Boston, MA, USA, 2018. [Google Scholar]
- Whidden, A. Commercial blueberry production methods in Hillsborough County. Proc. Fla. State Hort. Soc. 2008, 121, 36–37. [Google Scholar]
- Milivojević, J.M.; Radivojević, D.D.; Maksimović, V.M.; Dragišić Maksimović, J.J. Variation in health promoting compounds of blueberry fruit associated with different nutrient management practices in a soilless growing system. J. Agric. Sci. 2020, 65, 175–185. [Google Scholar] [CrossRef]
- Kingston, P.H.; Scagel, C.F.; Bryla, D.R. Suitability of sphagnum moss, coir, and douglas fir bark as soilless substrates for container production of highbush blueberry. HortScience 2017, 52, 1692–1699. [Google Scholar] [CrossRef]
- Olympios, C.M. Overview of soilless culture: Advantages, constraints, and perspectives. Prot. Cultiv. Mediterr. Reg. 1999, 31, 307–324. [Google Scholar]
- Voogt, W.; Van Dijk, P.; Douven, F.; Van Der Maas, R. Development of a soilless growing system for blueberries (Vaccinium corymbosum): Nutrient demand and nutrient solution. Acta Hortic. 2014, 1017, 215–221. [Google Scholar] [CrossRef]
- Fang, Y.; Nunez, G.H.; da Silva, M.N.; Phillips, D.A.; Munoz, P.R. A review for southern highbush blueberry alternative production systems. Agronomy 2020, 10, 1531. [Google Scholar] [CrossRef]
- Motomura, S.; Cho, A.; Hamasaki, R.; Akahoshi, K.; Kawabata, A.; Kawabata, A.; Nakamoto, S. Evaluation of pot size for greenhouse production of ‘Misty’ southern highbush blueberry in Volcano, Hawai‘i. Fruit, Nut, and Beverage Crops. 2016. 1–4. Available online: https://www.ctahr.hawaii.edu/oc/freepubs/pdf/F_N-48.pdf (accessed on 18 August 2021).
- Poorter, H.; Bühler, J.; Van Dusschoten, D.; Climent, J.; Postma, J.A. Pot size matters: A meta-analysis of the effects of rooting volume on plant growth. Funct. Plant Biol. 2012, 39, 839–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen, J.S.; Altland, J.E. Container height and Douglas fir bark texture affect substrate physical properties. HortScience 2008, 43, 505–508. [Google Scholar] [CrossRef] [Green Version]
- Kingston, P.H.; Scagel, C.F.; Bryla, D.R.; Strik, B.C. Influence of perlite in peat- and coirbased media on vegetative growth and mineral nutrition of highbush blueberry. HortScience 2020, 55, 658–663. [Google Scholar] [CrossRef]
- Jiang, Y.; Zeng, Q.; Wei, J.; Jiang, J.; Li, Y.; Chen, J.; Yu, H. Growth, fruit yield, photosynthetic characteristics, and leaf microelement concentration of two blueberry cultivars under different long-term soil pH treatments. Agronomy 2019, 9, 357. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Bi, G. Container production of southern highbush blueberries using high tunnels. HortScience 2019, 54, 267–274. [Google Scholar] [CrossRef]
- Ciordia, M.; Díaz, M.B.; García, J.C. Blueberry culture both in pots and under Italian-type tunnels. Acta Hortic. 2002, 123–127. [Google Scholar] [CrossRef]
- Markham, J.W.; Bremer, D.J.; Boyer, C.R.; Schroeder, K.R. Effect of container color on substrate temperatures and growth of red maple and redbud. HortScience 2011, 46, 721–726. [Google Scholar] [CrossRef]
- Cantliffe, D.J. Pre- and postharvest practices for improved vegetable transplant quality. Horttechnology 2018, 3, 415–418. [Google Scholar] [CrossRef] [Green Version]
- Spiers, J.M. Substrate temperatures influence root and shoot growth of southern highbush and rabbit-eye blueberries. HortScience 1995, 30, 1029–1030. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, C.; Sun, J.; Jackson, A. Dynamic changes of enzymes involved in sugar and organic acid level modification during blueberry fruit maturation. Food Chem. 2020, 309, 125617. [Google Scholar] [CrossRef]
- Milivojević, J.; Radivojević, D.; Nikolić, M.; Maksimović, J.D. Changes in fruit quality of highbush blueberries (Vaccinium corymbosum) during the ripening season. Acta Hortic. 2016, 1139, 657–664. [Google Scholar] [CrossRef]
- Yang, W.Q.; Harpole, J.; Finn, C.E.; Strik, B.C. Evaluating berry firmness and total soluble solids of newly released highbush blueberry cultivars. Acta Hortic. 2009, 810, 863–868. [Google Scholar] [CrossRef] [Green Version]
- Zorenc, Z.; Veberic, R.; Stampar, F.; Koron, D.; Mikulic-Petkovsek, M. Changes in berry quality of northern highbush blueberry (Vaccinium corymbosum L.) during the harvest season. Turk. J. Agric. For. 2016, 40, 855–864. [Google Scholar] [CrossRef]
- Zorenc, Z.; Veberic, R.; Mikulic-Petkovsek, M. Are processed bilberry products a good source of phenolics? J. Food Sci. 2018, 83, 1856–1861. [Google Scholar] [CrossRef]
- Milivojevic, J.; Maksimovic, V.; Dragisic Maksimovic, J.; Radivojevic, D.; Poledica, M.; Ercili, S. A comparison of major taste-and health-related compounds of Vaccinium berries. Turk. J. Biol. 2012, 36, 738–745. [Google Scholar] [CrossRef]
Planting System | Cultivar | Plant Volume (dm3) | Fruit Yield (g plant−1) |
---|---|---|---|
Ridge | ‘Duke’ | 54.95 ± 9.55 b | 430.1 ± 50.05 b |
‘Aurora’ | 61.99 ± 12.45 b, B | 492.1 ± 66.28 ab, A | |
‘Brigitta’ | 119.57 ± 17.78 a | 540.3 ± 114.1 a | |
Significance | *** | *** | |
Pot | ‘Duke’ | 56.97 ± 9.76 c | 455.2 ± 88.27 a |
‘Aurora’ | 72.78 ± 9.9 b, A | 289.6 ± 56.85 b, B | |
‘Brigitta’ | 114.42 ± 24.75 a | 484.8 ± 70.89 a | |
Significance | *** | *** | |
Significance | ‘Duke’ | ns | ns |
‘Aurora’ | * | *** | |
‘Brigitta’ | ns | ns |
Planting | Cultivar | Individual Sugars (mg g−1) | Total Sugars | ||
---|---|---|---|---|---|
System | Sucrose | Glucose | Fructose | (mg g−1) | |
Ridge | ‘Duke’ | 3.25 ± 0.06 c, B | 14.93 ± 0.51 b, A | 26.25 ± 0.67 c, A | 44.43 ± 1.08 c, A |
‘Aurora’ | 9.12 ± 0.60 a | 20.48 ± 1.40 a | 33.91 ± 2.47 a | 63.52 ± 3.91 a | |
‘Brigitta’ | 7.19 ± 0.49 b | 20.79 ± 0.77 a | 30.80 ± 0.91 b | 58.78 ± 2.10 b | |
Significance | *** | *** | *** | *** | |
Pot | ‘Duke’ | 4.21 ± 0.22 c, A | 12.09 ± 0.12 b, B | 20.78 ± 0.40 c, B | 37.08 ± 0.41 c, B |
‘Aurora’ | 9.74 ± 0.63 a | 19.14 ± 0.61 a | 31.46 ± 1.01 a | 60.34 ± 1.23 a | |
‘Brigitta’ | 7.26 ± 0.90 b | 19.25 ± 1.31 a | 29.63 ± 0.96 b | 56.14 ± 1.58 b | |
Significance | *** | *** | *** | *** | |
Significance | ‘Duke’ | *** | *** | *** | *** |
‘Aurora’ | ns | ns | ns | ns | |
‘Brigitta’ | ns | ns | ns | ns |
Planting | Cultivar | Individual Organic Acids (mg g−1) | Total Organic | |||
---|---|---|---|---|---|---|
System | Citric | Tartaric | Malic | Shikimic | Acids (mg g−1) | |
Ridge | ‘Duke’ | 6.95 ± 0.12 c, B | 0.65 ± 0.08 b | 0.51 ± 0.03 b, B | 0.060 ± 0.006 a | 8.17 ± 0.17 c, B |
‘Aurora’ | 13.68 ± 0.99 a, B | 1.02 ± 0.09 a | 0.98 ± 0.09 a | 0.017 ± 0.003 c, A | 15.69 ± 1.10 a, B | |
‘Brigitta’ | 10.18 ± 0.59 b | 0.44 ± 0.03 c, A | 0.55 ± 0.04 b, A | 0.034 ± 0.003 b, A | 11.21 ± 0.63 b | |
Significance | *** | *** | *** | *** | *** | |
Pot | ‘Duke’ | 8.37 ± 0.46 c, A | 0.62 ± 0.05 b | 0.64 ± 0.07 b, A | 0.057 ± 0.004 a | 9.68 ± 0.50 c, A |
‘Aurora’ | 15.05 ± 0.41 a, A | 0.98 ± 0.07 a | 1.02 ± 0.09 a | 0.013 ± 0.002 c, B | 17.09 ± 0.43 a, A | |
‘Brigitta’ | 9.76 ± 0.47 b | 0.36 ± 0.03 c, B | 0.43 ± 0.03 c, B | 0.027 ± 0.002 b, B | 10.57 ± 0.44 b | |
Significance | *** | *** | *** | *** | *** | |
Significance | ‘Duke’ | *** | ns | ** | ns | *** |
‘Aurora’ | * | ns | ns | * | * | |
‘Brigitta’ | ns | ** | *** | ** | ns |
Planting System | Cultivar | Phenolic Acids (mg 100 g−1) | Flavan-3-Ols (mg 100 g−1) | Flavonols (mg 100 g−1) | Anthocyanins (mg 100 g−1) | Total (mg 100 g−1) |
---|---|---|---|---|---|---|
Ridge | ‘Duke’ | 214.32 ± 10.46 a | 149.02 ± 15.06 a, A | 28.17 ± 2.7 a | 703.71 ± 80.35 a | 1095 ± 87.90 a |
‘Aurora’ | 176.38 ± 5.41 b, B | 76.19 ± 7.96 b | 30.14 ± 7.04 a | 578.04 ± 88.66 b, B | 860.74 ± 103.11 b, B | |
‘Brigitta’ | 219.05 ± 7.45 a, A | 51.24 ± 7.14 c | 16.35 ± 1.91 b | 461.21 ± 25.20 c | 747.86 ± 41.09 c | |
Significance | *** | *** | *** | *** | *** | |
Pot | ‘Duke’ | 207.85 ± 2.65 a | 122.25 ± 18.24 a, B | 26.02 ± 5.37 a | 678.10 ± 96.85 a | 1034 ± 119.16 a |
‘Aurora’ | 195.55 ± 8.67 b, A | 82.17 ± 3.20 b | 29.85 ± 5.20 a | 702.00 ± 58.64 a, A | 1009 ± 63.69 a, A | |
‘Brigitta’ | 205.19 ± 8.21 ab, B | 59.01 ± 7.12 c | 18.37 ± 2.29 b | 471.13 ± 30.19 b | 753.70 ± 37.42 b | |
Significance | * | *** | ** | *** | *** | |
Significance | ‘Duke’ | ns | * | ns | ns | ns |
‘Aurora’ | ** | ns | ns | * | * | |
‘Brigitta’ | * | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smrke, T.; Veberic, R.; Hudina, M.; Stamic, D.; Jakopic, J. Comparison of Highbush Blueberry (Vaccinium corymbosum L.) under Ridge and Pot Production. Agriculture 2021, 11, 929. https://doi.org/10.3390/agriculture11100929
Smrke T, Veberic R, Hudina M, Stamic D, Jakopic J. Comparison of Highbush Blueberry (Vaccinium corymbosum L.) under Ridge and Pot Production. Agriculture. 2021; 11(10):929. https://doi.org/10.3390/agriculture11100929
Chicago/Turabian StyleSmrke, Tina, Robert Veberic, Metka Hudina, Domen Stamic, and Jerneja Jakopic. 2021. "Comparison of Highbush Blueberry (Vaccinium corymbosum L.) under Ridge and Pot Production" Agriculture 11, no. 10: 929. https://doi.org/10.3390/agriculture11100929
APA StyleSmrke, T., Veberic, R., Hudina, M., Stamic, D., & Jakopic, J. (2021). Comparison of Highbush Blueberry (Vaccinium corymbosum L.) under Ridge and Pot Production. Agriculture, 11(10), 929. https://doi.org/10.3390/agriculture11100929