Multiple Leveling for Paddy Field Preparation with Double Axis Rotary Tillage Accelerates Rice Growth and Economic Benefits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experimental Site and Soils
2.2. Experimental Design and Equipment
2.3. Agronomic Management
2.4. Measurements
2.5. Statistical Method
3. Results
3.1. Paddy Field Surface Flatness
3.2. Growing Stage
3.3. Plant Height
3.4. DMA
3.5. Grain Yield and Its Components
3.6. Soil Bulk Density
3.7. Economic Benefit
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, C.Y.; Huang, H.; Huang, G.Q.; Sun, D.P.; Liang, Y.G. Problems and countermeasures of paddy field multiple cropping in southern China. Crops 2016, 171, 1–7. (In Chinese) [Google Scholar]
- Xu, L.; Yang, M. Paddy Rice Production Mechanization in China—A Review. Ama-Agric. Mech. Asian Afr. 2014, 45, 7–11. [Google Scholar]
- Devkota, K.P.; Yadav, S.; Humphreys, E.; Kumar, A.; Kumar, P.; Kumar, V.; Malik, R.K.; Srivastava, A.K. Land gradient and configuration effects on yield, irrigation amount and irrigation water productivity in rice-wheat and maize-wheat cropping systems in Eastern India. Agric. Water Manag. 2021, 255, 107036. [Google Scholar] [CrossRef]
- Agarwal, M.C.; Goel, A.C. Effect of field levelling quality on irrigation efficiency and crop yield. Agric. Water Manag. 1981, 4, 457–464. [Google Scholar] [CrossRef]
- Iskandar, A.; Mehmood, U.H.; Kahramon, J. Water saving and economic impacts of land leveling: The case study of cotton production in Tajikistan. Irrig. Drain. Syst. 2007, 21, 251–263. [Google Scholar]
- Jung, K.Y.; Choi, Y.D.; Lee, S.; Chun, H.G.; Kang, H.W. Spatial Analyses of Soil Chemical Properties from a Remodeled Paddy Field as Affected by Wet Land Leveling. Korean J. Soil Sci. Fertil. 2016, 49, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Osari, H. A new method for assessing land leveling to produce high quality consolidated paddy fields. Paddy Water Environ. 2003, 1, 35–41. [Google Scholar] [CrossRef]
- Anwar, A.A.; Ahmad, W. Precision surface irrigation with conjunctive water use. Sustain. Water Resour. Manag. 2020, 6, 75. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Z.; Chen, J.; Yu, L.; Ye, J. Design of nonlinear leveling control system for paddy land leveler. Trans. Chin. Soc. Agric. Mach. 2014, 45, 79–84. (In Chinese) [Google Scholar]
- Quirós-Vargas, J.; Romanelli, T.L.; Rascher, U.; Agüero, J. Sustainability Performance through Technology Adoption: A Case Study of Land Leveling in a Paddy Field. Agronomy 2020, 10, 1681. [Google Scholar] [CrossRef]
- Hu, L.; Lin, C.; Luo, X.; Yang, W.; Xu, Y.; Zhou, H.; Zhang, Z. Design and experiment on auto leveling control system of agricultural implements. Trans. Chin. Soc. Agric. Eng. 2015, 31, 15–20. (In Chinese) [Google Scholar]
- Tang, L.; Hu, L.; Zang, Y.; Luo, X.; Zhou, H.; Zhao, R.; He, J. Method and experiment for height measurement of scraper with water surface as benchmark in paddy field. Comput. Electron. Agric. 2018, 152, 198–205. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, L.; Luo, X.W.; Tang, L.M.; Du, P.; Mao, T.; Zhao, R.M.; He, J. Design and test of laser-controlled paddy field levelling-beater. Int. J. Agric. Biol. Eng. 2020, 13, 57–65. [Google Scholar] [CrossRef]
- Aryal, J.P.; Mehrotra, M.B.; Jat, M.L.; Sidhu, H.S. Impacts of laser land leveling in rice-wheat systems of the north-western indo-gangetic plains of India. Food Secur. 2015, 7, 725–738. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, C.; Li, L.; Li, M. Optimization of working parameters for puddling and flatting machine in paddy field. Int. J. Agric. Biol. Eng. 2016, 9, 88–96. [Google Scholar]
- Zhou, J.; Xu, J.; Wang, Y.; Liang, Y. Development of paddy field rotary-leveling machine based on GNSS. Trans. Chin. Soc. Agric. Mach. 2020, 51, 38–43. (In Chinese) [Google Scholar]
- Hu, L.; Xu, Y.; He, J.; Du, P.; Zhao, R.; Luo, X. Design and Test of Tractor-Attached Laser-Controlled Rotary Scraper Land Leveler for Paddy Fields. J. Irrig. Drain. Eng. 2020, 146, 04020002. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, J.; Chen, M.; Huang, T.; Miao, L. Design and calibration of a rotating laser transmitter for fast and high-precision laser self-levelling system. Measurement 2021, 171, 108850. [Google Scholar] [CrossRef]
- Hu, L.; Yang, W.; He, J.; Zhou, H.; Zhang, Z.; Luo, X.; Zhao, R.; Tang, L.; Du, P. Roll angle estimation using low cost MEMS sensors for paddy field machine. Comput. Electron Agric. 2019, 158, 183–188. [Google Scholar] [CrossRef]
- Wang, L.; Xi, X.; Shan, X.; Qiu, W.; Wang, M.; Zhang, J.; Zhang, R. Design of compound paddy field soil preparation machine with double-axis rotary and automatic leveling devices. J. Yangzhou Univ. (Nat. Sci. Ed.) 2020, 23, 24–28. (In Chinese) [Google Scholar]
- Jamil, I.; Jun, W.; Mughal, B.; Waheed, J.; Hussain, H.; Waseem, M. Agricultural innovation: A comparative analysis of economic benefits gained by farmers under climate resilient and conventional agricultural practices. Land Use Policy 2021, 108, 105581. [Google Scholar] [CrossRef]
- Xing, Z.; Hu, Y.; Qian, H.; Cao, W.; Guo, B.; Wei, H.; Xu, K.; Huo, Z.; Zhou, G.; Dai, Q.; et al. Comparison of yield traits in rice among three mechanized planting methods in a rice-wheat rotation system. J. Integr. Agric. 2017, 16, 1451–1466. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Ma, L.; Zhang, W.; Wang, F.; Ma, W.; Zhang, F. Estimation of nutrient resource quantity of crop straw and its utilization situation in China. Trans. Chin. Soc. Agric. Eng. 2009, 25, 173–179. (In Chinese) [Google Scholar]
- Xu, C.; Yuan, Q.; Zhao, S.; He, T.; Song, N. Effects of pretreatments on physical and chemical characteristics of wheat straw used as a maintenance-free compressed green roof substrate material. J. Clean. Prod. 2020, 227, 113381. [Google Scholar] [CrossRef]
- Zhang, H.; Xing, Z.; Wen, W.; Tian, J.; Tao, Y.; Cheng, S.; Hu, Q.; Hu, Y.; Guo, B.; Wei, H. Growth Characteristics and Key Techniques for Stable Yield of Growth Constrained Direct Seeding Rice. Sci. Agric. Sin. 2021, 54, 1322–1337. (In Chinese) [Google Scholar]
- Du, P.; Luo, H.W.; He, L.X.; Mao, T.; Lai, R.F.; Tang, X.R.; Tang, Q.Y.; Hu, L. The effect of plough tillage on productivity of ratooning rice system and soil organic matter. Appl. Ecol. Environ. Res. 2019, 17, 7641–7647. [Google Scholar] [CrossRef]
- Pan, S.; Wen, X.; Wang, Z.; Ashraf, U.; Tian, H.; Duan, M.; Mo, Z.; Fan, P.; Tang, X. Benefits of mechanized deep placement of nitrogen fertilizer in direct-seeded rice in South China. Field Crops Res. 2017, 203, 139–149. [Google Scholar] [CrossRef]
- Dou, Z.; Li, Y.; Guo, H.; Chen, L.; Jiang, J.; Zhou, Y.; Xu, Q.; Xing, Z.; Gao, H.; Zhang, H. Effects of mechanically transplanting methods and planting densities on yield and quality of Nanjing 2728 under rice-crayfish continuous production system. Agronomy 2021, 11, 488. [Google Scholar] [CrossRef]
- Xie, X.; Shan, S.; Wang, Y.; Cao, F.; Chen, J.; Huang, M.; Zou, Y. Dense planting with reducing nitrogen rate increased grain yield and nitrogen use efficiency in two hybrid rice varieties across two light conditions. Field Crops Res. 2019, 236, 24–32. [Google Scholar] [CrossRef]
- Hu, Y.; Cong, S.; Zhang, H. Comparison of the Grain Quality and Starch Physicochemical Properties between Japonica Rice Cultivars with Different Contents of Amylose, as Affected by Nitrogen Fertilization. Agronomy 2021, 11, 11070616. [Google Scholar] [CrossRef]
- Ling, C.; Su, Z.; Zhang, H. Relationship between earbearing tiller percentage and population quality and its influential factors in rice. Acta Agron. Sin. 1995, 21, 463–469. (In Chinese) [Google Scholar]
- Zhang, H.; Yu, C.; Chen, K.; Kong, X.; Liu, H.; Chen, J.; Gu, J.; Liu, L.; Wang, Z.; Yang, J. Effect of direct-seeding methods on physiological characteristics and grain yield of rice and its cost analysis. Trans. Chin. Soc. Agric. Eng. 2017, 33, 58–64. (In Chinese) [Google Scholar]
Items | Soil Depth (cm) | |
---|---|---|
0–15 | 15–30 | |
Soil organic matter (g kg−1) | 23.8 | 20.5 |
Alkaline-hydrolysable nitrogen (mg kg−1) | 42.0 | 39.6 |
Available phosphorus (by Olsen, mg kg−1) | 13.7 | 11.4 |
Available potassium (mg kg−1) | 71.6 | 65.1 |
pH | 7.7 | 7.4 |
Treatments | Mechanical Operations for Agronomic Arrangement |
---|---|
Traditional paddy field preparation (TT) | Complete the various operations successively, which includes basal fertilizing, water retting for farmland, returning straw by rotary tillage, and leveling, as the control group. |
Double axis rotary tillage (DR) | Returning straw into field by double axis rotary tillage, and other working procedures were the same as TT. |
Multiple operations for paddy field preparation (DR + ML) | After water retting for field, use a multiple levelling machinery to complete basal fertilizing, straw returning by double axis rotary tillage, and leveling at one time. |
Year | Treatments | Sowing Date | Transplanting Date | Jointing | Maturity | Harvesting | Total Growth Period (d) | Main Growth Period (d) |
---|---|---|---|---|---|---|---|---|
2019 | TT | 5–23 | 6–14 | 7–30 | 10–15 | 10–19 | 149 | 127 |
DR | 5–23 | 6–14 | 7–29 | 10–12 | 10–19 | 149 | 127 | |
DR + ML | 5–23 | 6–09 | 7–26 | 10–10 | 10–19 | 149 | 132 | |
2020 | TT | 5–28 | 6–23 | 8–03 | 10–22 | 10–26 | 151 | 125 |
DR | 5–28 | 6–23 | 7–31 | 10–21 | 10–26 | 151 | 125 | |
DR + ML | 5–28 | 6–17 | 7–29 | 10–18 | 10–26 | 151 | 131 |
Year | Treatment | No. of Panicle (104/hm2) | Spikelets (No. per Panicle) | Total Spikelets (108/hm2) | Seed Setting Rate (%) | 1000-Grain Weight (g) | Actual Grain Yield (kg/hm2) |
---|---|---|---|---|---|---|---|
2019 | TT | 242 a | 124 a | 3.01 b | 92.6 a | 26.57 a | 6947 b |
DR | 258 a | 122 a | 3.16 b | 93.0 a | 27.09 a | 7502 ab | |
DR + ML | 279 a | 129 a | 3.60 a | 93.2 a | 27.13 a | 7818 a | |
2020 | TT | 248 a | 123 a | 3.05 b | 91.1 a | 26.32 a | 6806 b |
DR | 256 a | 129 a | 3.29 b | 92.9 a | 27.13 a | 7746 ab | |
DR + ML | 283 a | 131 a | 3.70 a | 91.7 a | 27.36 a | 8267 a |
Items | Treatments | ||
---|---|---|---|
TT | DR | DR + ML | |
Input | |||
Mechanical operation cost for paddy field soil preparation † (Yuan/hm2) | 1500 | 1650 | 750 |
Mechanical operation cost for transplant, plant protection and harvest (Yuan/hm2) | 1800 | 1800 | 1800 |
Materials ‡ (Yuan/hm2) | 7275 | 7275 | 7275 |
Water management (Yuan/hm2) | 1350 | 1350 | 1350 |
Total input | 11,925 | 12,075 | 11,175 |
Output | |||
Yield (kg/hm2) | 6877 | 7624 | 8043 |
Production value (Yuan/hm2) | 18,568 | 20,585 | 21,716 |
Economic benefit (Yuan/hm2) | 6643 | 8510 | 10,541 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, J.; Yuan, W.; Zhang, R.; Xi, X. Multiple Leveling for Paddy Field Preparation with Double Axis Rotary Tillage Accelerates Rice Growth and Economic Benefits. Agriculture 2021, 11, 1223. https://doi.org/10.3390/agriculture11121223
Zhang Y, Liu J, Yuan W, Zhang R, Xi X. Multiple Leveling for Paddy Field Preparation with Double Axis Rotary Tillage Accelerates Rice Growth and Economic Benefits. Agriculture. 2021; 11(12):1223. https://doi.org/10.3390/agriculture11121223
Chicago/Turabian StyleZhang, Yifu, Jian Liu, Wei Yuan, Ruihong Zhang, and Xiaobo Xi. 2021. "Multiple Leveling for Paddy Field Preparation with Double Axis Rotary Tillage Accelerates Rice Growth and Economic Benefits" Agriculture 11, no. 12: 1223. https://doi.org/10.3390/agriculture11121223
APA StyleZhang, Y., Liu, J., Yuan, W., Zhang, R., & Xi, X. (2021). Multiple Leveling for Paddy Field Preparation with Double Axis Rotary Tillage Accelerates Rice Growth and Economic Benefits. Agriculture, 11(12), 1223. https://doi.org/10.3390/agriculture11121223