Effect of Climate-Smart Agriculture Practices on Climate Change Adaptation, Greenhouse Gas Mitigation and Economic Efficiency of Rice-Wheat System in India
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Place and Climate Conditions
2.2. Scenario Details
2.3. Crop and Residue Management
2.4. Irrigation Management
2.5. Nutrient Management
2.6. Greenhouse Gas Emission Estimation
2.7. N-Factor Productivity (FPn)
2.8. Economic Efficiency (EE)
2.9. Statistical Analysis
3. Results
3.1. Estimates of Greenhouse Gas (GHG) Emissions
3.1.1. Methane (CH4) Emissions
3.1.2. Nitrous Oxide (N2O) Emissions
3.2. GHG Emissions Associated with Fertilizer and Energy Consumption
3.3. Carbon Sequestration
3.4. Total Global Warming Potential (GWP)
3.5. Share of Rice and Wheat in Total Global Warming
3.6. Contribution of Individual GHGs to Total GWP
3.7. N-Factor Productivity (FPn)
3.8. Grain Yield
3.9. Net Return and Economic Efficiency
3.10. Principal Component Analysis (PCA) and Correlation
4. Discussion
4.1. Greenhouse Gas Emissions
4.1.1. Methane Emissions
4.1.2. Nitrous Oxide Emissions
4.2. GHG Emissions from Fertilizer and Energy Consumption
4.3. Carbon Sequestration
4.4. Total Global Warming Potential (GWP)
4.5. N-Factor Productivity (FPn)
4.6. Grain Yield
4.7. Net Return and Economic Efficiency
4.8. Principal Component Analysis (PCA) and Correlation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sapkota, T.B.; Jat, M.L.; Shankar, V.; Singh, L.K.; Rai, M.; Grewal, M.S.; Stirling, C.M. Tillage residue and nitrogen management effects on methane and nitrous oxide emission from rice-wheat system of Indian Northwest Indo-Gangetic Plains. J. Integr. Environ. Sci. 2015, 12, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Sapkota, T.B.; Vetter, S.; Jat, M.L.; Sirohi, S.; Shirsath, P.; Singh, R.; Jat, H.S.; Smith, P.; Hillier, J.; Stirling, C. Cost-effective opportunities for climate change mitigation in Indian agriculture. Sci. Total Environ. 2018, 655, 1342–1354. [Google Scholar] [CrossRef]
- Saharawat, Y.S.; Ladha, J.K.; Pathak, H.; Gathala, M.; Chaudhary, N.; Jat, M.L. Simulation of resource-conserving technologies on productivity, income and greenhouse gas GHG emission in rice-wheat system. J. Soil Sci. Environ. Manag. 2012, 3, 9–22. [Google Scholar]
- Jat, H.S.; Kumar, V.; Datta, A.; Choudhary, M.; Yadvinder-Singh; Kakraliya, S.K.; Poonia, T.; McDonald, A.J.; Jat, M.L.; Sharma, P.C. Designing profitable, resource use efficient and environmentally sound cereal based systems for the Western Indo-Gangetic plains. Sci. Rep. 2020, 10, 19267. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.K.; Bhatiaa, A.; Kumar, A.; Das, T.K.; Jain, N.; Tomar, R.; Sandeep, K.M.; Fagodiya, R.K.; Dubey, R.; Pathak, H. Mitigation of greenhouse gas emission from rice-wheat system of the Indo-Gangetic plains: Through tillage, irrigation and fertilizer management. Agric. Ecosyst. Environ. 2016, 230, 1–9. [Google Scholar] [CrossRef]
- Kakraliya, S.K.; Jat, H.S.; Singh, I.; Jat, M.L. Effect of Climate Smart Agriculture Practices on Crop yields and Factor Productivity of Rice-Wheat Cropping System in Indo-Gangetic Plains of India. Indian J. Fertil. 2019, 15, 852–858. [Google Scholar]
- Aryal, J.P.; Rahut, D.B.; Sapkota, T.B.; Khurana, R.; Khatri-Chhetri, A. Climate change mitigation options among farmers in South Asia. Environ. Dev. Sustain. 2020, 22, 3267–3289. [Google Scholar] [CrossRef] [Green Version]
- Jat, M.L.; Dagar, J.C.; Sapkota, T.B.; Singh, Y.; Govaerts, B.; Ridaura, S.L.; Saharawat, Y.S.; Sharma, R.K.; Tetarwal, J.P.; Jat, R.K.; et al. Climate change and agriculture: Adaptation strategies and mitigation opportunities for food security in South Asia and Latin America. Adv. Agron. 2016, 137, 127–236. [Google Scholar]
- Ladha, J.K.; Dawe, D.; Pathak, H.; Padre, A.T.; Yadav, R.L.; Singh, B.; Hobbs, P.R. How extensive are yield declines in long-term rice-wheat experiments in Asia? Field Crop. Res. 2003, 81, 159–180. [Google Scholar] [CrossRef]
- Gathala, M.K.; Kumar, V.; Sharma, P.C.; Saharawat, Y.S.; Jat, H.S.; Singh, M.; Kumar, A.; Jat, M.L.; Humphreys, E.; Sharma, D.K.; et al. Optimizing intensive cereal based cropping systems addressing current and future drivers of agricultural change in the Northwestern Indo-Gangetic Plains of India. Agric. Ecosyst. Environ. 2014, 187, 33–46. [Google Scholar] [CrossRef]
- Kakraliya, S.K.; Jat, H.S.; Singh, I.; Sapkota, T.; Singh, L.K.; Sutaliya, J.M.; Sharma, P.C.; Jat, R.D.; Lopez-Ridaura, S.; Jat, M. Performance of portfolios of climate smart agriculture practices in a rice-wheat system of western Indo-Gangetic plains. Agric. Water Manag. 2018, 202, 122–133. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Majumdar, K.; Jat, M.L.; Kumara, A.; Bishnoi, D.K.; McDonaldd, A.J.; Pampolino, M. Precision nutrient management in conservation agriculture based wheat production of Northwest India: Profitability, nutrient use efficiency and environmental footprint. Field Crop. Res. 2014, 155, 233–244. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Shankar, V.; Rai, M.; Jat, M.L.; Stirling, C.M.; Singh, L.K.; Jat, H.S.; Grewal, M.S. Reducing Global Warming Potential through Sustainable Intensification of Basmati Rice-Wheat Systems in India. Sustainability 2017, 9, 1044. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.M.; Vermeulen, S.J.; Aggarwal, P.K.; Corner-dolloff, C.; Girvetz, E.; Wollenberg, E. Reducing risks to food security from climate change. Glob. Food Secur. 2016, 11, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Alavaisha, E.; Manzoni, S.; Lindborg, R. Different agricultural practices affect soil carbon, nitrogen and phosphorous in Kilombero–Tanzania. J. Environ. Manag. 2019, 234, 159–166. [Google Scholar] [CrossRef]
- Feliciano, D.; Nayak, D.; Vetter, S.; Hillier, J. CCAFS Mitigation Option Tool. 2015. Available online: www.ccafs.cigar.org (accessed on 17 November 2016).
- Bouwman, A.F.; Boumans, L.J.M. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Glob. Biogeochem. Cycles 2002, 16, 6–13. [Google Scholar] [CrossRef]
- Bouwman, A.F. Global Inventory of NH3 Emissions from Mineral Fertilizers and Animal Manure Applied to Croplands and Grasslands; FAO: Rome, Italy, 2001. [Google Scholar]
- Ecoinvent Center. Overview and Methodology; Final Report Ecoinvent v2.0 No. 1.; Frischknecht, R., Jungbluth, N., Eds.; Swiss Centre for Life Cycle Inventories: St-Gallen, Switzerland, 2007; p. 40. [Google Scholar]
- Smith, P.; Powlson, D.; Glendining, M.; Smith, J.O. Potential for carbon sequestration in European soils: Preliminary estimates for five scenarios using results from long-term experiments. Glob. Chang. Biol. 1997, 3, 67–79. [Google Scholar] [CrossRef]
- Ogle, S.M.; Breidt, F.J.; Paustian, K. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry 2005, 72, 87–121. [Google Scholar] [CrossRef]
- IPCC. Agriculture, Forestry and Other Land Use. In Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2006; Volume 4. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis in Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 710–716. [Google Scholar]
- Kakraliya, S.K.; Jat, R.D.; Kumar, S.; Choudhary, K.; Prakash, J.; Singh, L. Integrated Nutrient Management for Improving, Fertilizer Use Efficiency, Soil Biodiversity and Productivity of Wheat in Irrigated Rice Wheat Cropping System in Indo-Gangatic Plains of India. Int. J. Curr. Microb. Appl. Sci. 2017, 6, 81–88. [Google Scholar] [CrossRef]
- Soni, P.; Sinha, R.; Perret, S.R. Energy use and efficiency in selected rice-based cropping systems of the Middle-Indo Gangetic Plains in India. Energy Rep. 2018, 4, 554–564. [Google Scholar] [CrossRef]
- Gomez, K.; Gomez, A. Statistical Procedures for Agricultural Research, 2nd ed.; Wiley: New York, NY, USA, 1984; pp. 180–209. [Google Scholar]
- SAS Institute. SAS/STAT User’s Guide; Version 8-1; SAS Institute: Cary, NC, USA, 2001. [Google Scholar]
- Wang, W.; Lai, D.Y.F.; Wanga, C.; Pana, T.; Zeng, C. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field. Soil Tillage Res. 2015, 152, 8–16. [Google Scholar] [CrossRef]
- Bhatia, A.; Jain, N.; Pathak, H. Methane and nitrous oxide emissions from Indian rice paddies, agricultural soils and crop residue burning. Greenh. Gases Sci. Technol. 2013, 3, 196–211. [Google Scholar] [CrossRef]
- Bhatia, A.; Sasmal, S.; Jain, N.; Pathak, H.; Kumar, R.; Singh, A. Mitigating nitrous oxide emission from soil under conventional and no-tillage in wheat using nitrification inhibitors. Agric. Ecosyst. Environ. 2010, 136, 247–253. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil organic carbon sequestration rates by tillage and crop rotation. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef] [Green Version]
- Erenstein, O.; Laxmi, V. Zero tillage impacts in India’s rice-wheat systems: Areview. Soil Tillage Res. 2008, 100, 1–14. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Jat, R.K.; Singh, R.G.; Jat, M.L.; Stirling, C.M.; Jat, M.K.; Bijarniya, D.; Kumar, M.; Yadvinder-Singh; Saharawat, Y.S.; et al. Soil organic carbon changes after seven years of conservation agriculture based rice-wheat cropping system in the eastern Indo-Gangetic Plain of India. Soil Use Manag. 2017, 23, 81–89. [Google Scholar] [CrossRef]
- Singh, Y.; Gupta, R.K.; Jagmohan, S.; Gurpreet, S.; Gobinder, S.; Ladha, J.K. Placement effects on rice residue decomposition and nutrient dynamics on two soil types during wheat cropping in rice-wheat system in north western India. Nutr. Cycl. Agroecosyst. 2010, 88, 471–480. [Google Scholar] [CrossRef]
- Qiao, J.; Yang, L.; Yan, T.; Xue, F.; Zhao, D. Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu lake area. Agric. Ecosyst. Environ. 2012, 146, 103–112. [Google Scholar] [CrossRef]
- Ju, X.; Xing, G.; Chen, X.; Zhang, S.; Zhang, L.; Liu, X.; Cui, Z.; Yin, B.; Christie, P.; Zhu, Z.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- Gathala, M.K.; Ladha, J.K.; Saharawat, Y.; Kumar, V.; Kumar, V.; Sharma, P. Effect of tillage and crop establishment methods on physical properties of a medium-textured soil under a seven-year rice-wheat rotation. Soil Sci. Soc. Am. J. 2011, 75, 1851–1862. [Google Scholar] [CrossRef]
- Jat, R.K.; Sapkota, T.B.; Singh, R.G.; Jat, M.L.; Kumar, M.; Gupta, R.K. Seven years of conservation agriculture in a rice-wheat rotation of Eastern Gangetic Plains of South Asia: Yield trends and economic profitability. Field Crop. Res. 2014, 164, 199–210. [Google Scholar] [CrossRef]
Scenarios a/Management Practices | Sc1 | Sc2 | Sc3 | Sc4 | Sc5 | Sc6 |
---|---|---|---|---|---|---|
Crop Establishment | Conventional Tillage (CT) | CT | Reduced Tillage (RT) | RT—Zero Tillage (ZT) | ZT | ZT |
Field preparation | Rice—2 passes of harrow, 1 pass of rotavator, 2 passes of puddle harrow followed by (fb) planking; Wheat—2 passes of harrow and rotavator each fb planking | Same as in Sc1 | Rice—1 pass of harrow, 1 pass of cultivator fb planking; Wheat—1 pass of harrow, 1 pass of cultivator fb planking | Rice—same as in Sc3; Wheat—zero tillage | Zero tillage | Same as in Sc5 |
Seed rate (kg ha−1) a | 12.5–100 | Same as in Sc1 | 20–100 | Same as in Sc3 | Same as in Sc3 | Same as in Sc3 |
FP, residue removed | FP, residue removed | 100% of rice and 25% of wheat residue incorporated | Same as Sc2 | 100% rice residue retained and 25% wheat residue incorporated | 100% of rice residue and 25% of wheat retained | Same as in Sc5 |
Fertilizer (N:P2O5:K2O) in kg ha−1 | Rice—195:58:00; Wheat—185:58:00 | Same as in Sc1 | Rice—150:60:60; Wheat—150:60:60 | Same as in Sc3 | Rice—147:60:60 (in 1st yr), 153:60:60 (in 2nd yr), and 158:60:60 (in 3rd yr) Wheat—143:60:60 (in 1st yr), 120:60:60 (in 2nd yr), and 134:60:60 (in 3rd yr) | Rice—138:39:70 (in 1st yr), 140:42:57 (in 2nd yr), and 145:44:57 (in 3rd yr) Wheat—135:62:60 (in 1st yr), 111:58:55 (in 2nd yr), and 122:56:55 (in 3rd yr) |
Water management | Rice—continuous flooding of 5–6 cm depth for 30–40 days after transplanting fb irrigation applied at alternate wetting and drying Wheat—4–6 irrigation as per requirement | Same as in Sc1 | Rice—soil was kept wet up to 20 days after sowing fb irrigation applied at hairline cracks. Wheat—4–6 irrigation as per critical crop growth stages | Same as in Sc3 | Rice—soil was kept wet until germination fb irrigation at −20 to −30 kPa matric potential Wheat—irrigation at −50 to −55 kPa matric potential | Same as in Sc5 |
Scenarios a | CH4 kg (kg CO2 eq./ha) | N2O (kg CO2 eq./ha) | GHG Emissions Due to Production and Transportation of Fertilizers (kg CO2 eq./ha) | GHG Emissions Due to Energy Consumption (Diesel and Electricity) (kg CO2 eq./ha) | Total C-Sequestration (kg CO2 eq./ha) | Area Scaled (GWP; kg CO2 eq./ha) | Grain Yield (Mg/ha) | Yield Scaled (kg CO2/Mg grain yield) | N-Factor Productivity (kg grain/kg N) |
---|---|---|---|---|---|---|---|---|---|
Rice | |||||||||
Sc1 | 2607 A | 10.4 D | 900 A | 1861 A | 74.2 A | 5304 B | 6.73 A | 791 B | 34 |
Sc2 | 3001 B | 13.3 D | 900 A | 1861 A | 194.3 B | 5581 A | 6.85 A | 818 A | 35 |
Sc3 | 1479 C | 941.2 B | 716 B | 1530 B | 456.0 C | 4209 C | 6.64 A | 637 C | 44 |
Sc4 | 1497 CD | 945.2 AB | 716 B | 1445 C | 470.1 D | 4132 D | 6.65 A | 625 C | 44 |
Sc5 | 1503 D | 950.7 A | 722 B | 1305 D | 474.5 D | 4006 E | 6.73 A | 600 D | 44 |
Sc6 | 1508 D | 909.4 C | 665 C | 1305 D | 477.0 D | 3909F | 6.90 A | 572 E | 50 |
Wheat | |||||||||
Sc1 | -NA- | 1000 A | 856 A | 492 A | 0 A | 2348 A | 5.06 A | 466 A | 27 |
Sc2 | -NA- | 1344 B | 856 A | 492 A | 913 B | 1780 B | 5.15 A | 348 B | 28 |
Sc3 | -NA- | 1217 C | 847 A | 431 B | 1074 C | 1420 C | 5.39 B | 264 C | 36 |
Sc4 | -NA- | 1223 C | 847 A | 338 C | 1420 D | 987 D | 5.64 C | 175 D | 38 |
Sc5 | -NA- | 1144 D | 766 B | 331 C | 1432 D | 809 E | 5.77 CD | 141 E | 44 |
Sc6 | -NA- | 1098 D | 711 C | 331 C | 1452 D | 688F | 5.85 D | 118 E | 48 |
System | |||||||||
Sc1 | 2607 A | 1010 A | 1756 A | 2354 A | 74 A | 7653 A | 11.97 A | 642 A | 32 |
Sc2 | 3001 B | 1358 B | 1756 B | 2354 A | 1107 B | 7361 B | 12.18 AB | 607 B | 32 |
Sc3 | 1479 C | 2158 C | 1562 C | 1960 B | 1530 C | 5629 C | 12.22 AB | 462 C | 41 |
Sc4 | 1497 CD | 2168 C | 1562 C | 1783 C | 1890 D | 5120 D | 12.48 BC | 411 D | 42 |
Sc5 | 1503 D | 2094 D | 1488 D | 1636 D | 1906 D | 4815 E | 12.71 CD | 380 E | 45 |
Sc6 | 1508 D | 2008 E | 1376 E | 1636 D | 1929 D | 4597 F | 12.95 D | 357 F | 49 |
Scenarios a | CH4 kg (kg CO2 eq./ha) | N2O (kg CO2 eq./ha) | GHG Emissions Due to Production and Transportation of Fertilizers (kg CO2 eq./ha) | GHG Emissions Due to Energy Consumption (Diesel and Electricity) (kg CO2 eq./ha) | Total C-Sequestration (kg CO2 eq./ha) | Area Scaled (GWP; kg CO2 eq./ha) | Grain Yield (Mg/ha) | Yield Scaled (kg CO2/Mg Grain Yield) | Net Return (USD/ha) | N-Factor Productivity (kg Grain/Kg N) | Eco-Efficiency (USD/Kg CO2 eq.) |
---|---|---|---|---|---|---|---|---|---|---|---|
Rice | |||||||||||
BAU vs. CSA | *** | *** | *** | *** | *** | *** | NS | *** | * | *** | *** |
BAU vs. I-BAU | *** | *** | *** | ** | *** | *** | NS | * | NS | * | NS |
I-BAU vs. CSA | * | *** | *** | ** | NS | *** | NS | * | NS | ** | *** |
FFP vs. PNM | *** | *** | *** | *** | *** | *** | NS | *** | * | *** | *** |
Wheat | |||||||||||
BAU vs. CSA | - | *** | * | *** | *** | *** | ** | *** | ** | *** | *** |
BAU vs. I-BAU | - | *** | NS | *** | *** | *** | NS | *** | NS | NS | NS |
I-BAU vs. CSA | - | *** | ** | *** | *** | *** | ** | *** | *** | *** | *** |
FFP vs. PNM | - | ** | *** | *** | *** | *** | ** | *** | ** | *** | *** |
System | |||||||||||
Scenarios | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Crops (rice & wheat) | **** | *** | ** | *** | *** | *** | *** | *** | *** | *** | *** |
Scenario*Crops | **** | *** | * | *** | *** | NS | ** | * | * | ** | *** |
BAU vs. CSA | *** | *** | *** | *** | *** | *** | NS | *** | ** | *** | *** |
BAU vs. I-BAU | *** | *** | ** | *** | *** | *** | NS | *** | NS | * | ** |
I-BAU vs. CSA | *** | *** | *** | *** | *** | *** | NS | *** | * | *** | *** |
FFP vs. PNM | *** | *** | *** | *** | *** | *** | NS | *** | ** | *** | *** |
Wheat Production System | Average Wheat Yield (Mg/ha) | Yield Difference between Normal Year (2015–2016) and Bad Year (Mg/ha) | Yield Difference between Normal Year (2016–2017) and Bad Year (Mg/ha) | Yield Difference between Normal Years | ||
---|---|---|---|---|---|---|
2014–2015 (Bad Year) | 2015–2016 (Normal Year) | 2016–2017 (Normal Year) | ||||
Business as usual (Sc1) | 4.70 | 5.19 | 5.30 | 0.49 a | 0.60 a | 0.11 a |
Improved business as usual (I-BAU) | 4.98 | 5.37 | 5.45 | 0.39 b | 0.47 b | 0.08 b |
CSAPs | 5.54 | 5.79 | 5.93 | 0.25 c | 0.39 c | 0.14 c |
Yield difference between I-BAU and Sc1 (Mg/ha) | 0.28 d | 0.18 e | 0.15 f | |||
Yield difference between CSAPs and Sc1 (Mg/ha) | 0.84 d | 0.60 e | 0.63 f |
CH4 | N2O | GHG_Fertilizers | GHG_Energy | C-Sequestration | Area Scaled/GWP | Yield Scaled | NUE | Yield | Net Return | Eco-Efficiency | Crop Residue | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | 1 | |||||||||||
N2O | −0.91 * | |||||||||||
GHG_Fertilizers | 0.87 * | −0.81 | ||||||||||
GHG_Energy | 0.91 * | −0.87 * | 0.95 ** | |||||||||
C_sequestration | −0.77 * | 0.93 ** | −0.83 * | −0.88 * | ||||||||
Area scaled | 0.93 ** | −0.92 ** | 0.96 ** | 0.99 *** | −0.92 ** | |||||||
Yield scaled | 0.92 * | −0.91 * | 0.96 ** | 0.99 *** | −0.92 ** | 0.99 *** | ||||||
N-factor productivity | −0.88 * | 0.83 * | −1.0 *** | −0.97 ** | 0.85 * | −0.97 ** | −0.98 *** | |||||
Yield | −0.67 | 0.68 | −0.93 ** | −0.90 * | 0.83 * | −0.88 * | −0.90 * | 0.93 ** | ||||
Net return | −0.78 | 0.76 | −0.96 ** | −0.96 ** | 0.86 * | −0.94 ** | −0.95 *** | 0.97 ** | 0.99 *** | |||
Eco-efficiency | −0.86 * | 0.82 * | −0.98 ** | −0.99 *** | 0.88 * | −0.98 *** | −0.98 *** | 0.99 *** | 0.96 ** | 0.99 *** | ||
Crop residue | −0.50 | 0.80 | −0.60 | −0.62 | 0.91 * | −0.69 | −0.70 | 0.62 | 0.64 | 0.63 | 0.63 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakraliya, S.K.; Jat, H.S.; Sapkota, T.B.; Singh, I.; Kakraliya, M.; Gora, M.K.; Sharma, P.C.; Jat, M.L. Effect of Climate-Smart Agriculture Practices on Climate Change Adaptation, Greenhouse Gas Mitigation and Economic Efficiency of Rice-Wheat System in India. Agriculture 2021, 11, 1269. https://doi.org/10.3390/agriculture11121269
Kakraliya SK, Jat HS, Sapkota TB, Singh I, Kakraliya M, Gora MK, Sharma PC, Jat ML. Effect of Climate-Smart Agriculture Practices on Climate Change Adaptation, Greenhouse Gas Mitigation and Economic Efficiency of Rice-Wheat System in India. Agriculture. 2021; 11(12):1269. https://doi.org/10.3390/agriculture11121269
Chicago/Turabian StyleKakraliya, Suresh K., Hanuman S. Jat, Tek B. Sapkota, Ishwar Singh, Manish Kakraliya, Manoj K. Gora, Parbodh C. Sharma, and Mangi L. Jat. 2021. "Effect of Climate-Smart Agriculture Practices on Climate Change Adaptation, Greenhouse Gas Mitigation and Economic Efficiency of Rice-Wheat System in India" Agriculture 11, no. 12: 1269. https://doi.org/10.3390/agriculture11121269
APA StyleKakraliya, S. K., Jat, H. S., Sapkota, T. B., Singh, I., Kakraliya, M., Gora, M. K., Sharma, P. C., & Jat, M. L. (2021). Effect of Climate-Smart Agriculture Practices on Climate Change Adaptation, Greenhouse Gas Mitigation and Economic Efficiency of Rice-Wheat System in India. Agriculture, 11(12), 1269. https://doi.org/10.3390/agriculture11121269