A Quadratic Regression Model to Quantify Plantation Soil Factors That Affect Tea Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Samplings
2.2. Quantitative Determination
2.3. Geostatistical Analysis
2.4. Statistical Analyses
3. Results
3.1. Concentrations and Distributions of Soil Nutrients and Soil pH
3.2. Concentrations and Distributions of Main Chemical Components in Tea
3.3. Influence of Soil Nutrients and pH on the Main Chemical Component Concentrations in Tea
4. Discussion
4.1. Characteristics of Soil pH and Nutrients in Tea Plantations of Xinyang
4.2. Effects of Soil Nutrients and pH on Tea Quality
4.2.1. For the Tea Polyphenol Contents
4.2.2. For the Free Amino Acid Contents
4.2.3. For the Caffeine Contents
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szymczycha-Madeja, A.; Welna, M.; Pohl, P. Elemental analysis of teas and their infusions by spectrometric methods. TrAC Trends Anal. Chem. 2012, 35, 165–181. [Google Scholar] [CrossRef]
- Wen, B.; Ren, S.; Zhang, Y.Y.; Duan, Y.; Shen, J.Z.; Zhu, X.J.; Wang, Y.H.; Ma, Y.C.; Zou, Z.W.; Fang, W.P. Effects of geographic locations and topographical factors on secondary metabolites distribution in green tea at a regional scale. Food Control 2020, 110, 7. [Google Scholar] [CrossRef]
- Zhang, C.; Suen, C.L.C.; Yang, C.; Quek, S.Y. Antioxidant capacity and major polyphenol composition of teas as affected by geographical location, plantation elevation and leaf grade. Food Chem. 2018, 244, 109–119. [Google Scholar] [CrossRef]
- Wen, B.; Li, L.; Duan, Y.; Zhang, Y.Y.; Shen, J.Z.; Xia, M.; Wang, Y.H.; Fang, W.P.; Zhu, X.J. Zn, Ni, Mn, Cr, Pb and Cu in soil-tea ecosystem: The concentrations, spatial relationship and potential control. Chemosphere 2018, 204, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Han, W.Y.; Huang, J.G.; Li, X.; Li, Z.X.; Ahammed, G.J.; Yan, P.; Stepp, J.R. Altitudinal effects on the quality of green tea in east China: A climate change perspective. Eur. Food Res. Technol. 2017, 243, 323–330. [Google Scholar] [CrossRef]
- Dong, F.; Hu, J.; Yuanzhi, S.; Liu, M.; Zhang, Q.; Ruan, J.Y. Effects of nitrogen supply on flavonol glycoside biosynthesis and accumulation in tea leaves (Camellia sinensis). Plant Physiol. Bioch. 2019, 138, 48–57. [Google Scholar] [CrossRef]
- Ruan, J.Y.; Ma, L.F.; Shi, Y.Z. Potassium management in tea plantations: Its uptake by field plants, status in soils, and efficacy on yields and quality of teas in China. J. Plant Nutr. Soil Sci. 2013, 176, 450–459. [Google Scholar] [CrossRef]
- Lin, Z.H.; Qi, Y.P.; Chen, R.B.; Zhang, F.Z.; Chen, L.S. Effects of phosphorus supply on the quality of green tea. Food Chem. 2012, 130, 908–914. [Google Scholar] [CrossRef]
- Ahmed, S.; Griffin, T.S.; Kraner, D.; Schaffner, M.K.; Sharma, D.; Hazel, M.; Leitch, A.R.; Orians, C.M.; Han, W.Y.; Stepp, J.R.; et al. Environmental factors variably impact tea secondary metabolites in the context of climate change. Front. Plant Sci. 2019, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Li, H.; Hu, X.; Li, J.; Hu, J.; Liu, R.; Deng, Z.-Y. Effects of fertilizing with N, P, Se, and Zn on regulating the element and functional component contents and antioxidant activity of tea leaves planted in red soil. J. Agric. Food Chem. 2014, 62, 3823–3830. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Haerdter, R.; Gerendas, J. Impact of nitrogen supply on carbon/nitrogen allocation: A case study on amino acids and catechins in green tea Camellia sinensis (L.) O. Kuntze plants. Plant Biol. 2010, 12, 724–734. [Google Scholar] [CrossRef]
- Kc, S.; Liu, M.Y.; Zhang, Q.F.; Fan, K.; Shi, Y.Z.; Ruan, J.Y. Metabolic Changes of Amino Acids and Flavonoids in Tea Plants in Response to Inorganic Phosphate Limitation. Int. J. Mol. Sci. 2018, 19, 3683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, P.; Shen, C.; Fan, L.C.; Li, X.; Zhang, L.P.; Zhang, L.; Han, W.Y. Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil. Agric. Ecosyst. Environ. 2018, 254, 20–25. [Google Scholar] [CrossRef]
- Yang, X.D.; Ni, K.; Shi, Y.Z.; Yi, X.Y.; Zhang, Q.F.; Fang, L.; Ma, L.F.; Ruan, J.Y. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agric. Ecosyst. Environ. 2018, 252, 74–82. [Google Scholar] [CrossRef]
- Li, S.Y.; Li, H.X.; Yang, C.L.; Wang, Y.D.; Xue, H.; Niu, Y.F. Rates of soil acidification in tea plantations and possible causes. Agric. Ecosyst. Environ. 2016, 233, 60–66. [Google Scholar] [CrossRef]
- Determination of Substances Characteristic of Green and Black Tea. Part 1: Content of Total Polyphenols in Tea—Colorimetric Method Using Folin-Ciocalteu Reagent (ISO14502-1); International Organization for Standardization: Geneva, Switzerland, 2005.
- Jing, J.; Shi, Y.Z.; Zhang, Q.F.; Wang, J.; Ruan, J.Y. Prediction of Chinese green tea ranking by metabolite profiling using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Food Chem. 2017, 221, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Das, P.R.; Eun, J.-B. A comparative study of ultra-sonication and agitation extraction techniques on bioactive metabolites of green tea extract. Food Chem. 2018, 253, 22–29. [Google Scholar] [CrossRef]
- Determination of Soil pH (NY/T 1377-2007); Ministry of Agriculture of the PRC: Beijing, China, 2007.
- Determination of Nitrate Nitrogen in Soil—Ultraviolet Spectrophotometry Method (GB 32737-2016); Ministry of Agriculture of the PRC: Beijing, China, 2016.
- Xu, M.P.; Gao, D.X.; Fu, S.Y.; Lu, X.Q.; Wu, S.J.; Han, X.H.; Yang, G.H.; Feng, Y.Z. Long-term effects of vegetation and soil on the microbial communities following afforestation of farmland with Robinia pseudoacacia plantations. Geoderma 2020, 367, 11. [Google Scholar] [CrossRef]
- Jin, Z.W.; Chen, C.; Chen, X.M.; Jiang, F.; Hopkins, I.; Zhang, X.L.; Han, Z.Q.; Billy, G.; Benavides, J. Soil acidity, available phosphorus content, and optimal biochar and nitrogen fertilizer application rates: A five-year field trial in upland red soil, China. Field Crop. Res. 2019, 232, 77–87. [Google Scholar] [CrossRef]
- Xu, Y.M.; Wang, X.X.; Bai, J.H.; Wang, D.W.; Wang, W.; Guan, Y.N. Estimating the spatial distribution of soil total nitrogen and available potassium in coastal wetland soils in the Yellow River Delta by incorporating multi-source data. Ecol. Indic. 2020, 111, 8. [Google Scholar] [CrossRef]
- Liu, J.F.; Wang, Z.L.; Hu, F.N.; Xu, C.Y.; Ma, R.T.; Zhao, S.W. Soil organic matter and silt contents determine soil particle surface electrochemical properties across a long-term natural restoration grassland. Catena 2020, 190, 8. [Google Scholar] [CrossRef]
- Song, X.Y.; Yang, G.J.; Yang, C.H.; Wang, J.H.; Cui, B. Spatial Variability Analysis of Within-Field Winter Wheat Nitrogen and Grain Quality Using Canopy Fluorescence Sensor Measurements. Remote Sens. 2017, 9, 237. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.L.; Zhang, L.Y.; Dong, J.Q.; Wu, J.S.; Ye, Z.Q.; Zhao, W.M.; Ding, L.Z.; Fu, W.J. Risk assessment, spatial patterns and source apportionment of soil heavy metals in a typical Chinese hickory plantation region of southeastern China. Geoderma 2020, 360, 11. [Google Scholar] [CrossRef]
- Agou, V.D.; Varouchakis, E.A.; Hristopulos, D.T. Geostatistical analysis of precipitation in the island of Crete (Greece) based on a sparse monitoring network. Environ. Monit. Assess. 2019, 191, 24. [Google Scholar] [CrossRef]
- Steliopoulos, R.; Stickel, E.; Haas, H.; Kranz, S. Method validation approach on the basis of a quadratic regression model. Anal. Chim. Acta 2006, 572, 121–124. [Google Scholar] [CrossRef]
- Rambo, D.F.; Biegelmeyer, R.; Toson, N.S.B.; Dresch, R.R.; Moreno, P.R.H.; Henriques, A.T. Box-Behnken experimental design for extraction optimization of alkaloids from Erythrina verna Vell. trunk barks and LC Method Validation. Ind. Crop. Prod. 2019, 133, 250–258. [Google Scholar] [CrossRef]
- Hui, D.F.; Wang, J.; Le, X.; Shen, W.J.; Ren, H. Influences of biotic and abiotic factors on the relationship between tree productivity and biomass in China. For. Ecol. Manag. 2012, 264, 72–80. [Google Scholar] [CrossRef]
- Likens, A.D.; Amazeen, P.G.; West, S.G.; Gibbons, C.T. Statistical properties of Multiscale Regression Analysis: Simulation and application to human postural control. Physica A 2019, 532, 17. [Google Scholar] [CrossRef]
- Wen, B.; Zhang, X.L.; Ren, S.; Duan, Y.; Zhang, Y.Y.; Zhu, X.J.; Wang, Y.H.; Ma, Y.C.; Fang, W.P. Characteristics of soil nutrients, heavy metals and tea quality in different intercropping patterns. Agrofor. Syst. 2020, 94, 963–974. [Google Scholar] [CrossRef]
- Wang, S.Q.; He, X.X.; Ye, S.M. Soil aggregation and aggregate-associated carbon, nitrogen, and phosphorus under different aged tea (Camellia sinensis L.) plantations in hilly region of southern Guangxi, China. Sci. Hortic. 2020, 262, 10. [Google Scholar] [CrossRef]
- Di, S.; Zong, M.M.; Li, S.Y.; Li, H.X.; Duan, C.Q.; Peng, C.H.; Zhao, Y.G.; Bai, J.Y.; Lin, C.; Feng, Y.; et al. The effects of the soil environment on soil organic carbon in tea plantations in Xishuangbanna, southwestern China. Agric. Ecosyst. Environ. 2020, 297, 12. [Google Scholar] [CrossRef]
- Ji, L.F.; Wu, Z.D.; You, Z.M.; Yi, X.Y.; Ni, K.; Guo, S.W.; Ruan, J.Y. Effects of organic substitution for synthetic N fertilizer on soil bacterial diversity and community composition: A 10-year field trial in a tea plantation. Agric. Ecosyst. Environ. 2018, 268, 124–132. [Google Scholar] [CrossRef]
- Duan, Y.; Shen, J.Z.; Zhang, X.L.; Wen, B.; Ma, Y.C.; Wang, Y.H.; Fang, W.P.; Zhu, X.J. Effects of soybean-tea intercropping on soil-available nutrients and tea quality. Acta Physiol. Plant. 2019, 41, 9. [Google Scholar] [CrossRef]
- Venkatesan, S.; Murugesan, S.; Ganapathy, M.N.K.; Verma, D.P. Long-term impact of nitrogen and potassium fertilizers on yield, soil nutrients and biochemical parameters of tea. J. Sci. Food Agric. 2004, 84, 1939–1944. [Google Scholar] [CrossRef]
- Lee, J.-E.; Lee, B.-J.; Chung, J.-O.; Kim, H.-N.; Kim, E.-H.; Jung, S.; Lee, H.; Lee, S.-J.; Hong, Y.-S. Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography. Food Chem. 2015, 174, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.M.; Yang, Z.Y. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Crit. Rev. Food Sci. Nutr. 2020, 60, 844–858. [Google Scholar] [CrossRef]
- Lee, J.E.; Lee, B.J.; Chung, J.O.; Hwang, J.A.; Lee, S.J.; Lee, C.H.; Hong, Y.S. Geographical and climatic dependencies of green tea (Camellia sinensis) metabolites: A H-1 NMR-based metabolomics study. J. Agric. Food Chem. 2010, 58, 10582–10589. [Google Scholar] [CrossRef] [PubMed]
Min | Max | Mean | STD | |
---|---|---|---|---|
pH | 4.22 | 6.67 | 5.23 | 0.56 |
-N (mg·kg−1) | 0.12 | 41.42 | 11.74 | 10.51 |
-N (mg·kg−1) | 0.52 | 117.86 | 16.65 | 23.91 |
AP (mg·kg−1) | 1.63 | 140.82 | 25.12 | 31.52 |
AK (mg·kg−1) | 64.14 | 405.44 | 140.53 | 72.67 |
SOM (%) | 0.67 | 8.71 | 3.20 | 1.78 |
Min | Max | Mean | STD | |
---|---|---|---|---|
Tea polyphenols (mg·g−1) | 161.6 | 275.1 | 205.1 | 2.78 |
Catechins (mg·g−1) | 136.8 | 246.0 | 183.7 | 1.22 |
Free amino acids (mg·g−1) | 36.0 | 55.7 | 47.7 | 0.63 |
Caffeine (mg·g−1) | 26.3 | 46.5 | 34.3 | 0.48 |
Tea Polyphenols | Catechins | Free Amino Acids | Caffeine | |||||
---|---|---|---|---|---|---|---|---|
Coef. | S.E | Coef. | S.E | Coef. | S.E | Coef. | S.E | |
pH | −30.654 * | 12.037 | −24.655 * | 10.819 | 5.489 * | 2.112 | 5.200 ** | 1.550 |
pH (Quadratic) | 4.357 ** | 1.554 | 3.569* | 1.406 | −0.705 ** | 0.229 | −0.570 ** | 0.204 |
-N | −0.697 | 1.209 | −0.621 | 1.077 | 0.641 * | 0.282 | 0.288 | 0.229 |
-N (Quadratic) | 0.018 | 0.030 | 0.014 | 0.026 | −0.011 | 0.007 | −0.004 | 0.006 |
-N | −0.771 | 0.717 | −0.609 | 0.641 | 0.374 ** | 0.117 | 0.109 | 0.139 |
-N (Quadratic) | 0.005 | 0.005 | 0.004 | 0.005 | −0.003 ** | 0.001 | −0.001 | 0.001 |
AP | −0.483 | 0.467 | −0.394 | 0.416 | 0.130 | 0.084 | 0.003 | 0.055 |
AP (Quadratic) | 0.005 | 0.004 | 0.004 | 0.004 | −0.001 * | 0.001 | −0.000 | 0.000 |
AK | −0.180 | 0.292 | −0.163 | 0.258 | 0.075 | 0.046 | 0.014 | 0.031 |
AK (Quadratic) | 0.001 | 0.001 | 0.000 | 0.001 | −0.001 | 0.000 | −0.000 | 0.000 |
SOM | 0.142 | 0.942 | 0.105 | 0.830 | −0.127 | 0.170 | 0.092 | 0.119 |
SOM (Quadratic) | −0.001 | 0.010 | −0.001 | 0.009 | 0.001 | 0.002 | −0.001 | 0.001 |
Constant | 281.407 *** | 24.395 | 242.447 *** | 21.515 | 26.299 *** | 4.598 | 17.598 *** | 2.817 |
N | 70 | 70 | 70 | 70 | ||||
F(12, 57) | 2.811 | 2.475 | 9.576 | 6.876 | ||||
Prob > F | 0.004 | 0.011 | 0.000 | 0.000 | ||||
R2 | 0.211 | 0.201 | 0.482 | 0.265 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, B.; Li, R.; Zhao, X.; Ren, S.; Chang, Y.; Zhang, K.; Wang, S.; Guo, G.; Zhu, X. A Quadratic Regression Model to Quantify Plantation Soil Factors That Affect Tea Quality. Agriculture 2021, 11, 1225. https://doi.org/10.3390/agriculture11121225
Wen B, Li R, Zhao X, Ren S, Chang Y, Zhang K, Wang S, Guo G, Zhu X. A Quadratic Regression Model to Quantify Plantation Soil Factors That Affect Tea Quality. Agriculture. 2021; 11(12):1225. https://doi.org/10.3390/agriculture11121225
Chicago/Turabian StyleWen, Bo, Ruiyang Li, Xue Zhao, Shuang Ren, Yali Chang, Kexin Zhang, Shan Wang, Guiyi Guo, and Xujun Zhu. 2021. "A Quadratic Regression Model to Quantify Plantation Soil Factors That Affect Tea Quality" Agriculture 11, no. 12: 1225. https://doi.org/10.3390/agriculture11121225
APA StyleWen, B., Li, R., Zhao, X., Ren, S., Chang, Y., Zhang, K., Wang, S., Guo, G., & Zhu, X. (2021). A Quadratic Regression Model to Quantify Plantation Soil Factors That Affect Tea Quality. Agriculture, 11(12), 1225. https://doi.org/10.3390/agriculture11121225