Influence of Inorganic Metal (Ag, Cu) Nanoparticles on Biological Activity and Biochemical Properties of Brassica napus Rhizosphere Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant and Soil Preparation
2.2. Origin and Properties of Nanoparticles
2.3. Characteristic/Properties of Nanoparticles
2.4. FTIR Spectroscopy Analysis
2.5. Application of Ag and Cu Nanoparticles to Plants
- Seeds soaked with the NP suspension—(S)AgNPs and (S)CuNPs
- Seeds soaked with the NP suspension and plants (21-day-old seedlings) with additional foliar spraying with NP—(SP)AgNPs and (SP)CuNPs
2.6. Preparation of Soil Samples for Analysis
2.7. Determination of Soil pH Changes
2.8. Soil Biochemical Properties
2.8.1. Determination of the FeCC Concentration
2.8.2. Determination of the PhC Concentration
2.8.3. Determination of the Concentration of IAA
2.9. Determination of DHA Activity
2.10. Determination of the Number of Microorganisms
2.10.1. Medium for Cultures of Microscopic Fungi
2.10.2. Medium for Cultivation of Copiotrophic and Oligotrophic Bacteria
2.10.3. Media for Growing and Counting Microorganisms Synthesizing Siderophores and Other Fe(III)–Chelating Compounds
2.11. Statistical Analysis
3. Results
3.1. Influence of Silver and Copper Nanoparticles on Changes in Soil pH Values
3.2. Influence of Silver and Copper Nanoparticles on Microbial Abundance and Diversity in Soil
3.3. Influence of Silver and Copper NPs on Soil Biological Activity and Soil Biochemical Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol Rep. 2017, 15, 11–23. [Google Scholar] [CrossRef]
- Philbrook, N.A.; Winn, L.M.; Afrooz, A.R.M.N.; Saleh, N.B.; Walker, V.K. The effect of TiO2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicol. Appl. Pharmacol. 2011, 257, 429–436. [Google Scholar] [CrossRef]
- Kim, S.W.; An, Y.J. Effect of ZnO and TiO2 nanoparticles preilluminated with UVA and UVB light on Escherichia coli and Bacillus subtilis. Appl. Microbiol. Biotechnol. 2012, 95, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Jin, C.; Subedi, S.; Lee, C.L.; Wang, Q.; Jiang, Y.; Li, J.; Di, Y.; Fu, D. Emerging inorganic nanomaterials for pancreatic cancer diagnosis and treatment. Cancer Treat. Rev. 2012, 38, 566–579. [Google Scholar] [CrossRef]
- Retchkiman-Schabes, P.S.; Canizal, G.; Becerra-Herrera, R.; Zorrilla, C.; Liu, H.B.; Ascencio, J.A. Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Opt. Mater. 2006, 29, 95–99. [Google Scholar] [CrossRef]
- Gu, H.; Ho, P.L.; Tong, E.; Wang, L.; Xu, B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 2003, 3, 1261–1263. [Google Scholar] [CrossRef]
- Gong, P.; Li, H.; He, X.; Wang, K.; Hu, J.; Tan, W.; Zhang, S.; Yang, X. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnol 2007, 18, 604–611. [Google Scholar] [CrossRef]
- Rahim, E.H.; Kamounah, F.S.; Frederiksen, J.; Christensen, J.B. Heck reactions catalyzed by PAMAM-dendrimer encapsulated Pd(0) nanoparticles. Nano Lett. 2001, 1, 499–501. [Google Scholar] [CrossRef]
- Kim, Y.G.; Oh, S.K.; Crools, R.M. Preparation and characterization of 1–2 nmdendrimer-encapsulated gold nanoparticles having very narrow size distributions. Chem. Mater. 2004, 16, 167. [Google Scholar] [CrossRef]
- Mirzajani, F.; Askari, H.; Hamzelou, S.; Schober, Y.; Römpp, A.; Ghassempour, A.; Spengler, B. Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxic. Environ. Safety 2014, 108, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Hu, Z.; Zabihi, F.; Chen, Z.; Zhu, M. Progress and perspective of antiviral protectoive material. Adv. Fiber Mater. 2020, 2, 123–139. [Google Scholar] [CrossRef]
- Navarro, E.; Baun, A.; Behra, R.; Hartmann, N.B.; Filser, J.; Miao, A.J.; Quigg, A.; Santschi, P.H.; Sigg, L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 2008, 17, 372–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, M.B.; Niazi, J.H.; Sang, B.I.; Kim, Y.S. Global gene response in Saccharomyces cerevisiae exposed to silver nanoparticles. Appl. Biochem. Biotechnol. 2011, 164, 1278–1291. [Google Scholar] [CrossRef]
- Singh, H.; Sharma, A.; Bhardwaj, S.K.; Arya, S.K.; Bhardwaj, N.; Khatri, M. Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environ. Sci. Process. Impacts 2021, 23, 213–239. [Google Scholar] [CrossRef]
- Singh, A.; Singh, N.B.; Hussain, I.; Singh, H.; Singh, S.C. Plant-nanoparticle interaction: An approach to improve agricultural practices and plant productivity. Int. J. Pharm. Sci. Invent. 2015, 4, 25–40. [Google Scholar]
- Ma, X.; Geisler-Lee, J.; Deng, Y.; Kolmakov, A. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci Total Environ 2010, 408, 3053–3061. [Google Scholar] [CrossRef]
- Jośko, I.; Oleszczuk, P.; Futa, B. The effect of inorganic nanoparticles (ZnO, Cr2O3,CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma. 2014, 232, 528–537. [Google Scholar] [CrossRef]
- Rao, S.; Shekhawat, G.S. Phytotoxicity and oxidative stress perspective of two selected nanoparticles in Brassica juncea. Biotechnology 2016, 3, 244. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Rico, C.M.; Zhao, L.; Adeleye, A.S.; Keller, A.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Process Impacts. 2015, 17, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Doolette, C.L.; McLaughlin, M.J.; Kirby, J.K.; Navarro, D.A. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake. J. Hazard. Mater. 2015, 300, 788–795. [Google Scholar] [CrossRef]
- Hernandez-Viezcas, J.A.; Castillo-Michel, H.; Andrews, J.C.; Cotte, M.; Rico, C.; Peralta-Videa, J.R.; Ge, Y.; Priester, J.H.; Holden, P.A.; Gardea-Torresdey, J.L. In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 2013, 7, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
- Seil, J.T.; Webster, T.J. Antimicrobial applications of nanotechnology: Methods and literature. Int. J. Nanomedicine 2012, 7, 2767–2781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arciniegas-Grijalba, P.A.; Patiño-Portela, M.C.; Mosquera-Sánchez, L.P.; Guerrero-Vargas, J.A.; Rodríguez-Páez, J.E. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl Nanosci. 2017, 7, 225–241. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Liu, Y.; Mustapha, A.; Lin, M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 2011, 166, 207–215. [Google Scholar] [CrossRef]
- Bayat, M.; Zargar, M.; Chudinova, E.; Astarkhanova, T.; Pakina, E. In vitro evaluation of antibacterial and antifungal activity of biogenic silver and copper nanoparticles: The first report of applying biogenic nanoparticles against Pilidium concavum and Pestalotia sp. fungi. Molecules 2021, 26, 5402. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Cao, X.; Ma, C.; Zhang, Z.; Zhao, N.; Ali, A.; Hou, T.; Xiang, Z.; Zhuang, J.; Wu, S.; et al. Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Front. Plant. Sci. 2017, 8, 1332. [Google Scholar] [CrossRef] [Green Version]
- Ben Tahar, I.; Fickers, P.; Dziedzic, A.; Płoch, D.; Skóra, B.; Kus-Liśkiewicz, M. Green pyomelanin-mediated synthesis of gold nanoparticles: Modelling and design, physico-chemical and biological characteristics. Microb. Cell Fact 2019, 18, 210. [Google Scholar] [CrossRef]
- Keller, A.A.; Adeleye, A.S.; Conway, J.R.; Garner, K.L.; Zhao, L.; Cherr, G.N.; Hong, J.; Gardea-Torresdey, J.L.; Godwin, H.A.; Hanna, S.; et al. Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact 2017, 7, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Yan, Y.; Wan, B.; Li, W.; Jaisi, D.P.; Zheng, L.; Zhang, J.; Liu, F. Enhanced dissolution and transformation of ZnO nanoparticles: The role of inositol hexakisphosphate. Environ. Sci. Technol. 2016, 50, 5651–5660. [Google Scholar] [CrossRef]
- Benoit, R.; Wilkinson, K.J.; Sauvé, S. Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles. Chem. Cent. J. 2013, 7, 75. [Google Scholar] [CrossRef] [Green Version]
- Cornelis, G.; Doolette, M.T.C.; McLaughlin, M.J.; Kirby, J.K.; Beak, D.G.; Chittleborough, D. Retention and dissolution of engineered silver nanoparticles in natural soils. Soil Sci. Soc. Am. J. 2012, 76, 891–902. [Google Scholar] [CrossRef]
- Fernando, S.S.N.; Gunasekara, T.D.C.P.; Holton, J. Antimicrobial nanoparticles: Applications and mechanisms of action. Sri Lankan. J. Infect. Dis. 2018, 8, 2–11. [Google Scholar] [CrossRef]
- Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017, 15. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alamilla-Martínez, D.G.; Rojas-Avelizapa, N.G.; Domínguez-López, I.; Pool, H.; Gómez-Ramírez, M. Biosynthesis of iron nanoparticles (FeNPs) by Alternaria alternata MVSS-AH-5. Mex. J. Biotechnol. 2019, 4, 1–14. [Google Scholar] [CrossRef]
- Gomes, T.; Pinheiro, J.P.; Cancio, I.; Pereira, C.G.; Cardoso, C.; Bebianno, M.J. Effects of copper nanoparticles expo-sure in the mussel Mytilus galloprovincialis. Environ. Scien. Technol. 2011, 45, 9356–9362. [Google Scholar] [CrossRef] [PubMed]
- Llorens, A.; Lloret, E.; Picouet, P.A.; Trbojevich, R.; Fernandez, A. Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci. Technol. 2012, 24, 19–29. [Google Scholar] [CrossRef]
- Orabi, A.S.; Abou El-Nour, K.M.; Youssef, M.F.; Salem, H.A. Novel and highly effective composites of silver and zinc oxide nanoparticles with some transition metalcomplexes against different microorganisms. Arabian J. Chem. 2018, 13, 262–2648. [Google Scholar] [CrossRef]
- Barrena, R.; Casals, E.; Colón, J.; Font, X.; Sánchez, A.; Puntes, V. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 2009, 75, 850–857. [Google Scholar] [CrossRef] [Green Version]
- Yin, F.; Peng, S.; Sun, P.; Shi, Z. Effects of low salinity on antioxidant enzymes activities in kidney and muscle of juvenile silver pomfret Pampus argenteus. Acta Ecologica Sinica. 2011, 31, 55–60. [Google Scholar] [CrossRef]
- Hänsch, M.; Emmerling, C. Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J. Plant Nutr. Soil Sci. 2010, 173, 554–558. [Google Scholar] [CrossRef]
- Kong, C.H.; Wang, P.; Gu, Y.; Xu, X.H.; Wang, M.L. Fate and impact on microorganisms of rice allelochemicals in paddy soil. J. Agric. Food Chem. 2008, 56, 5043–5049. [Google Scholar] [CrossRef]
- Xu, C.; Peng, C.; Sun, L.; Zhang, S.; Huang, H.; Chen, Y.; Shi, J. Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures inflooded paddy soi. Soil Biol Biochem. 2015, 86, 24–33. [Google Scholar] [CrossRef]
- Kolesnikov, S.; Timoshenko, A.; Minnikova, T.; Tsepina, N.; Kazeev, K.; Akimenko, Y.; Zhadobin, A.; Shuvaeva, V.; Rajput, V.D.; Mandzhieva, S.; et al. Impact of metal-based nanoparticles on cambisol microbial functionality, enzyme activity, and plant growth. Plants 2021, 10, 2080. [Google Scholar] [CrossRef]
- Schottroff, F.; Fröhling, A.; Zunabovic-Pichler, M.; Krottenthaler, A.; Schlüter, O.; Jäger, H. Sublethal injury and viable but non-culturable (vbnc) state in microorganisms during preservation of food and biological materials by non-thermal processes. Front. Microbiol. 2018, 9, 2773. [Google Scholar] [CrossRef] [PubMed]
- Coelho, E.; Teixeira, J.A.; Domingues, L.; Tavares, T.; Oliveira, J.M. Factors affecting extraction of adsorbed wine volatile compounds and wood extractives from used oak wood. Food Chem. 2019, 295, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Epstein, S.S. The phenomenon of microbial uncultivability. Curr. Opin. Microbiol. 2013, 16, 636–642. [Google Scholar] [CrossRef]
- Ali, W.A.; Al-Jaff, B.M.A.; Al-Saeedi, S.S.S. Cultivation and detection of viable but non-culturable fungi in soil using yoghurt whey infusion agar. ICPAS 2018, 1–6. [Google Scholar] [CrossRef]
- Bamford, R.A.; Smith, A.; Metz, J.; Glover, G.; Titball, R.W.; Pagliara, S. Investigating the physiology of viable but non-culturable bacteria by microfluidics and time-lapse microscopy. BMC Biol. 2017, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Fakruddin, M.; Mannan, K.S.B.; Andrews, S. Viable but nonculturable bacteria: Food safety and public health perspective. Int. Sch. Res. Notices. 2013, 2013, 121. [Google Scholar] [CrossRef]
- Highmore, C.J.; Rothwell, S.D.; Keevil, C.W. Improved sample preparation for direct quantitative detection of Escherichia coli O157 in soil using qPCR without pre-enrichment. Microb. Biotechnol. 2017, 10, 969–976. [Google Scholar] [CrossRef]
- Koch, E.W. Beyond light: Physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 2001, 24, 1–17. [Google Scholar] [CrossRef]
- Ho, A.; Di Lonardo, D.P.; Bodelier, P.L.E. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol. Ecol. 2017, 93, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Judy, J.D.; Unrine, J.M.; Bertsch, P.M. Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ. Sci. Technol. 2011, 45, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, G.; Zdziechowska, E. The role of rhizobacteria in the stimulation of the growth and development processes and protection of plants against environmental factors. Prog. Plant Prot. 2015, 55, 498–506. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet, P.C.J.; Bloem, J.; de Goede, R.G.M. Microbial diversity, nitrogen loss and grass production after addition of Effective Microorganisms (EM) to slurry manure. Appl. Soil Ecol. 2006, 32, 188–198. [Google Scholar] [CrossRef]
- Bhattacharyya, P.N.; Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 2012, 28, 1327–1350. [Google Scholar] [CrossRef] [PubMed]
- Natywa, M.K.; Ambroży, K.; Sawicka, A. Changes in the number of selected groups of soil microorganisms under the cultivation of maize, depending on the development phase of the plant and the use of sprinkler irrigation. Scien. Nature Technician 2010, 4, 1–9. [Google Scholar]
- Parelho, C.; Rodrigues, A.S.; Cruz, J.V.; Garcia, P. Linking trace metals and agricultural land use in volcanic soils—a multivariate approach. Sci. Total Environ. 2014, 496, 241–247. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, M. Free-living bacterial communities are mostly dominated by oligotrophs. bioRxiv 2018. [Google Scholar]
- Pawlik, M.; Płociniczak, T.; Piotrowska-Seget, Z. Endophytic bacteria and their importance in environmental microbiology, medicine and industry. Post. Mikrobiol. 2015, 54, 115–122. [Google Scholar]
- Vejan, P.; Abdullah, R.; Khadiran, T.; Ismail, S.; Boyce, A.N. Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules. 2016, 21, 537. [Google Scholar] [CrossRef] [PubMed]
- Podile, A.R.; Kishore, G.K. Plant growth-promoting rhizobacteria. In Gnanamanickam SS (ed) Plant-Associated Bacteria; Springer: Berlin/Heidelberg, Germany, 2006; pp. 195–230. [Google Scholar]
- Burns, R.G. Enzyme activity in soil: Location and a possible role in microbial ecology. Soil Biol. Biochem. 1982, 14, 423–427. [Google Scholar] [CrossRef]
- Praveen-Kumar, J.; Tarafdar, C. 2,3,5-Tripheny ltetrazolium chloride (TTC) as electron acceptor of culturable soil bacteria, fungi and actimomycetes. Biol. Fertil. Soils. 2003, 38, 186–189. [Google Scholar] [CrossRef]
- Gajda, A.M.; Przewłoka, B.; Gawryjołek, K. Determination of the effect of used tillage system on changes of soil environm ent measured with parameters of soil microbiological activity. Nauka Przyr. Technol. 2010, 4, 1–11. [Google Scholar]
- Kolesnikov, S.; Tsepina, N.; Minnikova, T.; Kazeev, K.; Mandzhieva, S.; Sushkova, S.; Minkina, T.; Mazarji, M.; Singh, R.K.; Rajput, V.D. Influence of silver nanoparticles on the biological indicators of haplic chernozem. Plants 2021, 10, 1022. [Google Scholar] [CrossRef] [PubMed]
- Patten, D.M. The Relation Between Environmental Performance and Environmental Disclosure: A Research Note. Account. Organ. Soc. 2002, 27, 763–773. [Google Scholar] [CrossRef]
- Simon, S.; Petrášek, J. Why plants need more than one type of auxin. Plant Sci. 2011, 180, 454–460. [Google Scholar] [CrossRef] [Green Version]
- Jaroszuk-Ściseł, J.; Kurek, E.; Trytek, M. Efficiency of indoleacetic acid, gibberellic acid and ethylene synthesized in vitro by Fusarium culmorum strains with different effects on cereal growth. Biology 2014, 69, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Spaepen, S.; Vanderleyden, J.; Remans, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. 2007, 31, 425–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enders, T.A.; Strader, L.C. Auxin activity: Past, present, and future. Am. J. Botany. 2015, 102, 180–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majumdar, S.; Peralta-Videa, J.R.; Trujillo-Reyes, J.; Sun, Y.; Barrios, A.C.; Niu, G.; Flores-Margez, J.P.; Gardea-Torresdey, J.L. Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles. Sci. Total Environ. 2016, 569–570, 201–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina-Velo, I.A.; Dominguez, O.E.; Ochoa, L.; Barrios, A.C.; Hernández-Viezcas, J.A.; White, J.C.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Nutritional quality of bean seeds harvested from plants grown in different soils amended with coated and uncoated zinc oxide nanomaterials. Environ. Sci. Nano. 2017, 4, 2336–2347. [Google Scholar] [CrossRef]
- Savi, T.; Casolo, V.; Luglio, J.; Bertuzzi, S.; Trifilo, P.; Lo Gullo, M.A.; Nardini, A. Species-specific reversal of stem xylem embolism after a prolonged drought correlates to endpoint concentration of soluble sugars. Plant Physiol. Biochem. 2016, 106, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Peyrot, C.; Evin, K.; Wilkinson, J.; Élanie, M.; Esrosiers, D.; Sauvé, S. Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environmental Toxico. Chem. 2014, 33, 115–125. [Google Scholar] [CrossRef]
- Ebenstein, Y.; Nahum, E.; Banin, U. Tapping mode atomic force microscopy for nanoparticle sizing: Tip−sample interaction effects. Nano Letters. 2002, 2, 945–950. [Google Scholar] [CrossRef]
- Mohamed, E.A. Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates. Heliyon 2020, 6, e03123. [Google Scholar] [CrossRef] [Green Version]
- Wan Mat Khalir, W.K.A.; Shameli, K.; Jazayeri, S.D.; Othman, N.A.; Che Jusoh, N.W.; Hassan, N.M. Biosynthesized silver nanoparticles by aqueous stem extract of entada spiralis and screening of their biomedical activity. Front Chem. 2020, 8, 620. [Google Scholar] [CrossRef] [PubMed]
- Moniri, S.; Ghoranneviss, M.; Hantehzadeh, M.R.; Asadabad, M.A. Synthesis and optical characterization of copper nanoparticles prepared by laser ablation. Bull. Mater. Sci. 2017, 40, 37–43. [Google Scholar] [CrossRef]
- Gibson, F.; Magrath, D.I. The isolation and characterization of hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62-I. Biochimica Biophysica Acta 1969, 192, 175–184. [Google Scholar] [CrossRef]
- Atkin, C.L.; Neilands, J.B.; Phaff, H. Rhodotorulic acid from species of Rhodospirillum, Rhodotorula, Sporidiobolus and Sporobolomyces. J. Bacteriology. 1970, 103, 722–733. [Google Scholar] [CrossRef] [Green Version]
- Pilet, P.E.; Chollet, R. Colorimetric determination of indole-3-acetic acid, C. R. Acad. Sci. Serv. 1970, 271, 1675–1678. [Google Scholar]
- Glickmann, E.; Dessaux, Y. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied Environ. Microbio. 1995, 61, 793–796. [Google Scholar] [CrossRef] [Green Version]
- Salkowski, E. Ueber des Verhalten der Skatolcarbonsaure im Organismus. Physiol. Chem. 1885, 9, 23–33. [Google Scholar] [CrossRef]
- Alef, K. Dehydrogenase activity. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: London, UK, 1995; pp. 228–231. [Google Scholar]
- Martin, J.P. Use of acid rose bengal and streptomycin in the plate methods for estimating soil fungi. Soil Scien. 1950, 38, 215–220. [Google Scholar] [CrossRef]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Carlton, M.A.; Brandt, S. Data analysis: Statistical and computational methods for scientists and engineers. Am. Stat. 2000, 54, 155. [Google Scholar] [CrossRef]
- Medina-Pérez, G.; Fernández-Luqueño, F.; Trejo-Téllez, L.I.; López-Valdez, F.; Pampillón-González, L. Growth and development of common bean (Phaseolus vulgaris l.) var. pinto saltillo exposed to iron, titanium, and zinc oxide nanoparticles in an agricultural soil. App.l Ecol. Environ. Res. 2018, 16, 1883–1897. [Google Scholar] [CrossRef]
- Nogueira, V.; Lopes, I.; Rocha-Santos, T.; Santos, A.L.; Rasteiro, G.M.; Antunes, F.; Gonçalves, F.; Soares, A.M.; Cunha, A.; Almeida, A.; et al. Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci. Total. Environ. 2012, 424, 344–350. [Google Scholar] [CrossRef]
- Frenk, S.; Ben-Moshe, T.; Dror, I.; Berkowitz, B.; Minz, D. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS ONE. 2013, 8, e84441. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-López, K.B.; De Los Santos-Ramos, F.J.; Gómez-Acata, E.S.; Luna-Guido, M.; Navarro-Noya, Y.E.; Fernández-Luqueño, F.; Dendooven, L. TiO2 nanoparticles affect the bacterial community structure and Eisenia fetida (Savigny, 1826) in an arable soil. PeerJ. 2019, 7, e6939. [Google Scholar] [CrossRef] [PubMed]
- Gajendiran, J.; Rajendran, V. Synthesis and characterization of coupled semiconductor metal oxide (ZnO/CuO) nanocomposite. Mater. Lett. 2014, 116, 311–313. [Google Scholar] [CrossRef]
- Mimmo, T.; Del Buono, D.; Terzano, R.; Tomasi, N.; Vigani, G.; Crecchio, C.; Pinton, R.; Zocchi, G.; Cesco, S. Rhizospheric organic compounds in the soil-microorganism-plant system: Their role in iron availability. Eur. J. Soil Sci. 2014, 65, 629–642. [Google Scholar] [CrossRef]
- Burke, D.J.; Pietrasiak, N.; Situ, S.F.; Abenojar, E.C.; Porche, M.; Kraj, P.; Lakliang, Y.; Samia, A.C.S. Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int. J. Mol. Sci. 2015, 16, 23630–23650. [Google Scholar] [CrossRef]
- Rico, C.M.; Majumdar, S.; Duarte-Gardea, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 2011, 59, 3485–3498. [Google Scholar] [CrossRef] [Green Version]
- Kachel, M.; Matwijczuk, A.; Sujak, A.; Czernel, G.; Niemczynowicz, A.; Nowicka, A. The influence of copper and silver nanocolloids on the quality of pressed spring rapeseed oil. Agronomy 2019, 9, 643. [Google Scholar] [CrossRef] [Green Version]
- Coutris, C.; Joner, E.J.; Oughton, D.H. Aging and soil organic matter content affect the fate of silver nanoparticles in soil. Sci. Total Environ. 2012, 420, 327–333. [Google Scholar] [CrossRef]
- Joshi, N.; Ngwenya, B.T.; French, C.E. Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances. J. Hazard. Mater. 2012, 241−242, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Kumar, A. Effects of nano silver oxide and silver ions on growth of vigna radiate. Bull. Environ. Contam. Toxicol. 2015, 95, 379–384. [Google Scholar] [CrossRef]
- Judy, J.D.; Kirby, J.K.; Creamer, C.; McLaughlin, M.J.; Fiebiger, C.; Wright, C.; Cavagnaro, T.R.; Bertsch, P.M. Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil. Environ. Pollut. 2015, 206, 256–263. [Google Scholar] [CrossRef]
- Shah, V.; Belozerova, I. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut. 2009, 197, 143–148. [Google Scholar] [CrossRef]
- Tomacheski, D.; Pittol, M.; Simoes, D.N.; Ribeiro, V.F. Effect of natural ageing on surface of silver loaded TPE and its influence in antimicrobial efficacy. Appl. Surf. Sci. 2017, 405, 137–145. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; McLean, J.E.; Latta, D.E.; Manangón, E.; Britt, D.W.; Johnson, W.P.; Boyanov, M.I.; Anderson, A.J. CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 2012, 14, 1125. [Google Scholar] [CrossRef]
- Savithramma, N.; Ankanna, S.; Bhumi, G. Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2012, 2, 61–68. [Google Scholar]
- Mustafa, G.; Sakata, K.; Hossain, Z.; Komatsu, S. Proteomic study on the effects of silver nanoparticles on soybean. J. Proteom. 2015, 122, 100–118. [Google Scholar] [CrossRef]
- VandeVoort, A.R.; Arai, Y. Macroscopic observation of soil nitrification kinetics impacted by copper nanoparticles: Implications for micronutrient nanofertilizer. Nanomaterials 2018, 8, 927. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.H.; Park, J.E.; Osaka, T.; Park, S.G. Study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta. 2005, 51, 956–960. [Google Scholar] [CrossRef]
- Pariona, N.; Mtz-Enriquez, A.I.; Sanchez-Rangel, D.; Carrion, G. Paraguay-Delgado, F.; Rosas-Saito, G. Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. RSC Adv. 2019, 9, 18835–18843. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrowicz-Trzcińska, M.; Szaniawski, A.; Olchowik, J.; Drozdowski, S. Effects of copper and silver nanoparticles on growth of selected species of pathogenic and wood-decay fungi in vitro. For. Chron. 2018, 94, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Shahryari, F.; Rabiei, Z.; Sadighian, S. Antibacterial activity of synthesized silver nanoparticles by sumac aqueous extract and silver-chitosan nanocomposite against Pseudomonas syringae pv. syringae. J. Plant Pathol. 2020, 102, 469–475. [Google Scholar] [CrossRef]
- Sherkhane, A.S.; Suryawanshi, H.H.; Mundada, P.S.; Shinde, B.P. Control of bacterial blight disease of pomegranate using silver nanoparticles. J. Nanomed. Nanotechnol. 2018, 9, 500. [Google Scholar] [CrossRef]
- Dinesh, R.; Anandaraj, M.; Srinivasan, V.; Hamza, S. Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma. 2012, 173, 19–27. [Google Scholar] [CrossRef]
- Thul, S.T.; Sarangi, B.K.; Pandey, R.A. Nanotechnology in agroecosystem: Implications on plant productivity and its soil environment. Expert Opin. Environ. Biol. 2013, 2, 1–7. [Google Scholar] [CrossRef]
- Ingle, A.P.; Duran, N.; Rai, M. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Appl. Microbiol. Biotechnol. 2014, 98, 1001–1009. [Google Scholar] [CrossRef]
- Mirzajani, F.; Askari, H.; Hamzelou, S.; Farzaneh, M.; Ghassempour, A. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol. Env. Safety 2013, 88, 48–54. [Google Scholar] [CrossRef]
- Rousk, J.; Ackermann, K.; Curling, S.F.; Jones, D.L. Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS ONE 2012, 7, 34197. [Google Scholar] [CrossRef]
- Antisari, L.V.; Carbone, S.; Gatti, A.; Vianello, G.; Nannipieri, P. Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol. Biochem. 2013, 60, 87–94. [Google Scholar] [CrossRef]
- Ge, Y.; Schimel, J.P.; Holden, P.A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ. Sci. Tech. 2011, 45, 1659–1664. [Google Scholar] [CrossRef]
- Baek, Y.W.; An, Y.J. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci. Total Environ. 2011, 409, 1603–1608. [Google Scholar] [CrossRef]
- Dhas, S.P.; Shiny, P.J.; Khan, S.S.; Mukherjee, A.; Chandrasekaran, N. Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms. J. Basic Microbiol. 2013, 54, 916–927. [Google Scholar] [CrossRef]
- Gupta, G.; Parihar, S.S.; Ahirwar, N.K.; Snehi, S.K.; Singh, V. Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. 2015, 7, 96–102. [Google Scholar] [CrossRef]
- Ahemad, M.; Khan, M.S. Evaluation of plant-growth-promoting activities of rhizobacterium Pseudomonas putida under herbicide stress. Ann. Microbiol. 2012, 62, 1531–1540. [Google Scholar] [CrossRef]
- Glick, B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Hindawi Publishing Corporation Scien. 2012, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Jahanian, A.; Chaichi, M.R.; Rezaei, K.; Rezayazdi, K.; Khavazi, K. The effect of plant growth promoting rhizobacteria (PGPR) on germination and primary growth of artichoke (Cynara scolymus). Int J Agri Crop Sci. 2012, 4, 923–929. [Google Scholar]
- Chincholkar, S.B.; Chaudhari, B.L.; Rane, M.R. Microbial siderophore: A state of art. In A, Varma & S.B. Chincholkar (Eds.). Soil Biology 2007, 12, 233–242. [Google Scholar]
- Jankiewicz, U.; Kudelska, J. Cross-reacting of siderophores synthesized by Pseudomonas. Water Resour. Rural. Dev. 2010, 10, 93–102. [Google Scholar]
- Saha, R.; Saha, N.; Donofrio Lorelle, R.S.; Bestervelt, L. Microbial siderophores: A mini review. J. Basic Microbi. Environ. Health Techn. 2013, 303–317. [Google Scholar] [CrossRef]
- Becerra-Moreno, A.; Benavides, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Plants as biofactories: Glyphosate-induced production of shikimic acid and phenolic antioxidants in wounded carrot tissue. J. Agric. Food Chem. 2012, 60, 11378–11386. [Google Scholar] [CrossRef]
- Bolton, H., Jr.; Smith, J.L.; Link, S.O. Soil microbial biomass and activity of a disturbed and undisturbed shrub-steppe ecosystem. Soil Biol. Biochem. 1993, 25, 545–552. [Google Scholar] [CrossRef]
- Gil-Sotres, F.; Trasar-Cepeda, C.; Leirós, M.C.; Seoane, S. Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 2005, 37, 877–887. [Google Scholar] [CrossRef]
- Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H.; Kahru, A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vilbrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 2008, 71, 1308–1316. [Google Scholar] [CrossRef]
- Kim, S.; Sin, H.; Lee, S.; Lee, I. Influence of metal oxide particles on soil enzyme activity and bioaccumulation of two plants. J. Micro. Biotech. 2013, 23, 1279–1286. [Google Scholar] [CrossRef] [Green Version]
- Murata, T.; Kanao-Koshikawa, M.; Takamatsu, T. Effects of Pb, Cu, Sb, In and Ag contamination on the proliferation of soil bacterial colonies, soil dehydrogenase activity, and phospholipid fatty acid profiles of soil microbial communities. Water Air Soil Pollut. 2005, 164, 103–118. [Google Scholar] [CrossRef]
- Schmidt, H.; Günther, C.; Weber, M. Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition. PLoS ONE. 2014, 9, 102444. [Google Scholar] [CrossRef] [Green Version]
- Zibilske, L.M.; Bradford, J.M. Soil aggregation, aggregate carbon and nitrogen, and moisture retention induced by conservation tillage. Soil Sci. Soc. Am. J. 2007, 71, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Qu, X.H.; Wang, J.G. Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity. App. Soil Ecol. 2008, 39, 172–179. [Google Scholar] [CrossRef]
- Zhou, B.; Kong, C.; Li, Y.; Wang, P.; Xu, X. Crabgrass (Digitaria sanguinalis) allelochemicals that interfere with crop growth and the soil microbial community. J. Agricul. Food Chem. 2013, 61, 5310–5317. [Google Scholar] [CrossRef]
- Masalha, J.; Kosegarten, H.; Elmaci, Ö.; Mengal, K. The central role of microbial activity for iron acquisition in maize and sunflower. Biol. Fertil. Soils. 2000, 30, 433–439. [Google Scholar] [CrossRef]
- Dimpka, C.O.; Zeng, J.; McLean, J.E.; Breet, D.W.; Zhan, J.; Anderson, A.J. Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl. Environ. Microbiol. 2012, 78, 1404–1410. [Google Scholar] [CrossRef] [Green Version]
- Pokojska-Burdiej, A. The effect of microorganisms, microbial metabolites and plaant growth regulators (IAA and GA) on the growth of pine seedlings (Pinus sylvestries L.). Pol. J. Soil Sci. 1982, 15, 137–143. [Google Scholar]
- Szajdak, L.; Maryganowa, V. Occurrence of IAA auxin in some organic soil. Agron. Res. 2007, 5, 175–187. [Google Scholar]
- Ivanchenko, M.G.; Napsucialy-Mendivil, S.; Dubrovsky, J.G. Auxin-induced inhibition of lateral root initiation contributes to root system shaping in Arabidopsis thaliana. Plant. J. 2010, 64, 740–752. [Google Scholar] [CrossRef]
- Peret, B.; De Rybel, B.; Casimiro, I.; Benkova, E.; Swarup, R.; Laplaze, L.; Beeckman, T.; Bennett, M.J. Arabidopsis lateral root development: An emerging story. Trends Plant. Sci. 2009, 14, 399–408. [Google Scholar] [CrossRef]
Content of Fraction <0.02 mm (%) | Particle Size Distribution of Fractions in (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sand (mm) | Dust (mm) | Loam (mm) | |||||||
2.0–1.0 | 1.0–0.5 | 0.5–0.25 | 0.25–0.10 | 0.10–0.05 | 0.05–0.02 | 0.02–0.005 | 0.005–0.002 | <0.002 | |
32.767 ± 0.89 | 1.250 ± 1.54 | 1.603 ± 1.09 | 0.960 ± 0.34 | 2.793 ± 0.83 | 20.887 ± 0.98 | 39.447 ± 0.88 | 21.833 ± 1.88 | 7.740 ± 0.95 | 4.457 ± 0.26 |
Soil Agronomic Category | Acidity | Need for Liming | Content of C-Org (%) | Contents of Bioavailable Components (mg/100 g soil) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
pH in KCl | Reaction | P2O2 | Rating | K2O | Rating | Mg | Rating | |||
Mineral average | 7.23 | alkaline | No need | 1.03 | 69.0 ±6.77 | Very high | 71.3 ±0.65 | Very high | 11.4 ±0.55 | Very high |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kachel, M.; Nowak, A.; Jaroszuk-Ściseł, J.; Tyśkiewicz, R.; Parafiniuk, S.; Rabier, F. Influence of Inorganic Metal (Ag, Cu) Nanoparticles on Biological Activity and Biochemical Properties of Brassica napus Rhizosphere Soil. Agriculture 2021, 11, 1215. https://doi.org/10.3390/agriculture11121215
Kachel M, Nowak A, Jaroszuk-Ściseł J, Tyśkiewicz R, Parafiniuk S, Rabier F. Influence of Inorganic Metal (Ag, Cu) Nanoparticles on Biological Activity and Biochemical Properties of Brassica napus Rhizosphere Soil. Agriculture. 2021; 11(12):1215. https://doi.org/10.3390/agriculture11121215
Chicago/Turabian StyleKachel, Magdalena, Artur Nowak, Jolanta Jaroszuk-Ściseł, Renata Tyśkiewicz, Stanisław Parafiniuk, and Fabienne Rabier. 2021. "Influence of Inorganic Metal (Ag, Cu) Nanoparticles on Biological Activity and Biochemical Properties of Brassica napus Rhizosphere Soil" Agriculture 11, no. 12: 1215. https://doi.org/10.3390/agriculture11121215
APA StyleKachel, M., Nowak, A., Jaroszuk-Ściseł, J., Tyśkiewicz, R., Parafiniuk, S., & Rabier, F. (2021). Influence of Inorganic Metal (Ag, Cu) Nanoparticles on Biological Activity and Biochemical Properties of Brassica napus Rhizosphere Soil. Agriculture, 11(12), 1215. https://doi.org/10.3390/agriculture11121215