Potentially Toxic Elements in Oasis Agricultural Soils Caused by High-Intensity Exploitation in the Piedmont Zone of the Tianshan Mountains, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Analysis
2.2. Multivariate Statistical Analysis
2.3. The Model of Absolute Principal Component Score–Multiple Linear Regression (APCS-MLR)
2.4. Human Health Risks from PTEs
3. Results
3.1. General Features of the Soil Element Contents
3.2. Cluster Types for the Soil Samples and the PTEs
3.3. Principal Component Analysis Results
3.4. Human Health Risks for PTEs
4. Discussion
5. Conclusions
- (1)
- Compared to the upper continental crust (UCC), concentrations of the potentially toxic elements (PTEs) V, Cr, Co, Ni, and Cu were found to be relatively depleted in the oasis agricultural soils in the piedmont zone of the Tianshan Mountains, China. However, Pb and Zn were found to be relatively enriched, and the elements Cd and As were significantly enriched.
- (2)
- Based on the APCS-MLR model for evaluating the influence of human activities, the PTEs Cd and As in the soils of the Yili River Watershed were found to be the most strongly influenced by human activities, reaching 40% and 59%, respectively. However, in the Bortala River Watershed, Cu, Cd, and As were the most strongly influenced by human activities, reaching 33%, 64%, and 76%, respectively.
- (3)
- The non-carcinogenic and carcinogenic risks of PTEs on human health are below the threshold. Arsenic represents the largest health risk; this risk should be addressed, and targeted environmental-protection measures should be formulated.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hooke, R.L.; Martín Duque, J.F.; Pedraza, J. Land transformation by humans: A review. GSA Today 2012, 22, 4–10. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [Green Version]
- Pang, J.; Liu, X.; Huang, Q. A new quality evaluation system of soil and water conservation for sustainable agricultural development. Agric. Water Manag. 2020, 240, 106235. [Google Scholar] [CrossRef]
- Lal, R.; Bouma, J.; Brevik, E.; Dawson, L.; Field, D.J.; Glaser, B.; Hatano, R.; Hartemink, A.; Kosaki, T.; Lascelles, B.; et al. Soils and sustainable development goals of the United Nations (New York, USA): An IUSS perspective. Geoderma Reg. 2021, 25, e00398. [Google Scholar] [CrossRef]
- Abrahams, P.W. Soils: Their implications to human health. Sci. Total Environ. 2002, 291, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Karlen, D.L.; Andrews, S.S.; Weinhold, B.J.; Doran, J.W. Soil quality: Humankind’s foundation for survival. A research editorial by conservation professionals. J. Soil Water Conserv. 2003, 58, 171–179. [Google Scholar]
- Khan, S.; Naushad, M.; Lima, E.C.; Zhang, S.; Shaheen, S.M.; Rinklebe, J. Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies—A review. J. Hazard. Mater. 2021, 417, 126039. [Google Scholar] [CrossRef]
- Agyeman, P.C.; Ahado, S.K.; Borůvka, L.; Biney, J.K.M.; Sarkodie, V.Y.O.; Kebonye, N.M.; Kingsley, J. Trend analysis of global usage of digital soil mapping models in the prediction of potentially toxic elements in soil/sediments: A bibliometric review. Environ. Geochem. Health 2021, 43, 1715–1739. [Google Scholar] [CrossRef]
- Kelepertzis, E. Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma 2014, 221, 82–90. [Google Scholar] [CrossRef]
- Xu, Y.; Dai, S.; Meng, K.; Wang, Y.; Ren, W.; Zhao, L.; Christie, P.; Teng, Y. Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in contaminated rural soils. Sci. Total Environ. 2018, 630, 618–629. [Google Scholar] [CrossRef]
- Ye, S.; Zeng, G.; Wu, H.; Zhang, C.; Liang, J.; Dai, J.; Liu, Z.; Xiong, W.; Wan, J.; Xu, P. Co-occurrence and interactions of pollutants, and their impacts on soil remediation—A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1528–1553. [Google Scholar] [CrossRef]
- Qin, G.; Niu, Z.; Yu, J.; Li, Z.; Ma, J.; Xiang, P. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere 2021, 267, 129205. [Google Scholar] [CrossRef]
- Dung, T.T.T.; Cappuyns, V.; Swennen, R.; Phung, N.K. From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Rev. Environ. Sci. Bio-Technol. 2013, 12, 335–353. [Google Scholar] [CrossRef]
- McIlwaine, R.; Doherty, R.; Cox, S.F.; Cave, M. The relationship between historical development and potentially toxic element concentrations in urban soils. Environ. Pollut. 2017, 220, 1036–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Zhang, X. Quantitative source apportionment and ecological risk assessment of heavy metals in soil of a grain base in Henan Province, China, using PCA, PMF modeling, and geostatistical techniques. Environ. Monit. Assess. 2021, 193, 655. [Google Scholar] [CrossRef]
- Liang, X.; Wang, C.; Song, Z.; Yang, S.; Bi, X.; Li, Z.; Li, P. Soil metal(loid)s pollution around a lead/zinc smelter and source apportionment using isotope fingerprints and receptor models. Appl. Geochem. 2021, 135, 105118. [Google Scholar] [CrossRef]
- Kelepertzis, E.; Argyraki, A.; Chrastný, V.; Botsou, F.; Skordas, K.; Komárek, M.; Fouskas, A. Metal (loid) and isotopic tracing of Pb in soils, road and house dusts from the industrial area of Volos (central Greece). Sci. Total Environ. 2020, 725, 138300. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Wang, F.; Xu, C.; Pan, N.; Lin, J.; Zhao, R.; Yang, Y.; Luo, H. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere 2018, 193, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, J.; Teng, Y.; Chen, H.; Wang, Y. A partition computing-based positive matrix factorization (PC-PMF) approach for the source apportionment of agricultural soil heavy metal contents and associated health risks. J. Hazard. Mater. 2020, 388, 121766. [Google Scholar] [CrossRef]
- Zhang, H.; Yin, A.; Yang, X.; Fan, M.; Shao, S.; Wu, J.; Wu, P.; Zhang, M.; Gao, C. Use of machine-learning and receptor models for prediction and source apportionment of heavy metals in coastal reclaimed soils. Ecol. Indic. 2021, 122, 107233. [Google Scholar] [CrossRef]
- Zhang, H.; Cai, A.; Wang, X.; Wang, L.; Wang, Q.; Wu, X.; Ma, Y. Risk assessment and source apportionment of heavy metals in soils from Handan City. Appl. Sci. 2021, 11, 9615. [Google Scholar] [CrossRef]
- Wu, J.; Margenot, A.J.; Wei, X.; Fan, M.; Zhang, H.; Best, J.L.; Wu, P.; Chen, F.; Gao, C. Source apportionment of soil heavy metals in fluvial islands, Anhui section of the lower Yangtze River: Comparison of APCS–MLR and PMF. J. Soils Sediments 2020, 20, 3380–3393. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef] [PubMed]
- Jun, L.; Xiaolei, Z. Structural adjustment of oasis agriculture in Xinjiang. Chin. J. Popul. Resour. Environ. 2005, 3, 29–33. [Google Scholar] [CrossRef]
- Wei, H.; Liu, H.; Xu, Z.; Ren, J.; Lu, N.; Fan, W.; Zhang, P.; Dong, X. Linking ecosystem services supply, social demand and human well-being in a typical mountain–oasis–desert area, Xinjiang, China. Ecosyst. Serv. 2018, 31, 44–57. [Google Scholar] [CrossRef]
- Wei, H.; Xu, Z.; Liu, H.; Ren, J.; Fan, W.; Lu, N.; Dong, X. Evaluation on dynamic change and interrelations of ecosystem services in a typical mountain-oasis-desert region. Ecol. Indic. 2018, 93, 917–929. [Google Scholar] [CrossRef]
- Mamat, A.; Wang, J.; Ma, Y. Impacts of land-use change on ecosystem service value of mountain–oasis–desert ecosystem: A case study of Kaidu–Kongque river basin, Northwest China. Sustainability 2021, 13, 140. [Google Scholar] [CrossRef]
- Jia, B.; Zhang, Z.; Ci, L.; Ren, Y.; Pan, B.; Zhang, Z. Oasis land-use dynamics and its influence on the oasis environment in Xinjiang, China. J. Arid. Environ. 2004, 56, 11–26. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, Y.; Shi, P.; Zhang, L.; Pan, J.; Zhao, H. Land use and land cover change and driving mechanism in the arid inland river basin: A case study of Tarim River, Xinjiang, China. Environ. Earth Sci. 2013, 68, 591–604. [Google Scholar] [CrossRef]
- Abulizi, A.; Yang, Y.; Mamat, Z.; Luo, J.; Abdulslam, D.; Xu, Z.; Zayiti, A.; Ahat, A.; Halik, W. Land-use change and its effects in Charchan Oasis, Xinjiang, China. Land Degrad. Dev. 2017, 28, 106–115. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Wang, S.; Liu, H.; Fu, G.; Xiong, Y. Spatial distribution of soil salinity and potential implications for soil management in the Manas River watershed, China. Soil Use Manag. 2020, 36, 93–103. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, D.; Li, Y.; Li, X. Soil salinity evolution and its relationship with dynamics of groundwater in the oasis of inland river basins: Case study from the Fubei region of Xinjiang Province, China. Environ. Monit. Assess. 2008, 140, 291–302. [Google Scholar] [CrossRef]
- Hong, Z.; Jian-Wei, W.; Qiu-Hong, Z.; Yun-Jiang, Y. A preliminary study of oasis evolution in the Tarim Basin, Xinjiang, China. J. Arid. Environ. 2003, 55, 545–553. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Song, J.; Tan, M.L.; Kung, H.-t.; Johnson, V.C. Pollutant source, ecological and human health risks assessment of heavy metals in soils from coal mining areas in Xinjiang, China. Environ. Res. 2021, 202, 111702. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Zhou, J.; Zhou, Y.; Wang, S.; Du, J.; Chen, Y.; Zeng, Y.; Wei, X. Heavy metal pollution and health risk assessment of agricultural land in the Southern Margin of Tarim Basin in Xinjiang, China. Int. J. Environ. Health Res. 2021, 31, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Mamut, A.; Eziz, M.; Mohammad, A. Pollution and ecological risk assessment of heavy metals in farmland soils in Yanqi County, Xinjiang, Northwest China. Eurasian Soil Sci. 2018, 51, 985–993. [Google Scholar] [CrossRef]
- Ma, L.; Abuduwaili, J.; Liu, W. Spatial distribution and health risk assessment of potentially toxic elements in surface soils of Bosten lake basin, central Asia. Int. J. Environ. Res. Public Health 2019, 16, 3741. [Google Scholar] [CrossRef] [Green Version]
- Amini, M.; Afyuni, M.; Fathianpour, N.; Khademi, H.; Flühler, H. Continuous soil pollution mapping using fuzzy logic and spatial interpolation. Geoderma 2005, 124, 223–233. [Google Scholar] [CrossRef]
- Yemefack, M.; Rossiter, D.G.; Njomgang, R. Multi-scale characterization of soil variability within an agricultural landscape mosaic system in southern Cameroon. Geoderma 2005, 125, 117–143. [Google Scholar] [CrossRef]
- Amusan, A.; Ige, D.; Olawale, R. Characteristics of soils and crops’ uptake of metals in municipal waste dump sites in Nigeria. J. Human Ecol. 2005, 17, 167–171. [Google Scholar] [CrossRef]
- Ma, L.; Wu, J.; Abuduwaili, J. Variation in aeolian environments recorded by the particle size distribution of lacustrine sediments in Ebinur Lake, northwest China. SpringerPlus 2016, 5, 481. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Abuduwaili, J.; Liu, W. Environmentally sensitive grain-size component records and its response to climatic and anthropogenic influences in Bosten Lake region, China. Sci. Rep. 2020, 10, 942. [Google Scholar] [CrossRef]
- Arshad, M.A.; Lowery, B.; Grossman, B. Physical tests for monitoring soil quality. In Methods for Assessing Soil Quality; John Wiley and Sons: Hoboken, NJ, USA, 1997; pp. 123–141. [Google Scholar]
- Ma, L.; Wu, J.; Abuduwaili, J. Climate and environmental changes over the past 150 years inferred from the sediments of Chaiwopu Lake, central Tianshan Mountains, northwest China. Int. J. Earth Sci. 2013, 102, 959–967. [Google Scholar] [CrossRef]
- Bednik, M.; Medyńska-Juraszek, A.; Dudek, M.; Kloc, S.; Kręt, A.; Łabaz, B.; Waroszewski, J. Wheat straw biochar and NPK fertilization efficiency in sandy soil reclamation. Agronomy 2020, 10, 496. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Gao, Y.; Zhang, M.; Zhang, Y.; Zhou, M.; Peng, L.; He, A.; Zhang, X.; Yan, X.; Wang, Y.; et al. In vitro lung and gastrointestinal bioaccessibility of potentially toxic metals in Pb-contaminated alkaline urban soil: The role of particle size fractions. Ecotox. Environ. Safe. 2020, 190, 110151. [Google Scholar] [CrossRef] [PubMed]
- Swanson, S.K.; Bahr, J.M.; Schwar, M.T.; Potter, K.W. Two-way cluster analysis of geochemical data to constrain spring source waters. Chem. Geol. 2001, 179, 73–91. [Google Scholar] [CrossRef]
- Iqbal, M.; Khan, S.M.; Azim Khan, M.; Ahmad, Z.; Ahmad, H. A novel approach to phytosociological classification of weeds flora of an agro-ecological system through Cluster, Two Way Cluster and Indicator Species Analyses. Ecol. Indic. 2018, 84, 590–606. [Google Scholar] [CrossRef]
- Maiz, I.; Arambarri, I.; Garcia, R.; Millán, E. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environ. Pollut. 2000, 110, 3–9. [Google Scholar] [CrossRef]
- Ye, C.; Li, S.; Zhang, Y.; Zhang, Q. Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China. J. Hazard. Mater. 2011, 191, 366–372. [Google Scholar] [CrossRef]
- Uygur, N.; Karaca, F.; Alagha, O. Prediction of sources of metal pollution in rainwater in Istanbul, Turkey using factor analysis and long-range transport models. Atmos. Res. 2010, 95, 55–64. [Google Scholar] [CrossRef]
- Liu, F.; Deng, Y. Determine the number of unknown targets in Open World based on Elbow method. IEEE Trans. Fuzzy Syst. 2020, 29, 986–995. [Google Scholar] [CrossRef]
- Yuan, C.; Yang, H. Research on K-value selection method of K-means clustering algorithm. J. Agric. Saf. Health 2019, 2, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Kumar Sharma, R.; Agrawal, M.; Marshall, F. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotox. Environ. Saf. 2007, 66, 258–266. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, S.; Li, H.; Fu, K.; Xu, Y. Groundwater pollution source identification and apportionment using PMF and PCA-APCA-MLR receptor models in a typical mixed land-use area in Southwestern China. Sci. Total Environ. 2020, 741, 140383. [Google Scholar] [CrossRef]
- Jin, G.; Fang, W.; Shafi, M.; Wu, D.; Li, Y.; Zhong, B.; Ma, J.; Liu, D. Source apportionment of heavy metals in farmland soil with application of APCS-MLR model: A pilot study for restoration of farmland in Shaoxing City Zhejiang, China. Ecotox. Environ. Saf. 2019, 184, 109495. [Google Scholar] [CrossRef]
- Shen, D.; Huang, S.; Zhang, Y.; Zhou, Y. The source apportionment of N and P pollution in the surface waters of lowland urban area based on EEM-PARAFAC and PCA-APCS-MLR. Environ. Res. 2021, 197, 111022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.H.; Yan, Y.; Yu, R.L.; Hu, G.R. The sources-specific health risk assessment combined with APCS/MLR model for heavy metals in tea garden soils from south Fujian Province, China. Catena 2021, 203, 105306. [Google Scholar] [CrossRef]
- Haji Gholizadeh, M.; Melesse, A.M.; Reddi, L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Sci. Total Environ. 2016, 566–567, 1552–1567. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Chao, S.; Liu, J.; Yang, Y.; Chen, Y.; Zhang, A.; Cao, H. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 2017, 168, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, X.; Li, L.Y.; Chen, H. Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environ. Res. 2014, 128, 27–34. [Google Scholar] [CrossRef]
- Chabukdhara, M.; Nema, A.K. Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: Probabilistic health risk approach. Ecotox. Environ. Saf. 2013, 87, 57–64. [Google Scholar] [CrossRef] [PubMed]
- De Miguel, E.; Iribarren, I.; Chacón, E.; Ordoñez, A.; Charlesworth, S. Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 2007, 66, 505–513. [Google Scholar] [CrossRef]
- Rudnick, R.; Gao, S. The crust. In Treatise on Geochemistry; Kelemen, P., Hanghøj, K., Greene, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 3. [Google Scholar]
- Yang, H.; Wang, F.; Yu, J.; Huang, K.; Zhang, H.; Fu, Z. An improved weighted index for the assessment of heavy metal pollution in soils in Zhejiang, China. Environ. Res. 2021, 192, 110246. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, X.; He, M.; Christakos, G. Beyond mere pollution source identification: Determination of land covers emitting soil heavy metals by combining PCA/APCS, GeoDetector and GIS analysis. Catena 2020, 185, 104297. [Google Scholar] [CrossRef]
- Bern, C.R.; Walton-Day, K.; Naftz, D.L. Improved enrichment factor calculations through principal component analysis: Examples from soils near breccia pipe uranium mines, Arizona, USA. Environ. Pollut. 2019, 248, 90–100. [Google Scholar] [CrossRef]
- Liu, W.X.; Li, X.D.; Shen, Z.G.; Wang, D.C.; Wai, O.W.H.; Li, Y.S. Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Environ. Pollut. 2003, 121, 377–388. [Google Scholar] [CrossRef]
- Ustaoğlu, F.; Islam, M.S. Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk. Ecol. Indic. 2020, 113, 106237. [Google Scholar] [CrossRef]
- Li, L.; Wu, J.; Lu, J.; Min, X.; Xu, J.; Yang, L. Distribution, pollution, bioaccumulation, and ecological risks of trace elements in soils of the northeastern Qinghai-Tibet Plateau. Ecotox. Environ. Saf. 2018, 166, 345–353. [Google Scholar] [CrossRef]
- Zhao, F.-J.; Ma, Y.; Zhu, Y.-G.; Tang, Z.; McGrath, S.P. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-S.; Qin, Y.; Chen, Y.-K. Heavy meals in urban roadside soils, part 1: Effect of particle size fractions on heavy metals partitioning. Environ. Geol. 2006, 50, 1061–1066. [Google Scholar] [CrossRef]
- Zhong, X.; Chen, Z.; Li, Y.; Ding, K.; Liu, W.; Liu, Y.; Yuan, Y.; Zhang, M.; Baker, A.J.; Yang, W. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. J. Hazard. Mater. 2020, 400, 123289. [Google Scholar] [CrossRef]
- Stefanowicz, A.M.; Kapusta, P.; Zubek, S.; Stanek, M.; Woch, M.W. Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn–Pb mining sites. Chemosphere 2020, 240, 124922. [Google Scholar] [CrossRef]
- Huang, Z.-Y.; Qin, D.-P.; Zeng, X.-C.; Li, J.; Cao, Y.-L.; Cai, C. Species distribution and potential bioavailability of exogenous Hg (II) in vegetable-growing soil investigated with a modified Tessier scheme coupled with isotopic labeling technique. Geoderma 2012, 189, 243–249. [Google Scholar] [CrossRef]
- Ahn, Y.; Yun, H.-S.; Pandi, K.; Park, S.; Ji, M.; Choi, J. Heavy metal speciation with prediction model for heavy metal mobility and risk assessment in mine-affected soils. Environ. Sci. Pollut. Res. 2020, 27, 3213–3223. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Sahakyan, L.; Belyaeva, O.; Maghakyan, N.; Saghatelyan, A. Human health risk assessment and riskiest heavy metal origin identification in urban soils of Yerevan, Armenia. Chemosphere 2017, 184, 1230–1240. [Google Scholar] [CrossRef]
- Zhao, H.; Xia, B.; Fan, C.; Zhao, P.; Shen, S. Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Sci. Total Environ. 2012, 417-418, 45–54. [Google Scholar] [CrossRef]
- Garelick, H.; Jones, H.; Dybowska, A.; Valsami-Jones, E. Arsenic pollution sources. In Reviews of Environmental Contamination: International Perspectives on Arsenic Pollution and Remediation; Springer: New York, NY, USA, 2008; pp. 17–60. [Google Scholar]
- Qiu, Y. Fifty Years in Xinjiang: 1955–2005; China Statistics Press: Beijing, China, 2005. [Google Scholar]
- Mi, Y.; Chang, S.; Shi, Q.; Gao, X.; Huang, C. Aquatic environmental quality assessment in Ebinur Lake catchment during high flow period. J. Lake Sci. 2008, 21, 891–894. [Google Scholar]
- Huang, Y.; Deng, M.; Wu, S.; Japenga, J.; Li, T.; Yang, X.; He, Z. A modified receptor model for source apportionment of heavy metal pollution in soil. J. Hazard. Mater. 2018, 354, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models. Sci. Total Environ. 2020, 747, 141293. [Google Scholar] [CrossRef] [PubMed]
Parameters | Description | Units | Value | References |
---|---|---|---|---|
ADDing LDDing | Average daily intake from ingestion | mg kg−1 day−1 | ||
ADDdermal ADDdermal | Average daily intake from dermal contact | mg kg−1 day−1 | ||
ADDinh ADDinh | Average daily intake from inhalation | mg kg−1 day−1 | ||
HQ | Non-carcinogenic risk | unitless | HQ < 1, no significant risk; HQ > 1, non-carcinogenic effects may occur. | [61,62,63] |
CR | Carcinogenic risk | unitless | Acceptable/tolerable risk range: 10−6−10−4 | [61,62,63] |
C | Concentration of PTE | mg kg−1 | upper limit of the 95% confidence interval for the mean (95% UCL). | [61,65] |
IngR | Ingestion rate | mg/day | 200 | [63] |
InhR | Inhalation rate | m3/day | 20 | [64] |
SA | Skin area available for soil contact | cm2 | 5700 | [64] |
AF | Skin adherence factor | mg cm−2 day−1 | 0.2 | [61,63] |
ABS | Absorption factor | unitless | 0.001, for As 0.03 | [63,64,65] |
PEF | Particle emission factor | m3/kg | 1.36 × 109 | [63,64] |
EF | Exposure frequency | day/year | 350 | [64] |
ED | Exposure duration | year | 24 | [64] |
BW | Body weight | kg | 60 | [64] |
AT | Average time | day | ED × 365 | [61,64] |
LT | Lifetime expressed in days | day | 70 × 365 | [61] |
Rfd | Reference dose | mg kg−1 day−1 | Table 2 | [61,65] |
SF | Slope factor | (mg kg−1 day−1)−1 | Table 2 | [61,65] |
Element | CBortala | CYili | Oral RfD | Inhal. RfD | Dermal RfD | Oral SF | Inhal. SF | Dermal SF |
---|---|---|---|---|---|---|---|---|
As-non canc. | 24.1 | 12.9 | 3.0 × 10−4 | 3.0 × 10−4 | 1.23 × 10−4 | |||
As-cancer | 24.1 | 12.9 | 1.5 | 15.1 | 3.66 | |||
Cd-non canc. | 0.27 | 0.25 | 1.0 × 10−3 | 1.0 × 10−3 | 1.0 × 10−5 | |||
Cd-cancer | 0.27 | 0.25 | 6.3 | |||||
Co-non canc. | 10.4 | 10.9 | 2.0 × 10−2 | 5.69 × 10−6 | 1.6 × 10−2 | |||
Co-cancer | 10.4 | 10.9 | 9.8 | |||||
Cr-non canc. | 48.1 | 52.2 | 3.0 × 10−3 | 2.86 × 10−5 | 6.0 × 10−5 | |||
Cr-cancer | 48.1 | 52.2 | 42.0 | |||||
Cu | 26.0 | 24.2 | 4.0 × 10−2 | 4.0 × 10−2 | 1.2 × 10−2 | |||
V | 77.8 | 80.1 | 7.0 × 10−3 | 7.0 × 10−3 | 7.0 × 10−5 | |||
Ni-non canc. | 26.8 | 25.3 | 2.0 × 10−2 | 2.0 × 10−2 | 5.4 × 10−3 | |||
Ni-cancer | 26.8 | 25.3 | 0.84 | |||||
Pb | 19.2 | 20.1 | 3.5 × 10−3 | 3.51 × 10−3 | 5.25 × 10−4 | |||
Zn | 82.9 | 74.0 | 0.3 | 0.3 | 6.0 × 10−2 |
Element | N | Mean | SD | SE | Lower 95% CI of Mean | Upper 95% CI of Mean | Minimum | Median | Maximum | UCC |
---|---|---|---|---|---|---|---|---|---|---|
Fe | 29 | 29,758.03 | 4858.37 | 902.18 | 27,910.01 | 31,606.05 | 17,038.54 | 31,141.56 | 39,014.14 | 53,300 |
V | 29 | 72.87 | 12.94 | 2.40 | 67.94 | 77.79 | 38.20 | 75.80 | 94.35 | 97 |
Cr | 29 | 44.87 | 8.42 | 1.56 | 41.66 | 48.07 | 26.86 | 45.74 | 64.22 | 92 |
Co | 29 | 9.72 | 1.85 | 0.34 | 9.02 | 10.43 | 5.50 | 9.67 | 13.89 | 17.3 |
Ni | 29 | 24.99 | 4.73 | 0.88 | 23.19 | 26.78 | 14.27 | 24.72 | 36.69 | 47 |
Cu | 29 | 24.07 | 5.02 | 0.93 | 22.16 | 25.98 | 15.57 | 25.09 | 32.67 | 28 |
Zn | 29 | 77.36 | 14.65 | 2.72 | 71.79 | 82.93 | 43.88 | 77.53 | 107.74 | 67 |
As | 29 | 20.03 | 10.62 | 1.97 | 15.99 | 24.07 | 11.97 | 16.71 | 61.81 | 4.8 |
Cd | 29 | 0.24 | 0.09 | 0.02 | 0.21 | 0.27 | 0.13 | 0.22 | 0.54 | 0.09 |
Pb | 29 | 17.93 | 3.32 | 0.62 | 16.67 | 19.19 | 9.75 | 18.35 | 25.78 | 17 |
Element | N | Mean | SD | SE | Lower 95% CI of Mean | Upper 95% CI of Mean | Minimum | Median | Maximum | UCC |
---|---|---|---|---|---|---|---|---|---|---|
Fe | 39 | 29,674.33 | 2951.28 | 472.58 | 28,717.64 | 30,631.03 | 22,661.35 | 29,592.25 | 35,380.00 | 53,300 |
V | 39 | 77.53 | 7.90 | 1.26 | 74.97 | 80.09 | 56.61 | 77.94 | 91.42 | 97 |
Cr | 39 | 50.01 | 6.69 | 1.07 | 47.84 | 52.18 | 31.94 | 49.94 | 61.83 | 92 |
Co | 39 | 10.43 | 1.47 | 0.24 | 9.95 | 10.91 | 7.61 | 10.25 | 12.82 | 17.3 |
Ni | 39 | 24.00 | 3.93 | 0.63 | 22.73 | 25.28 | 15.71 | 24.00 | 30.94 | 47 |
Cu | 39 | 22.72 | 4.41 | 0.71 | 21.29 | 24.15 | 13.20 | 22.18 | 31.77 | 28 |
Zn | 39 | 70.38 | 11.25 | 1.80 | 66.73 | 74.02 | 47.98 | 69.74 | 93.91 | 67 |
As | 39 | 12.03 | 2.58 | 0.41 | 11.19 | 12.86 | 6.98 | 11.66 | 17.73 | 4.8 |
Cd | 39 | 0.23 | 0.05 | 0.01 | 0.22 | 0.25 | 0.12 | 0.23 | 0.35 | 0.09 |
Pb | 39 | 19.10 | 2.20 | 0.35 | 18.38 | 19.81 | 14.25 | 19.28 | 23.12 | 17 |
Region | PTE | HQing | HQinh | HQdermal | HI = ΣHQi | RISK |
---|---|---|---|---|---|---|
Bortala | As-non. | 0.256 | 1.89 × 10−5 | 0.107 | 0.363 | |
As canc. | 3.96 × 10−5 | 2.93 × 10−8 | 1.65 × 10−5 | 5.61 × 10−5 | ||
Cd-non. | 8.72 × 10−4 | 6.41 × 10−8 | 4.97 × 10−4 | 1.37 × 10−3 | ||
Cd-canc. | 1.39 × 10−10 | 1.39 × 10−10 | ||||
Co-non. | 1.67 × 10−3 | 4.31 × 10−4 | 1.19 × 10−5 | 2.11 × 10−3 | ||
Co-canc. | 8.23 × 10−9 | 8.23 × 10−9 | ||||
Cr-non. | 5.12 × 10−2 | 3.95 × 10−4 | 1.46 × 10−2 | 6.62 × 10−2 | ||
Cr-canc. | 1.63 × 10−7 | 1.63 × 10−7 | ||||
Cu | 2.08 × 10−3 | 1.53 × 10−7 | 3.94 × 10−5 | 2.12 × 10−3 | ||
V | 3.55 × 10−2 | 2.61 × 10−6 | 2.02 × 10−2 | 5.58 × 10−2 | ||
Ni-non. | 4.26 × 10−3 | 3.13 × 10−7 | 9.00 × 10−5 | 4.35 × 10−3 | ||
Ni-canc. | 1.81 × 10−9 | 1.81 × 10−9 | ||||
Pb | 1.75 × 10−2 | 1.29 × 10−6 | 6.66 × 10−4 | 1.82 × 10−2 | ||
Zn | 8.84 × 10−4 | 6.50 × 10−8 | 2.52 × 10−5 | 9.09 × 10−4 | ||
Yili River | As-non. | 0.137 | 1.01 × 10−5 | 5.71 × 10−2 | 1.94 × 10−1 | |
As-canc. | 2.11 × 10−5 | 1.56 × 10−8 | 8.82 × 10−6 | 3.00 × 10−5 | ||
Cd-non. | 7.99 × 10−4 | 5.88 × 10−8 | 4.55 × 10−4 | 1.25 × 10−3 | ||
Cd-canc. | 1.27 × 10−10 | 1.27 × 10−10 | ||||
Co-non. | 1.74 × 10−3 | 4.51 × 10−4 | 1.24 × 10−5 | 2.21 × 10−3 | ||
Co-canc. | 8.62 × 10−9 | 8.62 × 10−9 | ||||
Cr-non. | 5.56 × 10−2 | 4.29 × 10−4 | 1.58 × 10−2 | 7.19 × 10−2 | ||
Cr-canc. | 1.77 × 10−7 | 1.77 × 10−7 | ||||
Cu | 1.93 × 10−3 | 1.42 × 10−7 | 3.67 × 10−5 | 1.97 × 10−3 | ||
V | 3.66 × 10−2 | 2.69 × 10−6 | 2.08 × 10−2 | 5.74 × 10−2 | ||
Ni-non. | 4.04 × 10−3 | 2.97 × 10−7 | 8.53 × 10−5 | 4.13 × 10−3 | ||
Ni-canc. | 1.71 × 10−9 | 1.71 × 10−9 | ||||
Pb | 1.81 × 10−2 | 1.33 × 10−6 | 6.87 × 10−4 | 1.88 × 10−2 | ||
Zn | 7.89 × 10−4 | 5.80 × 10−8 | 2.25 × 10−5 | 8.11 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Ma, L.; Abuduwaili, J. Potentially Toxic Elements in Oasis Agricultural Soils Caused by High-Intensity Exploitation in the Piedmont Zone of the Tianshan Mountains, China. Agriculture 2021, 11, 1234. https://doi.org/10.3390/agriculture11121234
Liu W, Ma L, Abuduwaili J. Potentially Toxic Elements in Oasis Agricultural Soils Caused by High-Intensity Exploitation in the Piedmont Zone of the Tianshan Mountains, China. Agriculture. 2021; 11(12):1234. https://doi.org/10.3390/agriculture11121234
Chicago/Turabian StyleLiu, Wen, Long Ma, and Jilili Abuduwaili. 2021. "Potentially Toxic Elements in Oasis Agricultural Soils Caused by High-Intensity Exploitation in the Piedmont Zone of the Tianshan Mountains, China" Agriculture 11, no. 12: 1234. https://doi.org/10.3390/agriculture11121234
APA StyleLiu, W., Ma, L., & Abuduwaili, J. (2021). Potentially Toxic Elements in Oasis Agricultural Soils Caused by High-Intensity Exploitation in the Piedmont Zone of the Tianshan Mountains, China. Agriculture, 11(12), 1234. https://doi.org/10.3390/agriculture11121234