Estimation of Reference Evapotranspiration during the Irrigation Season Using Nine Temperature-Based Methods in a Hot-Summer Mediterranean Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Temperature-Based ETo Estimation Methods
2.3. Evaluation Criteria
- (1)
- The coefficients of regression and determination relating the PM and temperate-based ETo, b and R2 respectively, are defined as:
- (2)
- The root mean square error, RMSE, which characterizes the variance of the estimation error:
3. Results
3.1. Calibration and Validation of Radiation Factor (kRs)
3.2. Estimating ETo by Temperature-Based Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doorenbos, J.; Pruitt, W.O. Guidelines for predicting crop-water requirements. In FAO Irrigation and Drainage Paper No. 24, 2nd ed.; FAO: Rome, Italy, 1977; 156p. [Google Scholar]
- Wright, J.L.; Jensen, M.E. Development and evaluation of evapotranspiration models for irrigation scheduling. Trans. ASAE 1978, 21, 88–91. [Google Scholar] [CrossRef]
- Jensen, M.E.; Burman, R.D.; Allen, R.G. Evapotranspiration and Irrigation Water Requirements; ASCE: Reston, VA, USA, 1990. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration. In Guidelines for Computing Crop Water Requirements. Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- Allen, R.G.; Wright, J.L.; Pruitt, W.O.; Pereira, L.S.; Jensen, M.E. Water requirements. In Design and Operation of Farm Irrigation Systems, 2nd ed.; Hoffman, G.J., Evans, R.G., Jensen, M.E., Martin, D.L., Elliot, R.L., Eds.; ASABE: St. Joseph, MI, USA, 2007; pp. 208–288. [Google Scholar]
- Howell, T.A.; Evett, S.R.; Tolk, J.A.; Schneider, A.D. Evapotranspiration of full-, deficit-irrigated, and dryland cotton on the Northern Texas High Plains. J. Irrig. Drain. Eng. ASCE 2004, 130, 277–285. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, G.C.; Pereira, L.S. Assessing economic impacts of deficit irrigation as related to water productivity and water costs. Biosyst. Eng. 2009, 103, 536–551. [Google Scholar] [CrossRef] [Green Version]
- Paredes, P.; Rodrigues, G.C.; Alves, I.; Pereira, L.S. Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies. Agric. Water Manag. 2014, 135, 27–39. [Google Scholar] [CrossRef]
- Allen, R.G.; Clemmens, A.J.; Burt, C.M.; Solomon, K.; O’Halloran, T. Prediction accuracy for project wide evapotranspiration using crop coefficients and reference evapotranspiration. J. Irrig. Drain. Eng. 2005, 131, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Yrisarry, J.B.; et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by FAO56 Penman–Monteith method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Trajkovic, S. Temperature-based approaches for estimating reference evapotranspiration. J. Irrig. Drain. Eng. 2005, 131, 316–323. [Google Scholar] [CrossRef]
- Adeboye, O.B.; Osunbitan, J.A.; Adekalu, K.O.; Okunade, D.A. Evaluation of FAO-56 Penman-Monteith and temperature based models in estimating reference evapotranspiration using complete and limited data, application to Nigeria. Agric. Eng. Int. 2009, XI, 1–25. [Google Scholar]
- Sentelhas, P.C.; Gillespie, T.J.; Santos, E.A. Evaluation of FAO Penman—Monteith and alternative methods for estimating reference evapotranspiration with miss-ing data in Southern Ontario, Canada. Agric. Water Manag. 2010, 97, 635–644. [Google Scholar] [CrossRef]
- Mohawesh, O.E.; Talozi, S.A. Comparison of Hargreaves and FAO56 equations for estimating monthly evapotranspiration for semi-arid and arid environments. Arch. Agron. Soil Sci. 2012, 58, 321–334. [Google Scholar] [CrossRef]
- Cobaner, M.; Citakoğlu, H.; Haktanir, T.; Kisi, O. Modifying Hargreaves–Samani equation with meteorological variables for estimation of reference evapotranspiration in Turkey. Hydrol. Res. 2017, 48, 480–497. [Google Scholar] [CrossRef]
- Song, X.; Lu, F.; Xiao, W.; Zhu, K.; Zhou, Y.; Xie, Z. Performance of 12 reference evapotranspiration estimation methods compared with the Penman–Monteith method and the potential influences in northeast China. Meteorol. Appl. 2019, 26, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Paredes, P.; Fontes, J.C.; Azevedo, E.B.; Pereira, L.S. Daily reference crop evapotranspiration in the humid environments of Azores islands using reduced data sets: Accuracy of FAO-PM temperature and Hargreaves-Samani methods. Theor. Appl. Climatol. 2018, 134, 595–611. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Droogers, P.; Allen, R.G. Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain. Syst. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- Berti, A.; Tardivo, G.; Chiaudani, A.; Rech, F.; Borin, M. Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy. Agric. Water Manag. 2014, 140, 20–25. [Google Scholar] [CrossRef]
- Schendel, U. Vegetationswasserverbrauch und Wasserbedarf. Ph.D. Dissertation, Institut für Wasserwirtschaft und Meliorationswesen, Universität Kiel, Kiel, Germany, 1967; p. 137. [Google Scholar]
- Baier, W.; Robertson, G.W. Estimation of latent evaporation from simple weather observations. Can. J. Plant Sci. 1965, 45, 276–284. [Google Scholar] [CrossRef]
- Trajkovic, S. Hargreaves versus Penman-Monteith under humid conditions. J. Irrig. Drain. Eng. 2007, 133, 38–42. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H. Local calibration of the Hargreaves and Priestley-Taylor equations for estimating reference evapotranspiration in arid and cold climates of Iran based on the Penman-Monteith model. J. Hydrol. Eng. 2011, 16, 837–845. [Google Scholar] [CrossRef]
- Raziei, T.; Pereira, L.S. Estimation of ETo with Hargreaves—Samani and FAO-PM temperature methods for a wide range of climates in Iran. Agric. Water Manag. 2013, 121, 1–18. [Google Scholar] [CrossRef]
- Valipour, M.; Eslamian, S. Analysis of potential evapotranspiration using 11 modified temperature-based models. Int. J. Hydrol. Sci. Technol. 2014, 4, 192–207. [Google Scholar] [CrossRef]
- Valipour, M. Temperature analysis of reference evapotranspiration models. Meteorol. Appl. 2015, 22, 385–394. [Google Scholar] [CrossRef]
- Akhavan, S.; Kanani, E.; Dehghanisanij, H. Assessment of different reference evapotranspiration models to estimate the actual evapotranspiration of corn (Zea mays L.) in a semiarid region (case study, Karaj, Iran). Theor. Appl. Climatol. 2019, 137, 1403–1419. [Google Scholar] [CrossRef]
- Enku, T.; Melesse, A.M. A simple temperature method for the estimation of evapotranspiration. Hydrol. Process. 2014, 28, 2945–2960. [Google Scholar] [CrossRef]
- Allen, R.G. Self-calibrating method for estimating solar radiation from air temperature. J. Hydrol. Eng. 1997, 2, 56–67. [Google Scholar] [CrossRef]
- Moratiel, R.; Bravo, R.; Saa, A.; Tarquis, A.M.; Almorox, J. Estimation of evapotranspiration by the Food and Agricultural Organization of the United Nations (FAO) Penman–Monteith temperature (PMT) and Hargreaves–Samani (HS) models under temporal and spatial criteria–a case study in Duero basin (Spain). Nat. Hazards Earth Syst. Sci. 2020, 20, 859–875. [Google Scholar] [CrossRef] [Green Version]
Weather Station | Code | Latitude (N) | Longitude (W) | Elevation (m) | Distance to the Sea (km) | Date Range | Number of Days 1 |
---|---|---|---|---|---|---|---|
Aljustrel | Alj | 37°58′17″ | 08°11′25″ | 104 | 55 | Sep/2001–Aug/2019 | 3828 |
Alvalade do Sado | Alv | 37°55′44″ | 08°20′45″ | 79 | 40 | Set/2001–Aug/2019 | 3837 |
Beja | Bej | 38°02′15″ | 07°53′06″ | 206 | 79 | Sep/2001–Aug/2019 | 3847 |
Castro Verde | CV | 37°45′21″ | 08°04′35″ | 200 | 64 | Oct/2007–Aug/2019 | 2531 |
Elvas | Elv | 38°54′56″ | 07°05′56″ | 202 | 160 | Sep/2001–Aug/2019 | 3840 |
Estremoz | Est | 38°52′20″ | 07°35′49″ | 404 | 120 | Feb/2006–Aug/2019 | 2929 |
Évora | Evo | 38°44′16″ | 07°56′10″ | 246 | 85 | Feb/2002–Aug/2019 | 3699 |
Ferreira do Alentejo | FdA | 38°02′42″ | 08°15′59″ | 74 | 47 | Sep/2001–Aug/2019 | 3843 |
Moura | Mou | 38°05′15″ | 07°16′39″ | 172 | 100 | Sep/2001–Aug/2019 | 3838 |
Odemira | Ode | 37°30′06″ | 08°45′12″ | 92 | 4 | Jul/2002–Aug/2019 | 3681 |
Redondo | Red | 38°31′41″ | 07°37′40″ | 236 | 105 | Sep/2001–Aug/2019 | 3836 |
Serpa | Ser | 37°58′06″ | 07°33′03″ | 190 | 90 | May/2004–Aug/2019 | 3316 |
Viana do Alentejo | Via | 38°21′39″ | 08°07′32″ | 138 | 57 | Mar/2006–Aug/2019 | 2925 |
Vidigueira | Vid | 38°10′37″ | 07°47′35″ | 155 | 86 | Nov/2007–Aug/2019 | 2518 |
Station | Tmax (°C) | pTmax (°C) | Tmin (°C) | pTmin (°C) | ETo (mm Day−1) | pETo (mm Day−1) | Rainfall (mm Year−1) |
---|---|---|---|---|---|---|---|
Alj | 24.4 (±7.5) | 33.2 (±4.1) | 9.9 (±5.2) | 15.1 (±2.2) | 3.4 (±2.1) | 6.4 (±1.1) | 525 |
Alv | 24.7 (±7.3) | 33.1 (±4.2) | 10.3 (±5.1) | 15.4 (±1.9) | 3.6 (±2.1) | 6.4 (±1.0) | 488 |
Bej | 23.9 (±7.8) | 33.6 (±4.0) | 10.3 (±4.8) | 15.2 (±2.5) | 3.6 (±2.2) | 6.8 (±1.0) | 512 |
CV | 24.1 (±7.7) | 33.5 (±4.0) | 9.8 (±4.9) | 14.9 (±2.2) | 3.9 (±2.4) | 7.3 (±1.2) | 393 |
Elv | 24.5 (±8.4) | 35.1 (±3.8) | 9.4 (±5.7) | 15.8 (±2.6) | 3.5 (±2.2) | 6.8 (±0.9) | 504 |
Est | 22.4 (±8.1) | 32.3 (±4.1) | 9.3 (±5.0) | 14.3 (±2.8) | 3.0 (±1.9) | 5.7 (±0.8) | 640 |
Evo | 23.7 (±7.9) | 33.1 (±4.1) | 8.9 (±5.3) | 14.6 (±2.2) | 3.3 (±2.0) | 6.1 (±1.0) | 567 |
FdA | 24.7 (±7.4) | 33.4 (±4.1) | 9.8 (±5.2) | 15.1 (±2.1) | 3.3 (±1.9) | 6.0 (±1.0) | 514 |
Mou | 24.9 (±8.2) | 35.5 (±3.8) | 8.5 (±6.0) | 14.6 (±2.8) | 3.2 (±1.9) | 6.1 (±0.8) | 482 |
Ode | 21.2 (±4.7) | 24.8 (±3.3) | 11.1 (±3.9) | 14.4 (±2.0) | 3.0 (±1.4) | 4.4 (±0.9) | 568 |
Red | 24.1 (±8.1) | 34.4 (±3.9) | 10.4 (±5.3) | 15.9 (±2.5) | 3.7 (±2.3) | 7.0 (±1.1) | 484 |
Ser | 25.2 (±8.1) | 35.0 (±3.9) | 10.5 (±5.2) | 15.9 (±2.5) | 3.5 (±2.1) | 6.5 (±0.9) | 497 |
Via | 23.6 (±7.8) | 32.9 (±4.1) | 9.9 (±4.7) | 14.7 (±2.2) | 3.5 (±2.1) | 6.4 (±1.1) | 625 |
Vid | 24.9 (±7.9) | 34.6 (±3.9) | 10 (±5.2) | 15.6 (±2.2) | 3.5 (±2.1) | 6.5 (±0.9) | 501 |
Method | Code | Reference | Equation | Parameters |
---|---|---|---|---|
FAO Penman-Monteith | PM | [4] | H, ϕ, Tavg, Tmax, Tmin, RH, u, n | |
Hargreaves-Samani | HS | [19] | ETo = 0.0135 × kRs × 0.408Ra × (Tavg + 17.8) × (Tmax − Tmin)0.5 | Tmax, Tmin, kRs, ϕ |
Modified Hargreaves-Samani 1 | MHS1 | [20] | ETo = 0.0030 × 0.408Ra × (Tavg + 20) × (Tmax − Tmin)0.4 | Tmax, Tmin, ϕ |
Modified Hargreaves-Samani 2 | MHS2 | [20] | ETo= 0.0025 × 0.408Ra × (Tavg + 16.8) × (Tmax − Tmin)0.5 | Tmax, Tmin, ϕ |
Modified Hargreaves-Samani 3 | MHS3 | [20] | ETo = 0.0013 × 0.408Ra × (Tavg + 17.0) × (Tmax − Tmin − 0.0123P)0.76 | Tmax, Tmin, P, ϕ |
Modified Hargreaves-Samani 4 | MHS4 | [21] | ETo = 0.00193 × 0.408Ra × (Tavg + 17.8) × (Tmax − Tmin)0.517 | Tmax, Tmin, ϕ |
Schendel | SCH | [21] | Tmax, Tmin, RH | |
Baier and Robertson | B&R | [23] | ETo = 0.157Tmax + 0.158(Tmax − Tmin) + 0.109Ra − 5.39 | Tmax, Tmin, ϕ |
Trajkovic | TR | [24] | ETo = 0.0023 × 0.408Ra × (Tavg + 17.8) × (Tmax − Tmin)0.424 | Tmax, Tmin, ϕ |
Enku and Melesse | E&M | [30] | Tmax, n, k |
Station | Adjusted HS Equation | Original HS Equation (kRs = 0.17 °C−0.5) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Adjusted kRs (°C−0.5) | Calibration | Validation | All | ||||||||||
b | R2 | RMSE | b | R2 | RMSE | b | R2 | RMSE | b | R2 | RMSE | ||
Alj | 0.16 | 1.02 | 0.80 | 0.78 | 1.01 | 0.80 | 0.79 | 1.01 | 0.80 | 0.78 | 1.08 | 0.80 | 0.92 |
Alv | 0.16 | 1.00 | 0.80 | 0.74 | 0.99 | 0.84 | 0.68 | 0.99 | 0.82 | 0.71 | 1.05 | 0.82 | 0.81 |
Bej | 0.17 | 1.00 | 0.81 | 0.81 | 1.02 | 0.85 | 0.73 | 1.01 | 0.83 | 0.77 | 1.01 | 0.83 | 0.77 |
CV | 0.17 | 0.96 | 0.83 | 0.84 | 0.96 | 0.84 | 0.79 | 0.96 | 0.83 | 0.82 | 0.96 | 0.83 | 0.82 |
Elv | 0.16 | 1.02 | 0.79 | 0.85 | 1.01 | 0.78 | 0.87 | 1.01 | 0.78 | 0.86 | 1.08 | 0.78 | 0.99 |
Est | 0.14 | 0.97 | 0.80 | 0.65 | 0.95 | 0.78 | 0.73 | 0.96 | 0.79 | 0.70 | 1.16 | 0.79 | 1.10 |
Evo | 0.15 | 0.99 | 0.77 | 0.79 | 0.98 | 0.75 | 0.82 | 0.99 | 0.76 | 0.80 | 1.12 | 0.76 | 1.07 |
FdA | 0.15 | 1.01 | 0.79 | 0.74 | 1.01 | 0.81 | 0.69 | 1.01 | 0.80 | 0.72 | 1.14 | 0.80 | 1.06 |
Mou | 0.14 | 1.03 | 0.80 | 0.72 | 1.00 | 0.81 | 0.70 | 1.01 | 0.81 | 0.71 | 1.23 | 0.81 | 1.38 |
Ode | 0.17 | 1.03 | 0.65 | 0.69 | 1.00 | 0.74 | 0.59 | 1.01 | 0.69 | 0.64 | 1.01 | 0.69 | 0.65 |
Red | 0.17 | 1.00 | 0.80 | 0.86 | 1.00 | 0.78 | 0.90 | 1.00 | 0.79 | 0.88 | 1.00 | 0.79 | 0.88 |
Ser | 0.15 | 1.00 | 0.78 | 0.79 | 0.96 | 0.79 | 0.79 | 0.98 | 0.78 | 0.79 | 1.11 | 0.78 | 1.06 |
Via | 0.16 | 1.00 | 0.81 | 0.74 | 0.98 | 0.80 | 0.79 | 0.99 | 0.81 | 0.77 | 1.05 | 0.81 | 0.86 |
Vid | 0.15 | 0.98 | 0.81 | 0.73 | 0.97 | 0.80 | 0.77 | 0.97 | 0.80 | 0.75 | 1.10 | 0.80 | 1.00 |
ALENTEJO | 0.16 | 1.02 | 0.76 | 0.86 | 1.01 | 0.78 | 0.83 | 1.01 | 0.77 | 0.84 | 1.08 | 0.77 | 0.98 |
Station | Aljustrel | Alvalade do Sado | Beja | Castro Verde | Elvas | Estremoz | Évora | Ferreira do Alentejo | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Equation | b | R2 | RMSE | b | R2 | RMSE | b | R2 | RMSE | b | R2 | RMSE | b | R2 | RMSE | b | R2 | RMSE | b | R2 | RMSE | b | R2 | RMSE | |
Original Hargreaves | 1.08 | 0.80 | 0.92 | 1.05 | 0.82 | 0.81 | 1.01 | 0.83 | 0.77 | 0.96 | 0.83 | 0.82 | 1.08 | 0.78 | 0.99 | 1.16 | 0.79 | 1.10 | 1.12 | 0.76 | 1.07 | 1.14 | 0.80 | 1.06 | |
Adjusted Hargreaves | 1.01 | 0.80 | 0.78 | 0.99 | 0.82 | 0.71 | 1.01 | 0.83 | 0.77 | 0.96 | 0.83 | 0.82 | 1.01 | 0.78 | 0.86 | 0.96 | 0.79 | 0.70 | 0.99 | 0.76 | 0.80 | 1.01 | 0.80 | 0.72 | |
Modified Hargreaves 1 | 1.12 | 0.80 | 1.04 | 1.09 | 0.82 | 0.91 | 1.05 | 0.83 | 0.84 | 0.99 | 0.82 | 0.85 | 1.11 | 0.79 | 1.09 | 1.21 | 0.80 | 1.26 | 1.15 | 0.77 | 1.19 | 1.18 | 0.80 | 1.21 | |
Modified Hargreaves 2 | 1.15 | 0.80 | 1.14 | 1.12 | 0.82 | 1.01 | 1.08 | 0.83 | 0.90 | 1.02 | 0.84 | 0.83 | 1.15 | 0.78 | 1.23 | 1.24 | 0.79 | 1.36 | 1.19 | 0.76 | 1.32 | 1.21 | 0.80 | 1.34 | |
Modified Hargreaves 3 | 1.26 | 0.77 | 1.73 | 1.23 | 0.79 | 1.59 | 1.18 | 0.82 | 1.38 | 1.13 | 0.83 | 1.20 | 1.28 | 0.75 | 1.89 | 1.35 | 0.76 | 1.91 | 1.32 | 0.73 | 1.98 | 1.35 | 0.77 | 1.99 | |
Modified Hargreaves 4 | 0.95 | 0.80 | 0.77 | 0.93 | 0.82 | 0.76 | 0.89 | 0.83 | 0.87 | 0.85 | 0.84 | 1.11 | 0.95 | 0.78 | 0.84 | 1.03 | 0.79 | 0.74 | 0.99 | 0.76 | 0.81 | 1.01 | 0.80 | 0.72 | |
Schendel | 1.14 | 0.54 | 1.64 | 1.09 | 0.58 | 1.38 | 1.14 | 0.51 | 1.85 | 1.04 | 0.61 | 1.55 | 1.27 | 0.50 | 2.41 | 1.28 | 0.37 | 2.37 | 1.17 | 0.49 | 1.82 | 1.19 | 0.55 | 1.69 | |
Baier and Robertson | 1.16 | 0.75 | 1.28 | 1.13 | 0.76 | 1.17 | 1.08 | 0.81 | 0.96 | 1.03 | 0.83 | 0.86 | 1.16 | 0.73 | 1.39 | 1.24 | 0.75 | 1.44 | 1.21 | 0.72 | 1.47 | 1.23 | 0.74 | 1.51 | |
Trajkovic | 0.87 | 0.80 | 0.94 | 0.85 | 0.82 | 0.97 | 0.82 | 0.83 | 1.15 | 0.77 | 0.83 | 1.45 | 0.87 | 0.79 | 1.00 | 0.94 | 0.79 | 0.70 | 0.90 | 0.77 | 0.87 | 0.92 | 0.80 | 0.75 | |
Enku and Melesse | 1.47 | 0.53 | 3.12 | 1.43 | 0.53 | 3.00 | 1.42 | 0.59 | 2.99 | 1.33 | 0.64 | 2.61 | 1.52 | 0.52 | 3.54 | 1.59 | 0.50 | 3.46 | 1.53 | 0.52 | 3.34 | 1.56 | 0.50 | 3.39 | |
Station | Moura | Odemira | Redondo | Serpa | Viana | Vidigueira | ALENTEJO | ||||||||||||||||||
Equation | b | R2 | RMSE | b | R2 | RMSE | b | R2 | RMSE | b | R2 | RMSE | b | R2 | RMSE | b | R2 | RMSE | b | R2 | RMSE | ||||
Original Hargreaves | 1.23 | 0.81 | 1.38 | 1.01 | 0.69 | 0.65 | 1.00 | 0.79 | 0.88 | 1.11 | 0.78 | 1.06 | 1.05 | 0.81 | 0.86 | 1.10 | 0.80 | 1.00 | 1.08 | 0.77 | 0.98 | ||||
Adjusted Hargreaves | 1.01 | 0.81 | 0.71 | 1.01 | 0.69 | 0.64 | 1.00 | 0.79 | 0.88 | 0.98 | 0.78 | 0.79 | 0.99 | 0.81 | 0.77 | 0.97 | 0.80 | 0.75 | 1.01 | 0.77 | 0.84 | ||||
Modified Hargreaves 1 | 1.26 | 0.80 | 1.51 | 1.10 | 0.69 | 0.79 | 1.03 | 0.79 | 0.94 | 1.15 | 0.79 | 1.18 | 1.09 | 0.80 | 0.99 | 1.14 | 0.81 | 1.12 | 1.12 | 0.77 | 1.08 | ||||
Modified Hargreaves 2 | 1.31 | 0.81 | 1.71 | 1.08 | 0.68 | 0.76 | 1.21 | 0.80 | 1.34 | 1.18 | 0.78 | 1.33 | 1.12 | 0.81 | 1.05 | 1.17 | 0.80 | 1.26 | 1.14 | 0.77 | 1.19 | ||||
Modified Hargreaves 3 | 1.49 | 0.78 | 2.58 | 1.06 | 0.65 | 0.88 | 1.17 | 0.77 | 1.45 | 1.31 | 0.75 | 1.98 | 1.23 | 0.81 | 1.55 | 1.31 | 0.78 | 1.91 | 1.26 | 0.74 | 1.78 | ||||
Modified Hargreaves 4 | 1.09 | 0.80 | 0.87 | 0.89 | 0.68 | 0.73 | 0.88 | 0.79 | 1.01 | 0.98 | 0.78 | 0.80 | 0.93 | 0.81 | 0.80 | 0.98 | 0.80 | 0.76 | 0.95 | 0.77 | 0.84 | ||||
Schendel | 1.39 | 0.53 | 2.60 | 1.04 | 0.35 | 1.12 | 1.19 | 0.55 | 2.04 | 1.27 | 0.47 | 2.34 | 1.14 | 0.57 | 1.70 | 1.26 | 0.51 | 2.24 | 1.22 | 0.47 | 2.24 | ||||
Baier and Robertson | 1.35 | 0.76 | 1.94 | 1.02 | 0.66 | 0.77 | 1.07 | 0.77 | 1.05 | 1.19 | 0.73 | 1.46 | 1.12 | 0.79 | 1.11 | 1.19 | 0.75 | 1.40 | 1.15 | 0.73 | 1.31 | ||||
Trajkovic | 0.98 | 0.81 | 0.68 | 0.85 | 0.69 | 0.80 | 0.81 | 0.79 | 1.27 | 0.89 | 0.79 | 0.89 | 0.85 | 0.80 | 1.02 | 0.89 | 0.81 | 0.88 | 0.87 | 0.77 | 0.97 | ||||
Enku and Melesse | 1.74 | 0.56 | 4.00 | 1.34 | 0.31 | 2.22 | 1.36 | 0.59 | 2.83 | 1.49 | 0.49 | 3.35 | 1.46 | 0.64 | 2.95 | 1.50 | 0.52 | 3.34 | 1.53 | 0.53 | 3.62 |
Station | Most Adequate Method | b | R2 | RMSE | Recommended Equation |
---|---|---|---|---|---|
Alj | MHS4 | 0.95 | 0.80 | 0.77 | ETo = 0.00193 × 0.408Ra × (Tavg + 17.8) × (Tmax − Tmin)0.517 |
Alv | Adjusted HS | 0.99 | 0.82 | 0.71 | ETo = 0.00216 × 0.408Ra × (Tavg + 17.8) × (Tmax − Tmin)0.5 |
Bej | Original/Adjusted HS | 1.01 | 0.83 | 0.77 | ETo = 0.00230 × 0.408Ra × (Tavg + 17.8) × (Tmax − Tmin)0.5 |
CV | MHS2 | 1.02 | 0.84 | 0.83 | ETo = 0.00250 × 0.408Ra × (Tavg + 16.8) × (Tmax − Tmin)0.5 |
Elv | MHS4 | 0.95 | 0.78 | 0.84 | ETo = 0.00193 × 0.408Ra × (Tavg + 17.8) × (Tmax − Tmin)0.517 |
Est | Adjusted HS | 0.96 | 0.79 | 0.70 | ETo = 0.00189 × 0.408Ra × (Tavg + 17.8) × (Tmax − Tmin)0.5 |
Evo | Adjusted HS | 0.99 | 0.76 | 0.80 | ETo = 0.00203 × 0.408Ra × (Tavg + 17.8) × (Tmax − Tmin)0.5 |
FdA | MHS4 | 1.01 | 0.80 | 0.72 | ETo = 0.00193 × 0.408Ra × (Tavg + 17.8) × (Tmax − Tmin)0.517 |
Mou | TR | 0.98 | 0.81 | 0.68 | ETo = 0.00230 × 0.408Ra × (Tavg + 17.8) × (Tmax − Tmin)0.424 |
Ode | Original/Adjusted HS | 1.01 | 0.69 | 0.64 | ETo = 0.00230 × 0.408Ra × (Tavg + 17.8) × (Tmax − Tmin)0.5 |
Red | Original/Adjusted HS | 1.00 | 0.79 | 0.88 | ETo = 0.00230 × 0.408Ra × (Tavg + 17.8) × (Tmax − Tmin)0.5 |
Ser | Adjusted HS | 0.98 | 0.78 | 0.79 | ETo = 0.00203 × 0.408Ra × (Tavg + 17.8) × (Tmax − Tmin)0.5 |
Via | Adjusted HS | 0.99 | 0.81 | 0.77 | ETo = 0.00216 × 0.408Ra × (Tavg + 17.8) × (Tmax − Tmin)0.5 |
Vid | MHS4 | 0.98 | 0.80 | 0.76 | ETo = 0.00193 × 0.408Ra × (Tavg + 17.8) × (Tmax − Tmin)0.517 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, G.C.; Braga, R.P. Estimation of Reference Evapotranspiration during the Irrigation Season Using Nine Temperature-Based Methods in a Hot-Summer Mediterranean Climate. Agriculture 2021, 11, 124. https://doi.org/10.3390/agriculture11020124
Rodrigues GC, Braga RP. Estimation of Reference Evapotranspiration during the Irrigation Season Using Nine Temperature-Based Methods in a Hot-Summer Mediterranean Climate. Agriculture. 2021; 11(2):124. https://doi.org/10.3390/agriculture11020124
Chicago/Turabian StyleRodrigues, Gonçalo C., and Ricardo P. Braga. 2021. "Estimation of Reference Evapotranspiration during the Irrigation Season Using Nine Temperature-Based Methods in a Hot-Summer Mediterranean Climate" Agriculture 11, no. 2: 124. https://doi.org/10.3390/agriculture11020124
APA StyleRodrigues, G. C., & Braga, R. P. (2021). Estimation of Reference Evapotranspiration during the Irrigation Season Using Nine Temperature-Based Methods in a Hot-Summer Mediterranean Climate. Agriculture, 11(2), 124. https://doi.org/10.3390/agriculture11020124