Continuous Cropping Changes the Composition and Diversity of Bacterial Communities: A Meta-Analysis in Nine Different Fields with Different Plant Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Soil Sampling
2.2. Analysis of Soil Physicochemical Properties
2.3. Analysis of Soil Enzyme Activities
2.4. DNA Extraction and MiSeq Sequencing
2.5. Bioinformatic Analyses
2.6. Statistical Analyses
3. Results
3.1. Soil Physicochemical Properties and Enzyme Activities
3.2. Bacterial Community Composition and Structure Variations
3.3. Microbial Diversity
3.3.1. Alpha Diversity
3.3.2. Beta Diversity
3.4. Effect of Environmental Factors on Bacterial Communities
3.5. Analysis of Functional Bacteria under Different Continuous Cropping Fields
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PcoA | Principal Coordinate Analysis |
NGS | Next-Generation Sequencing |
RDA | Redundancy Analysis |
OTUs | Operational Taxonomic Units |
PICRUSt | Phylogenetic Investigation of Communities by Reconstruction of Unobserved States |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
References
- Alami, M.M.; Xue, J.; Ma, Y.; Zhu, D.; Gong, Z.; Shu, S.; Wang, X. Structure, Diversity, and Composition of Bacterial Communities in Rhizospheric Soil of Coptis chinensis Franch under Continuously Cropped Fields. Diversity 2020, 12, 57. [Google Scholar] [CrossRef] [Green Version]
- Alami, M.M.; Xue, J.; Ma, Y.; Zhu, D.; Abbas, A.; Gong, Z.; Wang, X. Structure, Function, Diversity, and Composition of Fungal Communities in Rhizospheric Soil of Coptis chinensis Franch under a Successive Cropping System. Plants 2020, 9, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedemann, T.; Otto, B.; Klätschke, K.; Schumacher, U.; Tao, Y.; Leung, A.K.-M.; Efferth, T.; Schröder, S. Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells. J. Ethnopharmacol. 2014, 155, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, L.; Lou, G.-H.; Zeng, H.-R.; Hu, J.; Huang, Q.-W.; Peng, W.; Yang, X.-B. Coptidis Rhizoma: A comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Pharm. Biol. 2019, 57, 193–225. [Google Scholar] [CrossRef] [Green Version]
- Xiang, K.-L.; Wu, S.-D.; Yu, S.-X.; Liu, Y.; Jabbour, F.; Erst, A.S.; Zhao, L.; Wang, W.; Chen, Z.-D. The First Comprehensive Phylogeny of Coptis (Ranunculaceae) and Its Implications for Character Evolution and Classification. PLoS ONE 2016, 11, e0153127. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, S.-Y.; Chen, L.; Huang, X.-J.; Zhang, Q.-W.; Jiang, R.-W.; Yao, F.; Ye, W.-C. New enantiomeric isoquinoline alkaloids from Coptis chinensis. Phytochem. Lett. 2014, 7, 89–92. [Google Scholar] [CrossRef]
- Sheng, Y.; Wang, H.; Wang, M.; Li, H.; Xiang, L.; Pan, F.; Chen, X.; Shen, X.; Yin, C.; Mao, Z. Effects of Soil Texture on the Growth of Young Apple Trees and Soil Microbial Community Structure Under Replanted Conditions. Hortic. Plant J. 2020, 6, 123–131. [Google Scholar] [CrossRef]
- Xia, Q.; Rufty, T.; Shi, W. Soil microbial diversity and composition: Links to soil texture and associated properties. Soil Biol. Biochem. 2020, 149, 107953. [Google Scholar] [CrossRef]
- Scarlett, K.; Denman, S.; Clark, D.R.; Forster, J.; Vanguelova, E.; Brown, N.; Whitby, C. Relationships between nitrogen cycling microbial community abundance and composition reveal the indirect effect of soil pH on oak decline. ISME J. 2021, 15, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Chen, Y.; Lin, Z.; Tuo, Y.; Li, H.; Wang, Y. Differences in Soil Microbial Community Composition Between Suppressive and Root Rot-Conducive in Tobacco Fields. Curr. Microbiol. 2021, 78, 624–633. [Google Scholar] [CrossRef]
- Venter, Z.S.; Jacobs, K.; Hawkins, H.-J. The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiologia 2016, 59, 215–223. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y.; Ren, T.; Tian, Z.; Wang, G.; He, X.; Tian, C. Short-term effect of tillage and crop rotation on microbial community structure and enzyme activities of a clay loam soil. Biol. Fertil. Soils 2014, 50, 1077–1085. [Google Scholar] [CrossRef]
- Mu-chun, Y.; Ting-ting, X.; Peng-hui, S.; Jian-jun, D. Effects of Different Cropping Patterns of Soybean and Maize Seedlings on Soil Enzyme Activities and MBC and MBN. J. Northeast Agric. Univ. (Engl. Ed.) 2012, 19, 42–47. [Google Scholar] [CrossRef]
- Van Nguyen, S.; Nguyen, P.T.K.; Araki, M.; Perry, R.N.; Ba Tran, L.; Minh Chau, K.; Min, Y.Y.; Toyota, K. Effects of cropping systems and soil amendments on nematode community and its relationship with soil physicochemical properties in a paddy rice field in the Vietnamese Mekong Delta. Appl. Soil Ecol. 2020, 156, 103683. [Google Scholar] [CrossRef]
- Peralta, A.L.; Sun, Y.; McDaniel, M.D.; Lennon, J.T. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 2018, 9, e02235. [Google Scholar] [CrossRef]
- Yang, T.; Siddique, K.H.M.; Liu, K. Cropping systems in agriculture and their impact on soil health-A review. Glob. Ecol. Conserv. 2020, 23, e01118. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, G.; Xu, Y.; Wang, L.; Lin, D.; Liang, X.; Shi, X. In situ stabilization remediation of cadmium contaminated soils of wastewater irrigation region using sepiolite. J. Environ. Sci. 2012, 24, 1799–1805. [Google Scholar] [CrossRef]
- Xiong, W.; Li, Z.; Liu, H.; Xue, C.; Zhang, R.; Wu, H.; Li, R.; Shen, Q. The Effect of Long-Term Continuous Cropping of Black Pepper on Soil Bacterial Communities as Determined by 454 Pyrosequencing. PLoS ONE 2015, 10, e0136946. [Google Scholar] [CrossRef] [Green Version]
- Robert, C. Edgar, Search and clustering orders of magnitude faster than BLAST. Bioinform 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [Green Version]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Zhalnina, K.; Dias, R.; de Quadros, P.D.; Davis-Richardson, A.; Camargo, F.A.O.; Clark, I.M.; McGrath, S.P.; Hirsch, P.R.; Triplett, E.W. Soil pH Determines Microbial Diversity and Composition in the Park Grass Experiment. Microb. Ecol. 2015, 69, 395–406. [Google Scholar] [CrossRef]
- Bartram, A.K.; Jiang, X.; Lynch, M.D.J.; Masella, A.P.; Nicol, G.W.; Dushoff, J.; Neufeld, J.D. Exploring links between pH and bacterial community composition in soils from the Craibstone Experimental Farm. FEMS Microbiol. Ecol. 2014, 87, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, S.D.; Palmer, A.S.; Winsley, T.; Lamb, E.; Bissett, A.; Brown, M.V.; van Dorst, J.; Ji, M.; Ferrari, B.C.; Grogan, P.; et al. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biol. Biochem. 2014, 78, 10–20. [Google Scholar] [CrossRef]
- Grandy, A.S.; Porter, G.A.; Erich, M.S. Organic Amendment and Rotation Crop Effects on the Recovery of Soil Organic Matter and Aggregation in Potato Cropping Systems. Soil Sci. Soc. Am. J. 2002, 66, 1311–1319. [Google Scholar] [CrossRef] [Green Version]
- Shipitalo, M.J.; Owens, L.B.; Bonta, J.V.; Edwards, W.M. Effect of No-Till and Extended Rotation on Nutrient Losses in Surface Runoff. Soil Sci. Soc. Am. J. 2013, 77, 1329–1337. [Google Scholar] [CrossRef]
- Galindo, F.S.; Delate, K.; Heins, B.; Phillips, H.; Smith, A.; Pagliari, P.H. Cropping System and Rotational Grazing Effects on Soil Fertility and Enzymatic Activity in an Integrated Organic Crop-Livestock System. Agronomy 2020, 10, 803. [Google Scholar] [CrossRef]
- Zuber, S.M.; Behnke, G.D.; Nafziger, E.D.; Villamil, M.B. Crop Rotation and Tillage Effects on Soil Physical and Chemical Properties in Illinois. Agron. J. 2015, 107, 971–978. [Google Scholar] [CrossRef] [Green Version]
- Belay, A.; Claassens, A.S.; Wehner, F.C. Soil nutrient contents, microbial properties and maize yield under long-term legume-based crop rotation and fertilization: A comparison of residual effect of manure and NPK fertilizers. S. Afr. J. Plant Soil 2002, 19, 104–110. [Google Scholar] [CrossRef]
- Wojewódzki, P.; Ciescinska, B. Effect of crop rotation and long term fertilization on the carbon and glomalin content in the soi. J. Cent. Eur. Agric. 2012, 13, 814–821. [Google Scholar] [CrossRef]
- Li, R.; Liu, Y.; Chu, G. Effects of different cropping patterns on soil enzyme activities and soil microbial community diversity in oasis farmland. J. Appl. Ecol. 2015, 26, 490–496. [Google Scholar]
- Xiao, X.; Zhu, W.; Du, C.; Shi, Y.; Wang, J. Effect of Crop Rotation and Biological Manure on Quality and Yield of “Chuju” Chrysanthemum morifolium and Continuous Cropping Soil Enzyme Activities. Zhong Yao Cai 2015, 38, 889–893. [Google Scholar]
- Cardinale, B.J.; Srivastava, D.S.; Emmett Duffy, J.; Wright, J.P.; Downing, A.L.; Sankaran, M.; Jouseau, C. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 2006, 443, 989–992. [Google Scholar] [CrossRef]
- Dorr de Quadros, P.; Zhalnina, K.; Davis-Richardson, A.; Fagen, J.R.; Drew, J.; Bayer, C.; Camargo, F.A.O.; Triplett, E.W. The Effect of Tillage System and Crop Rotation on Soil Microbial Diversity and Composition in a Subtropical Acrisol. Diversity 2012, 4, 375–395. [Google Scholar] [CrossRef]
- Janvier, C.; Villeneuve, F.; Alabouvette, C.; Edel-Hermann, V.; Mateille, T.; Steinberg, C. Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil Biol. Biochem. 2007, 39, 1–23. [Google Scholar] [CrossRef]
- Enwall, K.; Nyberg, K.; Bertilsson, S.; Cederlund, H.; Stenström, J.; Hallin, S. Long-term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soil. Soil Biol. Biochem. 2007, 39, 106–115. [Google Scholar] [CrossRef]
- Wang, R.; Xiao, Y.; Lv, F.; Hu, L.; Wei, L.; Yuan, Z.; Lin, H. Bacterial community structure and functional potential of rhizosphere soils as influenced by nitrogen addition and bacterial wilt disease under continuous sesame cropping. Appl. Soil Ecol. 2018, 125, 117–127. [Google Scholar] [CrossRef]
- Willis, A.D. Rarefaction, Alpha Diversity, and Statistics. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Walters, K.E.; Martiny, J.B.H. Alpha-, beta-, and gamma-diversity of bacteria varies across habitats. PLoS ONE 2020, 15, e0233872. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.D.; Grunwald, G.K.; Zerbe, G.O.; Mikulich-Gilbertson, S.K.; Robertson, C.E.; Zemanick, E.T.; Harris, J.K. On the Use of Diversity Measures in Longitudinal Sequencing Studies of Microbial Communities. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-H.; Huang, X.-Q.; Zhang, F.-G.; Zhao, D.-K.; Yang, X.-M.; Shen, Q.-R. Application of Trichoderma harzianum SQR-T037 bio-organic fertiliser significantly controls Fusarium wilt and affects the microbial communities of continuously cropped soil of cucumber. J. Sci. Food Agric. 2012, 92, 2465–2470. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, J.; Gu, T.; Zhang, W.; Shen, Q.; Yin, S.; Qiu, H. Microbial Community Diversities and Taxa Abundances in Soils along a Seven-Year Gradient of Potato Monoculture Using High Throughput Pyrosequencing Approach. PLoS ONE 2014, 9, e86610. [Google Scholar] [CrossRef]
- Mazzola, M. Assessment and management of soil microbial community structure for disease suppression. Annu. Rev. Phytopathol. 2004, 42, 35–59. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, A.C.; Smith, K.L. Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 1995, 170, 75–86. [Google Scholar] [CrossRef]
- Li, X.G.; Ding, C.F.; Zhang, T.L.; Wang, X.X. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biol. Biochem. 2014, 72, 11–18. [Google Scholar] [CrossRef]
- Zhao, J.; Ni, T.; Li, Y.; Xiong, W.; Ran, W.; Shen, B.; Shen, Q.; Zhang, R. Responses of Bacterial Communities in Arable Soils in a Rice-Wheat Cropping System to Different Fertilizer Regimes and Sampling Times. PLoS ONE 2014, 9, e85301. [Google Scholar] [CrossRef]
Fields | Available Nitrogen (mg/kg) | Available Phosphorus (mg/kg) | Available Potassium (mg/kg) | Available Boron (mg/kg) |
---|---|---|---|---|
LZ | 118.98 ± 0.01 d | 179.84 ± 0.39 b | 204.31 ± 1.20 c | 0.20 ± 0.03 cd |
HY2 | 132.97 ± 0.03 b | 127.56 ± 0.58 e | 583.45 ± 0.50 a | 0.39 ± 0.02 a |
HY6 | 118.95 ± 0.01 d | 72.92 ± 6.84 f | 514.95 ± 2.03 b | 0.24 ± 0.00 bc |
HW2 | 69.97 ± 0.00 i | 36.44 ± 0.75 g | 53.33 ± 0.88 h | 0.17 ± 0.00 ef |
HW6 | 90.98 ± 0.01 g | 22.33 ± 0.33 h | 73.66 ± 1.20 g | 0.19 ± 0.01 de |
HH | 125.97 ± 0.01 c | 297.05 ± 1.12 a | 54.99 ± 0.58 h | 0.27 ± 0.02 b |
HB | 97.99 ± 0.01 f | 165.48 ± 0.58 c | 129.65 ± 0.66 e | 0.23 ± 0.01 bcd |
HS | 104.97 ± 0.02 e | 154.16 ± 2.83 d | 157.65 ± 0.34 d | 0.24 ± 0.01 bc |
LH | 139.98 ± 0.00 a | 3.76 ± 0.06 i | 110.65 ± 1.76 f | 0.13 ± 0.01 f |
Fields | Total Nitrogen (g/kg) | Total Phosphorus (g/kg) | Total Potassium (g/kg) |
---|---|---|---|
LZ | 0.92 ± 0.01 abc | 12.87 ± 0.08 d | 7.98 ± 0.07 c |
HY2 | 0.90 ± 0.05 abc | 17.19 ± 0.14 b | 7.28 ± 0.02 d |
HY6 | 0.95 ± 0.04 ab | 12.53 ± 0.10 de | 12.75 ± 0.09 a |
HW2 | 0.46 ± 0.02 d | 4.09 ± 0.08 h | 5.64 ± 0.03 f |
HW6 | 0.76 ± 0.05 c | 4.82 ± 0.10 g | 3.67 ± 0.07 i |
HH | 1.06 ± 0.07 a | 20.84 ± 0.20 a | 5.06 ± 0.11 g |
HB | 0.92 ± 0.04 abc | 15.95 ± 0.15 c | 12.21 ± 0.05 b |
HS | 0.77 ± 0.01 bc | 12.45 ± 0.06 e | 12.43 ± 0.30 ab |
LH | 1.04 ± 0.10 a | 3.85 ± 0.09 h | 6.34 ± 0.10 e |
Fields | Urease Activities (mg/(g∙d)) | Sucrase Activities (mg/(g∙d)) | Phosphatase Activities (mg/(g∙d)) |
---|---|---|---|
LZ | 0.65 ± 0.00 f | 20.82 ± 0.34 b | 3.09 ± 0.02 def |
HY2 | 1.38 ± 0.01 b | 19.43 ± 0.48 c | 3.53 ± 0.06 bc |
HY6 | 1.85 ± 0.01 a | 32.76 ± 0.04 a | 4.03 ± 0.11 a |
HW2 | 0.75 ± 0.02 e | 15.52 ± 0.21 d | 3.12 ± 0.04 de |
HW6 | 0.85 ± 0.01 d | 13.39 ± 0.16 e | 2.85 ± 0.03 f |
HH | 0.79 ± 0.04 e | 8.39 ± 0.10 g | 2.46 ± 0.18 g |
HB | 0.88 ± 0.01 d | 8.69 ± 1.12 g | 3.72 ± 0.02 b |
HS | 0.86 ± 0.01 d | 7.29 ± 0.16 h | 2.96 ± 0.03 ef |
LH | 0.99 ± 0.02 c | 10.92 ± 0.21 f | 3.65 ± 0.06 ab |
Bacterial Genera | Functions | Relative Abundance (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LZ | HY2 | HY6 | HW2 | HW6 | HH | HB | HS | LH | |||
N | Sphingomonas | Biocontrol bacteria, degradation of aromatic compounds, dissolution of phosphorus, resistance to a variety of pathogens, nitrogen fixation | 1.07 | 1.98 | 2.22 | 1.84 | 0.79 | 0.55 | 2.33 | 1.87 | 0.38 |
Gemmatimonas | Nitrogen fixation | 0.82 | 0.86 | 0.9 | 1.45 | 0.63 | 0.64 | 1.49 | 1.2 | 0.49 | |
Bradyrhizobium | Symbiotic nitrogen fixation and nitrate denitrification | 2.73 | 3.07 | 3.33 | 3.47 | 2.64 | 2.29 | 3.08 | 2.13 | 4.21 | |
Devosia | Symbiotic nitrogen fixation | 0.25 | 0.51 | 0.46 | 0.52 | 0.11 | 0.12 | 0.36 | 0.58 | 0.08 | |
Nocardioides | Nitrate reduction | 0.4 | 0.77 | 1.07 | 0.05 | 0.03 | 0.03 | 0.49 | 0.23 | 0.22 | |
Pseudonocardia | Nitrate reduction | 0.13 | 0.18 | 0.13 | 0.12 | 0.09 | 0.1 | 0.15 | 0.06 | 0.13 | |
Rhodopseudomonas | Nitrogen fixation | 0.04 | 0.12 | 0.08 | 0.08 | 0.02 | 0.03 | 0.11 | 0.13 | 0.08 | |
C | Reyranella | Chemotrophic aerobic bacteria | 0.47 | 0.56 | 0.46 | 0.5 | 0.38 | 0.3 | 0.63 | 0.39 | 0.65 |
Edaphobacter | Chemotrophic aerobic bacteria | 0.08 | 0.04 | 0.1 | 0.03 | 0.05 | 0.01 | 0.04 | 0.04 | 0.03 | |
Sphingobium | Degradation of aromatic compounds and lignin | 0.04 | 0.1 | 0.15 | 0.01 | 0 | 0.01 | 0.02 | 0.03 | 0 | |
Blastococcus | Control of soil borne diseases | 0.05 | 0.27 | 0.26 | 0.58 | 0.2 | 0.11 | 0.13 | 0.3 | 0.01 | |
C,N | Arenimonas | Nitrate reduction | 0.04 | 0.24 | 0.31 | 0.06 | 0.01 | 0 | 0.1 | 0.1 | 0.04 |
Gaiella | Nitrate reduction | 0.67 | 1.49 | 0.68 | 0.16 | 0.25 | 0.39 | 0.85 | 0.27 | 0.55 | |
Rhodanobacter | Nitrate reduction | 0.5 | 0.9 | 0.73 | 2.72 | 0.48 | 0.58 | 1.01 | 2.45 | 0.14 | |
Mesorhizobium | Symbiotic nitrogen fixation | 0.22 | 0.57 | 0.51 | 0.61 | 0.18 | 0.13 | 0.37 | 0.47 | 0.04 | |
Terrabacter | Degrading bacteria and nitrate reduction | 0.03 | 0.74 | 1.12 | 0.27 | 0.04 | 0.02 | 0.36 | 0.88 | 0 | |
Arthrobacter | Degrading bacteria, desulfurization, phosphorus dissolution, nitrate reduction, lignin decomposition | 0.61 | 3.54 | 3.82 | 1.41 | 0.62 | 0.2 | 1.71 | 2.98 | 0.07 | |
Others | Micromonospora | Degrading bacteria and producing a variety of antibiotics | 0.17 | 0.3 | 0.11 | 0.11 | 0.12 | 0.06 | 0.15 | 0.06 | 0.13 |
Actinoplanes | Produce a variety of antibiotics | 0.17 | 0.22 | 0.27 | 0.33 | 0.28 | 0.07 | 0.16 | 0.07 | 0.06 | |
Mycobacterium | Degrading bacteria, nitrogen removal and phosphorus dissolution | 0.49 | 0.73 | 0.92 | 0.69 | 0.77 | 0.61 | 0.88 | 0.56 | 0.59 | |
Microbacterium | Desulphurization | 0.15 | 0.45 | 0.32 | 0.06 | 0 | 0.01 | 0.06 | 0.15 | 0.03 | |
Lysobacter | Biocontrol bacteria | 0.1 | 0.3 | 0.55 | 0.02 | 0.01 | 0 | 0.07 | 0.1 | 0.02 | |
Streptomyces | Produce antibiotics | 0.26 | 0.29 | 0.42 | 0.24 | 0.15 | 0.06 | 0.26 | 0.07 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alami, M.M.; Pang, Q.; Gong, Z.; Yang, T.; Tu, D.; Zhen, O.; Yu, W.; Alami, M.J.; Wang, X. Continuous Cropping Changes the Composition and Diversity of Bacterial Communities: A Meta-Analysis in Nine Different Fields with Different Plant Cultivation. Agriculture 2021, 11, 1224. https://doi.org/10.3390/agriculture11121224
Alami MM, Pang Q, Gong Z, Yang T, Tu D, Zhen O, Yu W, Alami MJ, Wang X. Continuous Cropping Changes the Composition and Diversity of Bacterial Communities: A Meta-Analysis in Nine Different Fields with Different Plant Cultivation. Agriculture. 2021; 11(12):1224. https://doi.org/10.3390/agriculture11121224
Chicago/Turabian StyleAlami, Mohammad Murtaza, Qiuling Pang, Zedan Gong, Tewu Yang, Daiqun Tu, Ouyang Zhen, Weilong Yu, Mohammad Jawad Alami, and Xuekui Wang. 2021. "Continuous Cropping Changes the Composition and Diversity of Bacterial Communities: A Meta-Analysis in Nine Different Fields with Different Plant Cultivation" Agriculture 11, no. 12: 1224. https://doi.org/10.3390/agriculture11121224
APA StyleAlami, M. M., Pang, Q., Gong, Z., Yang, T., Tu, D., Zhen, O., Yu, W., Alami, M. J., & Wang, X. (2021). Continuous Cropping Changes the Composition and Diversity of Bacterial Communities: A Meta-Analysis in Nine Different Fields with Different Plant Cultivation. Agriculture, 11(12), 1224. https://doi.org/10.3390/agriculture11121224