Effect of Various Rates of P from Alternative and Traditional Sources on Butterhead Lettuce (Lactuca sativa L.) Grown on Peat Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Setup and Establishment
- TSP reduced rate—17 mg L−1
- STR reduced rate—29 mg L−1
- TSP recommended rate—34 mg L−1
- STR recommended rate—57 mg L−1
- TSP increased rate—68 mg L−1
- STR increased rate—114 mg L−1
2.2. Peat Sampling and Chemical Analysis
2.3. Biometric Measurements and Chemical Analysis
2.4. Chemical Analysis of Plant Material
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of STR Fertilization on Biometric Traits
3.2. Effect of STR Fertilization on Content and Uptake of Selected Elements
3.3. Effect of STR Fertilization on P and Mg in Peat
3.4. Effect of STR Fertilization on Heavy Metal Content in Plants and Peat
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Segawa, H.; Hanazaki, A.; Miyamoto, K. Ichi Intracellular and extracellular functions of phosphorus compound in the body. Clin. Calcium 2016, 6, 187–191. [Google Scholar]
- Michigami, T. Extracellular phosphate as a signaling molecule. Contrib. Nephrol. 2013, 180, 14–24. [Google Scholar]
- Malhotra, H.; Vandana; Sharma, S.; Pandey, R. Phosphorus nutrition: Plant growth in response to deficiency and excess. In Plant Nutrients and Abiotic Stress Tolerance; Springer: Singapoure, 2018; ISBN 9789811090448. [Google Scholar]
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaser, B.; Lehr, V.I. Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Sci. Rep. 2019, 9, 9338. [Google Scholar] [CrossRef] [Green Version]
- Jama-Rodzeńska, A.; Sowiński, J.; Koziel, J.; Białowiec, A. Phosphorus Recovery from Sewage Sludge Ash Based on Cradle-to-Cradle Approach—Mini-Review. Minerals 2021, 11, 985. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Cordell, D.; Rosemarin, A.; Schröder, J.J.; Smit, A.L. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere 2011, 84, 747–758. [Google Scholar] [CrossRef]
- Jama-Rodzeńska, A.; Białowiec, A.; Koziel, J.A.; Sowiński, J. Waste to phosphorus: A transdisciplinary solution to P recovery from wastewater based on the TRIZ approach. J. Environ. Manag. 2021, 281, 112235. [Google Scholar] [CrossRef] [PubMed]
- Szymańska, M.; Sosulski, T.; Bożętka, A.; Dawidowicz, U.; Wąs, A.; Szara, E.; Malak-Rawlikowska, A.; Sulewski, P.; van Pruissen, G.W.P.; Cornelissen, R.L. Evaluating the struvite recovered from anaerobic digestate in a farm bio-refinery as a slow-release fertiliser. Energies 2020, 13, 5342. [Google Scholar] [CrossRef]
- Bonvin, C.; Etter, B.; Udert, K.M.; Frossard, E.; Nanzer, S.; Tamburini, F.; Oberson, A. Plant uptake of phosphorus and nitrogen recycled from synthetic source-separated urine. Ambio 2015, 44 (Suppl. S2), 217–227. [Google Scholar] [CrossRef] [Green Version]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, Å.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Egle, L.; Rechberger, H.; Zessner, M. Overview and description of technologies for recovering phosphorus from municipal wastewater. Resour. Conserv. Recycl. 2015, 105, 325–346. [Google Scholar] [CrossRef]
- Kasprzyk, M.; Gajewska, M. Phosphorus removal by application of natural and semi-natural materials for possible recovery according to assumptions of circular economy and closed circuit of P. Sci. Total Environ. 2019, 650, 249–256. [Google Scholar] [CrossRef]
- Van Dijk, K.C.; Lesschen, J.P.; Oenema, O. Phosphorus flows and balances of the European Union member states. Sci. Total Environ. 2016, 542, 1078–1093. [Google Scholar] [CrossRef] [PubMed]
- Wollmann, I.; Möller, K. Phosphorus bioavailability of sewage sludge-based recycled fertilizers in an organically managed field experiment. J. Plant Nutr. Soil Sci. 2018, 181, 17. [Google Scholar] [CrossRef]
- Talboys, P.J.; Heppell, J.; Roose, T.; Healey, J.R.; Jones, D.L.; Withers, P.J.A. Struvite: A slow-release fertiliser for sustainable phosphorus management? Plant Soil 2016, 401, 109–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertzberger, A.J.; Cusick, R.D.; Margenot, A.J. A review and meta-analysis of the agricultural potential of struvite as a phosphorus fertilizer. Soil Sci. Soc. Am. J. 2020, 84, 653–671. [Google Scholar] [CrossRef]
- Muys, M.; Phukan, R.; Brader, G.; Samad, A.; Moretti, M.; Haiden, B.; Pluchon, S.; Roest, K.; Vlaeminck, S.E.; Spiller, M. A systematic comparison of commercially produced struvite: Quantities, qualities and soil-maize phosphorus availability. Sci. Total Environ. 2021, 756, 143726. [Google Scholar] [CrossRef]
- Ricardo, G.P.; López-de-Sá, E.G.; Plaza, C. Lettuce response to phosphorus fertilization with struvite recovered from municipal wastewater. HortScience 2009, 44, 426–430. [Google Scholar]
- Worwąg, M. Assessment of the Effect of Struvite on the Growth of Sinapis alba. Middle Pomeranian Sci. Soc. Environ. Prot. 2018, 20, 837–856. [Google Scholar]
- Ponce, G.; Garcia-Lopez, R. Evaluation of Struvite as a Fertilizer: A Comparison with Traditional P Sources. Agrochimica 2007, 51, 301–308. [Google Scholar]
- Gómez-Suárez, A.D.; Nobile, C.; Faucon, M.P.; Pourret, O.; Houben, D. Fertilizer potential of struvite as affected by nitrogen form in the rhizosphere. Sustainability 2020, 12, 2212. [Google Scholar] [CrossRef] [Green Version]
- Wen, G.; Huang, L.; Zhang, X.; Hu, Z. Uptake of nutrients and heavy metals in struvite recovered from a mixed wastewater of human urine and municipal sewage by two vegetables in calcareous soil. Environ. Technol. Innov. 2019, 15, 2. [Google Scholar] [CrossRef]
- Reza, A.; Shim, S.; Kim, S.; Ahmed, N.; Won, S.; Ra, C. Nutrient leaching loss of pre-treated struvite and its application in Sudan grass cultivation as an eco-friendly and sustainable fertilizer source. Sustainability 2019, 11, 4204. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Salleh, M.A.M.; Rashid, U.; Ahsan, A.; Hossain, M.M.; Ra, C.S. Production of slow release crystal fertilizer from wastewaters through struvite crystallization—A review. Arab. J. Chem. 2014, 7, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Stępien, A.; Wojtkowiak, K. Effect of meat and bone meal on the content of microelements in the soil and wheat grains and oilseed rape seeds. J. Elem. 2015, 20, 999–1010. [Google Scholar] [CrossRef]
- Nogalska, A.; Czapla, J.; Nogalski, Z.; Skwierawska, M.; Kaszuba, M. The effect of increasing doses of meat and bone meal (MBM) on maize (Zea mays L.) grown for grain. Agric. Food Sci. 2012, 21, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Stępień, A.; Wojtkowiak, K.; Kolankowska, E. Use of meat industry waste in the form of meat-and-bone meal in fertilising maize (Zea mays L.) for grain. Sustainability 2021, 13, 2857. [Google Scholar] [CrossRef]
- Balawejder, M.; Szostek, M.; Gorzelany, J.; Antos, P.; Witek, G.; Matłok, N. A study on the potential fertilization effects of microgranule fertilizer based on the protein and Calcined bones in maize cultivation. Sustainability 2020, 12, 1343. [Google Scholar] [CrossRef] [Green Version]
- Chaves, C.; Canet, R.; Albiach, R.; Marin, J.; Pomares, F. Meat and bone meal: Fertilizing value and rates of nitrogen mineralization. Nutr. Carbon Cycl. Sustain. Plant Soil Syst. 2005, 1, 177–180. [Google Scholar]
- Ylivainio, K.; Uusitalo, R.; Turtola, E. Meat bone meal and fox manure as P sources for ryegrass (Lolium multiflorum) grown on a limed soil. Nutr. Cycl. Agroecosyst. 2008, 81, 267–278. [Google Scholar] [CrossRef]
- Jeng, A.; Haraldsen, T.; Vagstad, N. Meat and bone meal as nitrogen fertilizer to cereals in Norway. Agric. Food Sci. 2004, 13, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Nowosielski, O. Zasady Opracowania Zaleceń Nawozowych w Ogrodnictwie; PWRiL: Warszawa, Poland, 1988. [Google Scholar]
- EU Regulation: Commission Regulation (ec) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32006R1881 (accessed on 12 December 2021).
- Li, X.Z.; Zhao, Q.L. Recovery of ammonium-nitrogen from landfill leachate as a multi nutri-ent fertilizer. Ecol. Eng. 2003, 20, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Siciliano, A. Assessment of fertilizer potential of the struvite produced from the treatment of methanogenic landfill leachate using low-cost reagents. Environ. Sci. Pollut. Res. 2016, 23, 5949–5959. [Google Scholar] [CrossRef]
- Gell, K.; de Ruijter, F.J.; Kuntke, P.; de Graaff, M.; Smit, A.L. Safety and Effectiveness of Struvite from Black Water and Urine as a Phosphorus Fertilizer. J. Agric. Sci. 2011, 3, 67–80. [Google Scholar] [CrossRef]
- Ryu, H.D.; Lee, S.I. Struvite recovery from swine wastewater and its assessment as a fertilizer. Environ. Eng. Res. 2016, 1, 29–35. [Google Scholar] [CrossRef]
- Hopkins, B.; Ellsworth, J. Phosphorus availability with alkaline/calcareous soil. In Proceedings of the Western Nutrient Management Conference, Salt Lake City, UT, USA, 6–7 March 2005. [Google Scholar]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition; Springer: New York, NY, USA, 2004. [Google Scholar]
- Skinner, P.W.; Matthews, M.A. A novel interpretation of magnesium translocation with the supply of phosphorus to roots of grapevine (Vitis vinifera L.). Plant Cell Environ. 1990, 13, 821–826. [Google Scholar] [CrossRef]
- Alloush, G.A.Z.; Zeto, S.K.; Clark, R.B. Phosphorus source, organic matter, and arbuscular mycorrhiza effects on growth and mineral acquisition of chickpea grown in acidic soil. J. Plant Nutr. 2000, 23, 1351–1369. [Google Scholar] [CrossRef]
- Li, L.; Tang, C.; Rengel, Z.; Zhang, F.S. Calcium, magnesium and microelement uptake as affected by phosphorus sources and interspecific root interactions between wheat and chickpea. Plant Soil 2004, 261, 29–37. [Google Scholar] [CrossRef]
- Knobeloch, L.; Salna, B.; Hogan, A.; Postle, J.; Anderson, H. Blue babies and nitrate-contaminated well water. Environ. Health Perspect. 2000, 108, 675–678. [Google Scholar] [CrossRef]
- Kmecl, V.; Knap, T.; Žnidarčič, D. Evaluation of the nitrate and nitrite content of vegetables commonly grown in Slovenia. Ital. J. Agron. 2017, 12, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Cantliffe, D.J. Nitrate Accumulation in Table Beets and Spinach as Affected by Nitrogen, Phosphorus, and Potassium Nutrition and Light Intensity 1. Agron. J. 1973, 65, 563–565. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 1258/2011 of 2 December 2011 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Nitrates in Foodstuffs. Available online: https://www.informea.org/en/legislation/commission-regulation-eu-no-12582011-amending-regulation-ec-no-18812006-regards-maximum (accessed on 12 December 2021).
- Wang, Z.; Li, S. Effects of nitrogen and phosphorus fertilization on plant growth and nitrate accumulation in vegetables. J. Plant Nutr. 2004, 27, 539–556. [Google Scholar] [CrossRef]
- Ackerman, J.N.; Zvomuya, F.; Cicek, N.; Flaten, D. Evaluation of manure-derived struvite as a phosphorus source for canola. Can. J. Plant Sci. 2013, 93, 419–424. [Google Scholar] [CrossRef]
- Massey, M.S.; Davis, J.G.; Ippolito, J.A.; Sheffield, R.E. Effectiveness of Recovered Phosphate as Fertilizers in Neutral and Slightly Alkaline Soils. Agron. J. 2009, 101, 323–329. [Google Scholar] [CrossRef]
- Muhmood, A.; Wu, S.; Lu, J.; Ajmal, Z.; Luo, H.; Dong, R. Nutrient recovery from anaerobically digested chicken slurry via struvite: Performance optimization and interactions with heavy metals and pathogens. Sci. Total Environ. 2018, 635, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Syrovetnik, K.; Malmstróm, M.E.; Neretnieks, I. Accumulation of heavy metals in the Ostriku peat bog (Estonia). Determination of binding process by means of sequential leaching. Environ. Pollut. 2007, 147, 291–300. [Google Scholar] [CrossRef]
- Zahra, A.; Alireza, M.; Jafar, N.; Mehdi, H.; Masmoud, Y.; Mehdi, A.; Amir, H.M. Effect of fertilizer application on soil heavy metals concentration, Environ. Monit. Assess. 2008, 160, 83–89. [Google Scholar]
- Robles-Aguilar, A.A.; Grunert, O.; Hernandez-Sanabria, E.; Mysara, M.; Meers, E.; Boon, N.; Jablonowski, N.M. Effect of Applying Struvite and Organic N as Recovered Fertilizers on the Rhizosphere Dynamics and Cultivation of Lupine (Lupinus angustifolius). Front. Plant Sci. 2020, 11, 1752. Available online: https://www.frontiersin.org/articles/10.3389/fpls.2020.572741/full (accessed on 10 December 2021). [CrossRef]
P Fertilizer | Heavy Metal Content (mg kg−1) | |||
---|---|---|---|---|
Zn | Pb | Cu | Cd | |
TSP | 213 ± 43 | 1.8 ± 0.4 | 23 ± 4.8 | 10.7 ± 2.1 |
STR | 3.7 ± 0.7 | <0.1 | 1.7 ± 0.3 | <0.1 |
Fertilization Treatment | Morphological Traits of Butterhead Lettuce | |
---|---|---|
Fresh Mass of Leaves (g) | Number of Leaves | |
P fertilizer (A) | ||
Control | 96 ± 6 | 10 a ± 0.8 |
TSP | 112 ± 6 | 12 ab ± 0.3 |
STR | 127 ± 10 | 12 b ± 0.5 |
p value | ns | 0.05 |
Rates of P fertilization (B) | ||
Control | 96 ± 6 | 10 a ± 0.8 |
Reduced rate | 121 ± 8 | 12 ab ± 0.4 |
Recommended rate | 112 ± 13 | 12 ab ± 0.5 |
Increased rate | 126 ± 10 | 13 b ± 0.5 |
p value | ns | 0.05 |
A × B | ns | ns |
Fertilization Treatment | Plant Chemical Composition | |||||
---|---|---|---|---|---|---|
P Content (mg 100 g−1 DM) | P Uptake (mg Per Mass of Leaves) | Mg Content (mg 100 g−1 DM) | Mg Uptake (mg Per Mass of Leaves) | N-NO3− Content (mg 100 g−1 DM) | N-NO3− Uptake (mg) | |
P (A) | ||||||
Control | 121 a ± 10 | 11 a ± 1.0 | 178 ± 22 | 17 ±2.1 | 135.6 a ± 14 | 13.2 a ± 1.4 |
TSP | 195 b ± 15 | 21 b ± 1.3 | 157 ± 59 | 20 ± 7.9 | 225.3 ab ± 36 | 26.0 a ± 4.7 |
STR | 221 b ± 6 | 28 c ± 0.6 | 147 ± 31 | 19 ± 4.3 | 309.5 c ± 29 | 38.9 b ± 3.0 |
p value | <0.01 | <0.001 | ns | ns | <0.05 | <0.01 |
Rate of P fertilization (B) | ||||||
Control | 121 a ± 10 | 11 a ± 1.0 | 178 ± 22 | 17 ± 2.2 | 136.6 a ± 14 | 13.2 a ± 1.4 |
Reduced rate | 228 b ± 13 | 27 b ± 1.2 | 129 ± 50 | 16 ± 7.3 | 254.6 ab ± 20 | 30.1 ab ± 0.5 |
Recommended rate | 200 b ± 11 | 22 b ± 2.3 | 91 ± 31 | 11 ± 4.0 | 191.0 a ± 50 | 22.0 a ± 6.6 |
Increased rate | 196 b ± 18 | 24 b ± 1.8 | 237 ± 66 | 30 ± 9.3 | 356.6 b ± 26 | 44.7 b ± 2.4 |
p value | <0.01 | <0.001 | ns | ns | <0.05 | <0.01 |
Fertilization Treatment | Chemical Composition of Peat Substrate | ||||
---|---|---|---|---|---|
pH | Salinity (mS cm−1) | P (mg dm−3) | Mg (mg dm−3) | N-NO3− (mg dm−3) | |
P fertilizer (A) | |||||
Control | 5.2 a ± 0.1 | 1257 ab ± 12 | 23 a ± 1.2 | 32 ± 1.2 | 5.4 a ± 2.1 |
TSP | 5.7 b ± 0.1 | 1185 b ± 104 | 123 ab ± 20 | 38 ± 9.9 | 3.1 a ± 1.5 |
STR | 5.8 b ± 0.1 | 846 a ± 80 | 143 b ± 22 | 58 ± 10 | 50.1 b ± 4.8 |
p value | <0.001 | <0.01 | <0.01 | ns | <0.01 |
Rates of P fertilization (B) | |||||
Control | 5.3 a ± 0.1 | 1257 ± 12 | 23 a ± 1.2 | 32 ab ± 1.2 | 5.4 ± 2.1 |
Reduced rate | 5.8 bc ± 0.1 | 950 ± 230 | 80 b ± 5.5 | 25 a ± 7.5 | 2.7 ± 3.2 |
Recommended rate | 5.8 c ± 0.1 | 953 ± 11 | 106 b ± 13 | 47 ab ± 12.4 | 36.2 ± 2.4 |
Increased rate | 5.6 b ± 0.1 | 1143 ± 31 | 214 c ± 5.8 | 73 b ± 10.9 | 41.0 ± 12 |
p value | <0.001 | 0.41 | <0.01 | <0.05 | ns |
A × B | ns | <0.01 | <0.01 | ns | <0.001 |
Fertilization Treatment | Heavy Metals Content (mg kg−1 DM) | |||
---|---|---|---|---|
Zn | Pb | Cd | Cu | |
P fertilizer (A) | ||||
Control | 100 b ± 11 | 0.959 ± 0.1 | 0.5 ± 0.1 | 4.01 ± 0.2 |
TSP | 67 b ± 5.9 | 0.982 ± 0.1 | 0.5 ± 0.1 | 4.21 ± 0.3 |
STR | 60 a ± 5.3 | 0.800 ± 0.1 | 0.4 ± 0.0 | 3.53 ± 0.2 |
p value | <0.01 | ns | ns | ns |
Rates of P fertilization (B) | ||||
Control | 100 b ± 11 | 0.959 ± 0.1 | 0.5 ab ± 0.1 | 4.01 ± 0.5 |
Reduced rate | 79 b ± 6.1 | 0.924 ± 0.1 | 0.5 b ± 0.0 | 3.81 ± 0.4 |
Recommended rate | 54 a ± 4.1 | 0.868 ± 0.1 | 0.3 a ± 0.0 | 3.53 ± 0.3 |
Increased rate | 56 a ± 4.5 | 0.881 ± 0.1 | 0.5 ab ± 0.0 | 4.27 ± 0.4 |
p value | <0.001 | ns | <0.05 | ns |
A × B | ns | ns | ns | ns |
Fertilization Treatment | Heavy Metals Content (mg kg−1 DM) | |||
---|---|---|---|---|
Zn | Pb | Cd | Cu | |
P fertilizer (A) | ||||
Control | 0.07 a ± 0.0 | 0.2 a ± 0.0 | 0.16 ± 0.0 | 0.58 a ± 0.1 |
TSP | 2.09 b ± 0.2 | 15.3 b ± 0.8 | 0.32 ± 0.0 | 0.88 a ± 0.1 |
STR | 2.36 b ± 0.2 | 15.2 b ± 0.9 | 0.80 ± 0.4 | 1.69 b ± 0.2 |
p value | <0.001 | <0.001 | ns | <0.01 |
Rates of P fertilization (B) | ||||
Control | 0.07 a ± 0.0 | 0.2 a ± 0.0 | 0.16 ± 0.0 | 0.58 ± 0.1 |
Reduced rate | 2.47 b ± 0.2 | 15.6 b ± 1.2 | 0.40 ± 0.1 | 1.76 ± 0.4 |
Recommended rate | 1.93 b ± 0.1 | 14.5 b ± 1.1 | 0.32 ± 0.0 | 0.96 ± 0.2 |
Increased rate | 2.29 b ± 0.2 | 15.5 b ± 1.1 | 0.96 ± 0.6 | 1.13 ± 0.1 |
p value | <0.001 | <0.001 | ns | ns |
A × B | ns | ns | ns | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jama-Rodzeńska, A.; Chochura, P.; Gałka, B.; Szuba-Trznadel, A.; Svecnjak, Z.; Latkovic, D. Effect of Various Rates of P from Alternative and Traditional Sources on Butterhead Lettuce (Lactuca sativa L.) Grown on Peat Substrate. Agriculture 2021, 11, 1279. https://doi.org/10.3390/agriculture11121279
Jama-Rodzeńska A, Chochura P, Gałka B, Szuba-Trznadel A, Svecnjak Z, Latkovic D. Effect of Various Rates of P from Alternative and Traditional Sources on Butterhead Lettuce (Lactuca sativa L.) Grown on Peat Substrate. Agriculture. 2021; 11(12):1279. https://doi.org/10.3390/agriculture11121279
Chicago/Turabian StyleJama-Rodzeńska, Anna, Piotr Chochura, Bernard Gałka, Anna Szuba-Trznadel, Zlatko Svecnjak, and Dragana Latkovic. 2021. "Effect of Various Rates of P from Alternative and Traditional Sources on Butterhead Lettuce (Lactuca sativa L.) Grown on Peat Substrate" Agriculture 11, no. 12: 1279. https://doi.org/10.3390/agriculture11121279
APA StyleJama-Rodzeńska, A., Chochura, P., Gałka, B., Szuba-Trznadel, A., Svecnjak, Z., & Latkovic, D. (2021). Effect of Various Rates of P from Alternative and Traditional Sources on Butterhead Lettuce (Lactuca sativa L.) Grown on Peat Substrate. Agriculture, 11(12), 1279. https://doi.org/10.3390/agriculture11121279