Germplasm Screening of Green Manure Rapeseed through the Effects of Short-Term Decomposition on Soil Nutrients and Microorganisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Experimental Field
2.2. Experimental Design
2.3. Test Method
2.4. Data Analysis
3. Results and Analysis
3.1. Decomposition of Rapeseed Plants and the Influence of Soil Nutrients
3.2. The Effects of Rapeseed on Soil Microbial Diversity and Community Structure after Decomposition
3.2.1. The Effect of Rapeseed on Soil Microbial Community Structure after Decomposition
3.2.2. The Effects of Rapeseed on the Diversity and Function of Soil Microbial Communities after Decomposition
3.3. Correlation Analysis and Principal Component Analysis of Environmental Factors, Plant Nutrients, Soil Nutrients, and Microorganisms
3.3.1. Correlation Analysis of Environmental Factors, Plant Nutrients, Soil Nutrients, and Microorganisms
3.3.2. Environmental Factors and Principal Component Analysis of Soil Microbial Community
4. Discussion
4.1. Decomposition of Rapeseed
4.2. Effects of Decomposition on Soil Bacterial Diversity and Community Structure
4.3. Correlation between Soil Nutrients, Microbial Composition, and the Plant Decomposition Index
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Awasthi, M.K.; Zhang, Z.; Wong, J.W.C. Sustainable composting and its environmental implications. In Sustainable Resource Recovery and Zero Waste Approaches, 1st ed.; Taherzadeh, M.J., Bolton, K., Wong, J., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 7, pp. 115–132. [Google Scholar] [CrossRef]
- Ren, F.L.; Zhang, X.B.; Liu, J.; Sun, N.; Wu, L.H.; Xu, M.G. A synthetic analysis of greenhouse gas emissions from manure amended agricultural soils in China. Sci. Rep. 2017, 7, 8123. [Google Scholar] [CrossRef]
- Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of Pesticides Use in Agriculture: Their Benefits and Hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Lin, M.; Zhou, H.; Wu, H.; Li, Z.; Lin, W. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE 2019, 14, e0217018. [Google Scholar] [CrossRef]
- Dong, N.G.; Hu, G.L.; Zhang, Y.Q.; Qi, J.X.; Chen, Y.H.; Hao, Y.B. Effects of green-manure and tillage management on soil microbial community composition, nutrients and tree growth in a walnut orchard. Sci. Rep. 2021, 11, 16882. [Google Scholar] [CrossRef]
- Costerousse, B.; Quattrini, J.; Grüter, R.; Frossard, E.; Thonar, C. Green manure effect on the ability of native and inoculated soil bacteria to mobilize zinc for wheat uptake (Triticum aestivum L.). Plant Soil 2021, 467, 287–309. [Google Scholar] [CrossRef]
- Dong-Hui, F.U.; Jiang, L.Y.; Mason, A.S.; Xiao, M.L.; Zhu, L.R.; Li-Zhi, L.I.; Zhou, Q.H.; Shen, C.J.; Huang, C.H. Research progress and strategies for multifunctional rapeseed: A case study of china. J. Integr. Agric. 2016, 15, 1673–1684. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Zhou, X.F.; Xie, X.B.; Chen, J.N.; Zou, Y.B. Increased soil fertility in a long-term rice-oilseed rape cropping system and its potential roles in reducing nitrogen inputs and environmental impacts. In Cropping Systems: Applications, Management and Impact; Hodges, J.G., Ed.; Nova Science Publishers: New York, NY, USA, 2017; pp. 103–113. ISBN 978-63485-888-5. [Google Scholar]
- Li, W.G.; Yang, X.X.; Huang, C.G.; Xue, N.W.; Xia, Q.; Liu, X.L.; Zhang, X.Q.; Yang, S.; Yang, Z.P.; Gao, Z.Q. Effects of rapeseed green manure on soil fertility and bacterial community in dryland wheat field. Agric. Sci. China 2019, 52, 2664–2677. [Google Scholar] [CrossRef]
- Gu, C.M.; Li, Y.S.; Xie, L.H.; Hu, X.J.; Liao, X.; Qin, L. Analysis on application advantages of rapeseed as green manure. Soil Fertil. Sci. China 2019, 01, 180–183. [Google Scholar] [CrossRef]
- Wang, D.Y.; Peng, J.; Xu, C.M.; Zhao, F.; Zhang, X.F. Effects of rape straw manuring on soil fertility and rice growth. Chin. J. Rice Sci. 2011, 26, 85–91. [Google Scholar] [CrossRef]
- Haramoto, E.; Gallandt, E. Brassica cover cropping for weed management: A review. Renew. Agric. Food. Syst. 2004, 19, 187–198. [Google Scholar] [CrossRef]
- Poveda, J.; Eugui, D.; Velasco, P. Natural control of plant pathogens through glucosinolates: An effective strategy against fungi and oomycetes. Phytochem. Rev. 2020, 19, 1045–1059. [Google Scholar] [CrossRef]
- Johnson, A.W.; Golden, A.M.; Auld, D.L.; Sumner, D.R. Effects of rapeseed and vetch as green manure crops and fallow on nematodes and soil-borne pathogens. J. Nematol. 1992, 24, 117–126. [Google Scholar] [CrossRef]
- Huang, M.; Tian, A.L.; Zhou, X.; Gao, W.; Li, Z.B.; Chen, G.; Li, A.H.; Chen, Y.M.; Liu, L.S.; Yin, X.H.; et al. Yield performance of machine-transplanted double-season rice grown following oilseed rape. Sci. Rep. 2019, 9, 6818. [Google Scholar] [CrossRef]
- Ren, T.; Li, H.; Lu, J.W.; Bu, R.Y.; Li, X.K.; Cong, R.H.; Lu, M.X. Crop rotation-dependent yield responses to fertilization in winter oilseed rape (Brassica napus L.). Crop J. 2015, 3, 396–404. [Google Scholar] [CrossRef] [Green Version]
- Edmeades, D.C. The long-term effects of manures and fertilisers on soil productivity and quality: A review. Nutr. Cycl. Agroecosyst. 2003, 66, 165–180. [Google Scholar] [CrossRef]
- Sharma, P.; Laor, Y.; Raviv, M.; Medina, S.; Saadi, I.; Krasnovsky, A.; Vager, M.; Levy, G.J.; Bar-Tal, A.; Borisover, M. Green manure as part of organic management cycle: Effects on changes in organic matter characteristics across the soil profile. Geoderma 2017, 305, 197–207. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Agbede, T.M.; Aboyeji, C.M.; Dunsin, O.; Ugbe, J.O. Green manures and npk fertilizer effects on soil properties, growth, yield, mineral and vitamin c composition of okra (abelmoschus esculentus (L.) moench). J. Saudi Soc. Agric. Sci. 2019, 18, 218–223. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhou, X.; Deng, L.C.; Fan, L.Y.; Qu, L.; Li, M. Decomposition characteristics of rapeseed green manure and effect of nutrient release on soil fertility. Hunan Agric. Sci. 2020, 416, 39–44. [Google Scholar] [CrossRef]
- Kriaučiūnienė, Z.; Čepulienė, R.; Velička, R.; Marcinkevičienė, A.; Lekavičienė, K.; Šarauskis, E. Oilseed Rape Crop Residues: Decomposition, Properties and Allelopathic Effects. In Sustainable Agriculture Reviews; Springer: Cham, Switzerland, 2018; Volume 32. [Google Scholar] [CrossRef]
- Yuan, Y.Y.; Liu, Q.M.; Zhong, Y.S.; Liao, F.P.; Lin, J.R. Mechanism of CP7 antibacterial protein against Aeromonas hydrophila. Microbiol. China 2012, 39, 949–957. [Google Scholar]
- Wang, Y.Y. Evaluation of Different Varieties of Mung Bean Used as Green Manure. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, June 2011. [Google Scholar]
- Fawcett, J.K. The semi-micro Kjeldahl method for the determination of nitrogen. J. Med. Lab. Technol. 1954, 12, 1–22. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; U.S. Department of Agriculture: Washington, DC, USA, 1954.
- Bao, S.D. Soil and Agrochemistry Analysis, 3rd ed.; Chinese Agriculture Press: Beijing, China, 2005; pp. 44–107. [Google Scholar]
- Han, P.P.; Hu, X.J.; Liao, X.S.; Xie, L.H.; Li, Y.S.; Gu, C.M.; Qin, L.; Liao, X. Effects of flowering rapeseed-manure returns on soil microorganism and growth of peanut. Chin. J. Oil. Crop. Sci. 2019, 41, 638–642. [Google Scholar] [CrossRef]
- Xiao, X.J.; Lü, W.S.; Yu, P.L.; Zheng, W.; Li, Y.Z.; Hu, L.; Xiao, F.L.; Zhang, S.W.; Huang, T.B.; Xiao, G.B. Effects of nitrogen application rate on yield formation and nitrogen use efficiency of early rice under rape straw returning in triple cropping. Crops 2019, 2, 103–109. [Google Scholar] [CrossRef]
- Corato, U.D. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef] [PubMed]
- Pane, C.; Celano, G.; Piccolo, A.; Villecco, D.; Spaccini, R.; Palese, M.A.; Zaccardelli, M. Effects of on-farm composted tomato residues on soil biological activity and yields in a tomato cropping system. Chem. Biol. Technol. Agric. 2015, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Kalam, S.; Basu, A.; Ahmad, I.; Sayyed, R.Z.; Suriani, N.L. Recent understanding of soil acidobacteria and their ecological significance: A critical review. Front. Microbiol. 2020, 11, 580024. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, R.F.; Xue, C.; Xun, W.B.; Sun, L.; Xu, Y.C.; Shen, Q.R. Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China. Microb. Ecol. 2014, 67, 443–453. [Google Scholar] [CrossRef]
- Becraft, E.D.; Woyke, T.; Jarett, J.; Ivanova, N.; Godoy-Vitorino, F.; Poulton, N.; Brown, J.M.; Brown, J.; Lau, M.C.Y.; Onstott, T.; et al. Rokubacteria: Genomic Giants among the Uncultured Bacterial Phyla. Front. Microbiol. 2017, 8, 2264. [Google Scholar] [CrossRef]
- Li, L.N.; Xi, Y.G.; Chen, E.; He, L.P.; Wang, L.; Xiao, X.J.; Tian, W. Effects of tillage and green manure crop on composition and diversity of soil microbial community. J. Ecol. Rural Environ. 2018, 34, 342–348. [Google Scholar] [CrossRef]
- Yamada, T.; Sekiguchi, Y. Cultivation of uncultured chloroflexi subphyla: Significance and ecophysiology of formerly uncultured chloroflexi ‘Subphylum I’ with natural and biotechnological relevance. Microbes Environ. 2009, 24, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.T.; Robeson, M.S.; Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 2009, 3, 442–453. [Google Scholar] [CrossRef]
- Jacoby, R.; Peukert, M.; Succurro, A.; Koprivova, A.; Kopriva, S. The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Front. Plant Sci. 2017, 8, 1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Liao, M.; Fang, Z.; Guo, J.; Xie, X.; Xu, C. How silicon fertilizer improves nitrogen and phosphorus nutrient availability in paddy soil? J. Zhejiang Univ. Sci. B 2021, 22, 521–532. [Google Scholar] [CrossRef]
- Chen, W.M.; Moulin, L.; Bontemps, C.; Vandamme, P.; Bena, G.; Boivin-Masson, C. Legume Symbiotic Nitrogen Fixation by Beta-Proteobacteria Is Widespread in Nature. J. Bacteriol. 2003, 185, 7266–7272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aislabie, J.; Deslippe, J.R.; Dymond, J. Soil Microbes and Their Contribution to Soil Services. In Ecosystems Services in New Zealand Conditions and Trends; Dymond, J.R., Ed.; Manaaki Press: Lincoln, New Zealand, 2013; Volume 1, pp. 143–161. ISSN 0478347367. [Google Scholar]
- Lee, K.C.Y.; Dunfield, P.F.; Stott, M.B. The Phylum Armatimonadetes. In The Prokaryotes; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Wang, D.P.; Li, T.; Huang, K.L.; He, X.W.; Zhang, X.X. Roles and correlations of functional bacteria and genes in the start-up of simultaneous anammox and denitrification system for enhanced nitrogen removal. Sci. Total Environ. 2019, 655, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Bukar, M.; Sodipo, O.; Dawkins, K.; Ramirez, R.; Esiobu, N. Microbiomes of top and sub-layers of semi-arid soils in north-eastern nigeria are rich in firmicutes and proteobacteria with surprisingly high diversity of rare species. Adv. Microbiol. 2019, 9, 102–118. [Google Scholar] [CrossRef] [Green Version]
- Wolińska, A.; Kuźniar, A.; Zielenkiewicz, U.; Izak, D.; Szafranek-Nakonieczna, A.; Banach, A.; Błaszczykc, M. Bacteroidetes as a sensitive biological indicator of agricultural soil usage revealed by culture-independent approach. Appl. Soil. Ecol. 2017, 119, 128–137. [Google Scholar] [CrossRef]
- Kroeger, M.E.; Delmont, T.O.; Eren, A.M.; Meyer, K.M.; Guo, J.; Kiran, K.; Rodrigues, J.L.M.; Bohannan, B.J.M.; Tringe, S.G.; Borges, C.D. New biological insights into how deforestation in amazonia affects soil microbial communities using metagenomics and metagenome-assembled genomes. Front. Microbiol. 2018, 9, 1635. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, C.N.; Li, Z.; Andeer, P.F.; Spaulding, S.; Banfield, J.F. Proteogenomic analyses indicate bacterial methylotrophy and archaeal heterotrophy are prevalent below the grass root zone. PeerJ 2016, 4, e2687. [Google Scholar] [CrossRef] [Green Version]
- Buckley, D.H.; Huangyutitham, V.; Nelson, T.A.; Rumberger, A.; Thies, J.E. Diversity of planctomycetes in soil in relation to soil history and environmental heterogeneity. Appl. Environ. Microbiol. 2006, 72, 4522–4531. [Google Scholar] [CrossRef] [Green Version]
- Dedysh, S.N.; Ivanova, A.A. Planctomycetes in boreal and subarctic wetlands: Diversity patterns and potential ecological functions. FEMS Microbiol. Ecol. 2019, 95. [Google Scholar] [CrossRef] [Green Version]
Number | Name | N mg·g−1 | P mg·g−1 | K mg·g−1 | Decomposition Quantity (Dry Weight) g | Glucosinolate Content μmol·g−1 |
---|---|---|---|---|---|---|
1 | 991 | 22.69 ± 1.38 bc | 4.37 ± 0.28 cd | 27.45 ± 1.08 d | 47.18 ± 0.59 def | 241.80 ± 0.55 j |
2 | A1 | 16.21 ± 1.10 gh | 3.64 ± 0.30 d | 38.31 ± 2.32 a | 44.33 ± 2.96 defg | 704.91 ± 4.37 c |
3 | Xiangyou 1035 | 18.66 ± 1.42 defg | 3.89 ± 0.07 d | 24.58 ± 1.01 fg | 51.50 ± 1.18 cd | 314.82 ± 2.33 i |
4 | Brassica Campestris | 21.95 ± 1.28 c | 4.46 ± 0.61 cd | 24.11 ± 2.51 g | 40.72 ± 2.43 fg | 499.42 ± 4.42 e |
5 | Purple leaf mustard | 28.90 ± 2.48 a | 3.88 ± 0.61 d | 32.20 ± 2.22 c | 65.75 ± 3.18 a | 182.43 ± 1.63 k |
6 | Green leaf mustard | 19.90 ± 1.13 cdef | 4.18 ± 0.91 cd | 21.79 ± 0.78 h | 49.32 ± 1.83 de | 394.26 ± 4.47 h |
7 | Rhubarb mustard | 20.67 ± 1.11 cde | 3.68 ± 0.90 d | 22.07 ± 1.97 h | 48.70 ± 0.40 de | 394.81 ± 4.21 h |
8 | Xiafang self-seeding | 25.29 ± 2.31 b | 5.89 ± 0.52 ab | 25.67 ± 1.06 ef | 43.58 ± 3.13 efg | 248.37 ± 6.24 j |
9 | 78 | 21.25 ± 4.83 cd | 5.01 ± 0.85 bc | 26.63 ± 2.21 de | 37.52 ± 4.10 g | 427.33 ± 6.69 g |
10 | Chenxi Wax rapeseed | 20.05 ± 1.18 cdef | 3.92 ± 0.18 d | 31.95 ± 3.05 c | 56.77 ± 3.95 bc | 496.50 ± 7.47 e |
11 | Xiangyou No. 4 | 17.88 ± 2.41 efg | 4.13 ± 0.11 cd | 33.67 ± 2.58 b | 41.25 ± 3.21 fg | 512.43 ± 2.92 d |
12 | Huapingjing rapeseed | 17.46 ± 1.63 fg | 3.79 ± 0.23 d | 25.90 ± 2.29 e | 40.90 ± 1.34 fg | 773.94 ± 4.59 b |
CK1 | Youfei No. 1 | 14.47 ± 0.97 h | 3.83 ± 0.69 d | 27.72 ± 2.24 d | 59.27 ± 0.82 ab | 911.66 ± 2.21 a |
CK2 | Youfei No. 2 | 28.29 ± 3.66 a | 6.37 ± 1.21 a | 33.49 ± 2.18 b | 46.09 ± 0.67 def | 477.26 ± 3.20 f |
Number | Decomposition Rate (%) | Plant Nutrient Release Rate (%) | Soil Nutrient Content | ||||
---|---|---|---|---|---|---|---|
N | P | K | N (g.kg−1) | P (mg·kg−1) | K (mg·kg−1) | ||
1 | 50.01 ± 4.92 bcd | 52.82 ± 5.18 ab | 31.43 ± 4.05 ab | 89.00 ± 11.92 cd | 1.31 ± 0.01 abcde | 10.83 ± 1.15 efg | 627.00 ± 38.94 bc |
2 | 41.94 ± 8.36 cd | 37.98 ± 5.40 abc | 17.87 ± 2.53 cde | 91.62 ± 9.70 abcd | 1.24 ± 0.04 e | 19.57 ± 0.42 a | 634.67 ± 64.39 bc |
3 | 53.50 ± 1.97 bc | 36.23 ± 1.12 abc | 39.37 ± 3.65 a | 91.79 ± 7.35 abcd | 1.30 ± 0.05 bcde | 18.17 ± 1.33 ab | 801.00 ± 79.11 ab |
4 | 52.10 ± 5.03 bc | 49.82 ± 5.85 abc | 29.41 ± 3.31 abc | 88.28 ± 3.58 d | 1.29 ± 0.01 cde | 15.53 ± 1.44 bcd | 568.33 ± 39.68 c |
5 | 55.35 ± 2.72 b | 54.59 ± 7.24 a | 26.93 ± 1.79 abcd | 93.12 ± 6.52 abcd | 1.34 ± 0.03 abcd | 9.50 ± 1.00 fg | 681.67 ± 42.00 abc |
6 | 51.83 ± 3.87 bc | 45.93 ± 3.90 abc | 20.30 ± 2.69 bcde | 95.12 ± 3.12 a | 1.26 ± 0.02 de | 12.63 ± 1.19 def | 533.00 ± 66.91 c |
7 | 51.54 ± 1.67 bc | 46.30 ± 3.14 abc | 29.59 ± 3.57 abc | 92.03 ± 5.79 abcd | 1.33 ± 0.01 abcd | 13.50 ± 1.50 cde | 808.33 ± 95.76 ab |
8 | 76.13 ± 3.26 a | 29.21 ± 1.42 bcd | 17.04 ± 3.77 cde | 91.52 ± 11.7 abcd | 1.33 ± 0.05 abcde | 13.80 ± 2.02 cde | 727.00 ± 36.69 abc |
9 | 47.36 ± 7.30 bcd | 37.76 ± 3.35 abc | 12.12 ± 2.79 e | 94.65 ± 6.42 ab | 1.37 ± 0.04 ab | 8.83 ± 0.83 fg | 870.00 ± 95.63 a |
10 | 37.12 ± 5.95 d | 32.67 ± 2.12 abc | 21.91 ± 2.01 bcde | 92.87 ± 13.73 abcd | 1.27 ± 0.01 de | 15.30 ± 0.90 bcd | 835.67 ± 17.70 ab |
11 | 45.94 ± 3.98 bcd | 27.52 ± 2.39 cd | 21.15 ± 3.46 bcde | 94.18 ± 9.40 abc | 1.29 ± 0.01 cde | 8.53 ± 1.06 g | 669.337 ± 33.76 abc |
12 | 52.00 ± 3.11 bc | 38.88 ± 4.95 abc | 15.28 ± 1.96 de | 90.11 ± 8.60 bcd | 1.27 ± 0.05 cde | 20.80 ± 1.97 a | 728.67 ± 50.75 abc |
CK1 | 54.34 ± 1.47 bc | 17.88 ± 1.05 d | 31.30 ± 3.15 ab | 90.91 ± 9.31 abcd | 1.40 ± 0.02 a | 15.27 ± 0.78 bcd | 635.00 ± 69.29 bc |
CK2 | 56.90 ± 2.23 b | 35.74 ± 0.97 abc | 21.71 ± 1.80 bcde | 95.67 ± 5.64 a | 1.39 ± 0.02 ab | 17.43 ± 0.96 abc | 541.00 ± 70.31 c |
CK3 | 1.29 ± 0.01 cde | 10.23 ± 1.25 efg | 137.76 ± 16.24 d |
Number | Bacteria Abundance | Bacterial Diversity | Sequencing Depth Index | ||
---|---|---|---|---|---|
Chao1 | Observed_Species (OTUs) | Simpson | Shannon | Goods_Coverage | |
1 | 4058.6072 ab | 2734.6667 abc | 0.9891 ab | 9.2763 a | 0.9711 |
2 | 4413.1777 ab | 2412.0000 abc | 0.9956 a | 9.2743 a | 0.9729 |
3 | 3804.7922 ab | 2499.6667 abc | 0.9950 a | 9.3046 a | 0.9732 |
4 | 3830.2588 ab | 2733.0000 abc | 0.9954 a | 9.6060 a | 0.9737 |
5 | 3973.0098 ab | 2640.0000 abc | 0.9917 ab | 9.0900 a | 0.9710 |
6 | 4582.5752 ab | 2850.0000 a | 0.9966 a | 9.6172 a | 0.9681 |
7 | 4302.5791 ab | 2815.3333 ab | 0.9943 ab | 9.3451 a | 0.9692 |
8 | 4028.1704 ab | 2733.6667 abc | 0.9958 a | 9.4356 a | 0.9714 |
9 | 3459.6882 ab | 2301.0000 c | 0.9928 ab | 8.9602 a | 0.9762 |
10 | 3894.9641 ab | 2484.6667 abc | 0.9929 ab | 9.0594 a | 0.9722 |
11 | 4744.3932 a | 2874.0000 a | 0.9919 ab | 9.3011 a | 0.9664 |
12 | 3435.0007 b | 2354.6667 bc | 0.9939 ab | 9.0739 a | 0.9755 |
CK1 | 3805.9963 ab | 2519.0000 abc | 0.9949 a | 9.2522 a | 0.9726 |
CK2 | 3801.0806 ab | 2503.3333 abc | 0.9942 ab | 9.2416 a | 0.9743 |
CK3 | 4670.4347 ab | 2869.0000 a | 0.9815 b | 8.9931 a | 0.9669 |
Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Rank | ||
---|---|---|---|---|---|---|---|---|
Plant characters before decomposition | N | 0.752 | −0.017 | 0.565 | −0.009 | −0.247 | 0.040 | 2 |
P | 0.544 | −0.328 | 0.526 | −0.012 | 0.418 | 0.246 | 8 | |
K | −0.181 | 0.640 | 0.352 | −0.296 | 0.140 | 0.514 | 12 | |
Decomposition quantity (dry weight) | 0.051 | 0.615 | 0.006 | 0.581 | −0.475 | −0.048 | 13 | |
Glucosinolate content | −0.734 | 0.041 | −0.212 | 0.237 | 0.408 | 0.266 | 4 | |
Decomposition rate and nutrient release rate of plants | Decomposition rate | 0.509 | −0.398 | 0.170 | 0.442 | 0.146 | 0.101 | 10 |
YN | 0.309 | 0.010 | 0.598 | −0.339 | −0.445 | −0.310 | 15 | |
YP | 0.714 | −0.403 | −0.014 | 0.129 | −0.052 | 0.370 | 5 | |
YK | 0.197 | 0.398 | 0.475 | 0.000 | 0.473 | −0.371 | 16 | |
Soil nutrient content | TN | 0.531 | 0.164 | −0.013 | 0.723 | 0.074 | −0.199 | 17 |
TP | −0.195 | 0.897 | 0.277 | 0.202 | 0.041 | 0.073 | 11 | |
TK | 0.314 | 0.320 | −0.662 | −0.306 | 0.181 | −0.325 | 14 | |
Soil microorganism | Proteobacteria | 0.664 | 0.307 | −0.522 | 0.080 | −0.117 | 0.303 | 6 |
Actinobacteria | −0.650 | −0.461 | 0.058 | 0.519 | −0.038 | −0.149 | 7 | |
Bacteroidetes | 0.804 | −0.121 | 0.408 | 0.077 | 0.314 | −0.118 | 1 | |
Rokubacteria | 0.738 | −0.160 | −0.232 | −0.105 | 0.413 | −0.214 | 3 | |
Planctomycetes | −0.514 | −0.426 | 0.013 | −0.128 | −0.442 | 0.065 | 9 | |
Characteristic value | 5.076 | 2.840 | 2.389 | 1.774 | 1.613 | 1.109 | ||
Contribution rate % | 29.861 | 16.709 | 14.055 | 10.436 | 9.489 | 6.524 | ||
Cumulative contribution rate % | 29.861 | 46.570 | 60.625 | 71.062 | 80.551 | 87.075 |
Number | y1 | y2 | y3 | y4 | y5 | y6 | y | Rank |
---|---|---|---|---|---|---|---|---|
1 | 1.66 | −0.52 | −0.26 | −0.79 | −1.75 | 0.79 | 0.18 | 5 |
2 | −4.41 | 1.39 | 1.11 | −1.62 | 0.70 | 0.31 | −1.01 | 13 |
3 | −1.08 | 0.15 | −0.60 | −0.32 | −0.90 | −1.26 | −0.58 | 11 |
4 | −1.23 | −3.91 | −0.18 | −0.43 | −1.67 | 0.97 | −1.19 | 14 |
5 | 2.94 | 2.62 | 1.02 | 1.21 | −2.06 | −0.21 | 1.38 | 1 |
6 | −1.47 | −1.52 | 1.75 | 1.31 | −0.06 | −1.93 | −0.44 | 10 |
7 | 0.49 | 0.45 | −1.30 | −0.40 | −0.21 | −1.51 | −0.12 | 8 |
8 | 3.87 | −1.62 | −0.17 | 0.49 | 1.33 | 0.88 | 1.09 | 2 |
9 | 2.67 | −0.39 | −1.14 | −1.01 | 2.19 | −1.17 | 0.60 | 4 |
10 | −0.08 | 2.19 | −1.16 | −0.86 | −0.61 | 0.44 | 0.06 | 6 |
11 | −0.27 | 0.99 | −0.55 | −1.31 | 0.80 | 1.19 | 0.02 | 7 |
12 | −1.61 | −0.90 | −0.95 | 0.07 | 0.34 | −0.13 | −0.73 | 12 |
CK1 | −2.19 | 0.79 | −1.68 | 3.53 | 0.90 | 1.01 | −0.24 | 9 |
CK2 | 0.71 | 0.27 | 4.11 | 0.12 | 1.01 | 0.60 | 0.98 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ma, H.; Guan, C.; Guan, M. Germplasm Screening of Green Manure Rapeseed through the Effects of Short-Term Decomposition on Soil Nutrients and Microorganisms. Agriculture 2021, 11, 1219. https://doi.org/10.3390/agriculture11121219
Wang X, Ma H, Guan C, Guan M. Germplasm Screening of Green Manure Rapeseed through the Effects of Short-Term Decomposition on Soil Nutrients and Microorganisms. Agriculture. 2021; 11(12):1219. https://doi.org/10.3390/agriculture11121219
Chicago/Turabian StyleWang, Xiaodan, Hua Ma, Chunyun Guan, and Mei Guan. 2021. "Germplasm Screening of Green Manure Rapeseed through the Effects of Short-Term Decomposition on Soil Nutrients and Microorganisms" Agriculture 11, no. 12: 1219. https://doi.org/10.3390/agriculture11121219
APA StyleWang, X., Ma, H., Guan, C., & Guan, M. (2021). Germplasm Screening of Green Manure Rapeseed through the Effects of Short-Term Decomposition on Soil Nutrients and Microorganisms. Agriculture, 11(12), 1219. https://doi.org/10.3390/agriculture11121219