Nanoparticles as Novel Elicitors to Improve Bioactive Compounds in Plants
Abstract
:1. Introduction
2. Nanoparticles
2.1. Size
2.2. Shapes
2.3. Nanomaterials
3. Nanoparticles as an Elicitor
Nutraceuticals and Nutritional Compounds Induction Using NPs
4. Negative Impacts of Nanoparticles in Plants and Possible Risk in Human Health
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- International Food Information Service (Ed.) Dictionary of Food Science and Technology, 2nd ed.; John & Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 47–48. [Google Scholar]
- Reiss, R.; Johnston, J.; Tucker, K.; DeSesso, J.M.; Keen, C.L. Estimation of cancer risks and benefits associated with a potential increased consumption of fruits and vegetables. Food Chem. Toxicol. 2012, 50, 4421–4427. [Google Scholar] [CrossRef]
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Casado, A. The health potential of fruits and vegetables phytochemicals: Notable examples. Crit. Rev. Food Sci. 2014, 56, 1097–1107. [Google Scholar] [CrossRef]
- Liu, R.H. Dietary bioactive compounds and their health implications. J. Food Sci. 2013, 78, A18–A25. [Google Scholar] [CrossRef]
- Vincente, A.R.; Manganaris, G.A.; Ortiz, C.M.; Sozzi, G.O.; Crisosto, C.H. Chapter 5—Nutritional quality of fruits and vegetables. In Postharvest Handling, 3rd ed.; Florkowski, W.J., Shewfelt, R.L., Brueckner, B., Prussia, S.E., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 97–103. [Google Scholar] [CrossRef]
- Guaadaoui, A.; Benaicha, S.; Elmajdoub, N.; Bellaoui, M.; Hamal, A. What is a bioactive compound? A combined definition for a preliminary consensus. Int. J. Nutr. Food Sci. 2014, 3, 174–179. [Google Scholar] [CrossRef]
- Naik, P.M.; Al-Khayri, J.M. Abiotic and biotic elicitors–role in secondary metabolites production through in vitro culture of medicinal plants. In Abiotic and Biotic Stress in Plants-Recent Advances and Future Perspectives; Shanker, A.K., Shanker, C., Eds.; IntechOpen Limited: London, UK, 2016; pp. 247–277. [Google Scholar] [CrossRef] [Green Version]
- Shitan, N. Secondary metabolites in plants: Transport and self-tolerance mechanisms. Biosci. Biotechnol. Biochem. 2016, 80, 1283–1293. [Google Scholar] [CrossRef] [Green Version]
- Jafari, S.M.; McClements, D.J. Chapter One—Nanotechnology approaches for increasing nutrient bioavailability. In Advances in Food and Nutrition Research, 1st ed.; Toldrá, F., Ed.; Academic Press: London, UK, 2017; Volume 81, pp. 1–30. [Google Scholar] [CrossRef]
- Dixon, R.A. Natural products and plant disease resistance. Nature 2001, 411, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Namdeo, A.G. Plant cell elicitation for production of secondary metabolites: A review. Pharmacogn. Rev. 2007, 1, 69–79. [Google Scholar]
- Parola-Contreras, I.; Tovar-Perez, E.G.; Rojas-Molina, A.; Luna-Vazquez, F.J.; Torres-Pacheco, I.; Ocampo-Velazquez, R.V.; Guevara-González, R.G. Changes in affinin contents in Heliopsis longipes (chilcuague) after a controlled elicitation strategy under greenhouse conditions. Ind. Crops Prod. 2020, 148, 112314. [Google Scholar] [CrossRef]
- Vargas-Hernandez, M.; Macias-Bobadilla, I.; Guevara-Gonzalez, R.G.; Rico-Garcia, E.; Ocampo-Velazquez, R.V.; Avila-Juarez, L.; Torres-Pacheco, I. Nanoparticles as Potential Antivirals in Agriculture. Agriculture 2020, 10, 444. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Iqbal, M.; Rasheed, R.; Hussain, I.; Riaz, M.; Arif, M.S. Chapter 8—Environmental Stress and Secondary Metabolites in Plants: An Overview. In Plant Metabolites and Regulation under Environmental Stress; Ahmad, P., Ahanger, M.P., Singh, V.P., Tripathi, D.K., Alam, P., Alyemeni, M.N., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 153–167. [Google Scholar] [CrossRef]
- Sarin, R. Useful metabolites from plant tissue cultures. Biotechnology 2005, 4, 79–93. [Google Scholar] [CrossRef]
- Tian, H.; Ghorbanpour, M.; Kariman, K. Manganese oxide nanoparticle-induced changes in growth, redox reactions and elicitation of antioxidant metabolites in deadly nightshade (Atropa belladonna L.). Ind. Crops Prod. 2018, 126, 403–414. [Google Scholar] [CrossRef]
- Hasan, S. A review on nanoparticles: Their synthesis and types. Res. J. Recent Sci. 2015, 2277, 2502. [Google Scholar]
- Joshi, H.; Choudhary, P.; Mundra, S. Future prospects of nanotechnology in agriculture. Int. J. Chem. Stud. 2019, 7, 957–963. [Google Scholar]
- Lira Saldivar, R.H.; Méndez Argüello, B.; Santos Villarreal, G.D.L.; Vera Reyes, I. Potencial de la nanotecnología en la agricultura. Acta Univ. 2018, 28, 9–24. [Google Scholar] [CrossRef]
- Dubchak, S.; Ogar, A.; Mietelski, J.W.; Turnau, K. Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span. J. Agric. Res. 2010, 1, 103–108. [Google Scholar] [CrossRef]
- Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; y Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017, 15, 11–23. [Google Scholar] [CrossRef]
- Prasad, R.; Bhattacharyya, A.; Nguyen, Q.D. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front. Microbiol. 2017, 8, 1014. [Google Scholar] [CrossRef] [Green Version]
- Fraceto, L.F.; Grillo, R.; de Medeiros, G.A.; Scognamiglio, V.; Rea, G.; Bartolucci, C. Nanotechnology in agriculture: Which innovation potential does it have? Front. Environ. Sci. 2016, 4, 20. [Google Scholar] [CrossRef]
- Marslin, G.; Sheeba, C.J.; Franklin, G. Nanoparticles alter secondary metabolism in plants via ROS burst. Front. Plant Sci. 2017, 8, 832. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Vishwakarma, K.; Singh, S.; Sharma, S.; Dubey, N.K.; Singh, V.K.; Liu, S.; Tripathi, D.K.; Chauhan, D.K. Understanding the plant and nanoparticle interface at transcriptomic and proteomic level: A concentric overview. Plant Gene 2017, 11, 265–272. [Google Scholar] [CrossRef]
- Zuverza-Mena, N.; Martínez-Fernández, D.; Du, W.; Hernandez-Viezcas, J.A.; Bonilla-Bird, N.; López-Moreno, M.L.; Gardea-Torresdey, J.L. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses—A review. Plant Physiol. Biochem. 2017, 110, 236–264. [Google Scholar] [CrossRef] [Green Version]
- Hatami, M.; Naghdi Badi, H.; Ghorbanpour, M. Nano-elicitation of secondary pharmaceutical metabolites in plant cells: A review. J. Med. Plants 2019, 18, 6–36. [Google Scholar] [CrossRef]
- Anjum, S.; Anjum, I.; Hano, C.; Kousar, S. Advances in nanomaterials as novel elicitors of pharmacologically active plant specialized metabolites: Current status and future outlooks. RSC Adv. 2019, 9, 40404–40423. [Google Scholar] [CrossRef] [Green Version]
- Zobayed, S.M.A.; Afreen, F.; Kozai, T. Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s wort. Plant Physiol. Biochem. 2005, 43, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014, 4, 3974–3983. [Google Scholar] [CrossRef] [Green Version]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microb. 2016, 7, 1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salatin, S.; Maleki Dizaj, S.; Yari Khosroushahi, A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol. Int. 2015, 39, 881–890. [Google Scholar] [CrossRef]
- Hu, P.; An, J.; Faulkner, M.M.; Wu, H.; Li, Z.; Tian, X.; Giraldo, J.P. Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles. ACS Nano 2020, 14, 7970–7986. [Google Scholar] [CrossRef]
- Lee, S.H.; Jun, B.H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef] [Green Version]
- Rico, C.M.; Majumdar, S.; Duarte-Gardea, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 2011, 59, 3485–3498. [Google Scholar] [CrossRef] [Green Version]
- Lew, T.T.S.; Wong, M.H.; Kwak, S.Y.; Sinclair, R.; Koman, V.B.; Strano, M.S. Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small 2018, 14, 1802086. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, X.; Zhao, J.; Liu, X.; Feng, W.; White, J.C.; Xing, B. Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ. Sci. Technol. 2012, 46, 4434–4441. [Google Scholar] [CrossRef]
- Rico, C.M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Nanotechnology and Plant Sciences; Siddiqui, M., Al-Whaibi, M., Mohammad, F., Eds.; Springer: Cham, Switzerland, 2015; pp. 1–17. [Google Scholar] [CrossRef]
- Gupta, S.D.; Agarwal, A.; Pradhan, S. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicol. Environ. Saf. 2018, 161, 624–633. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Singh, S.; Singh, S.; Pandey, R.; Singh, V.P.; Sharma, N.C.; Prasad, S.M.; Dubey, N.K.; Chauhan, D.K. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Biochem. 2017, 110, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Avellan, A.; Yun, J.; Zhang, Y.; Spielman-Sun, E.; Unrine, J.M.; Thieme, J.; Lowry, G.V. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 2019, 13, 5291–5305. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Hira Zafar, M.Z.; ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Truong, N.P.; Whittaker, M.R.; Mak, C.W.; Davis, T.P. The importance of nanoparticle shape in cancer drug delivery. Expert Opin. Drug Deliv. 2015, 12, 129–142. [Google Scholar] [CrossRef]
- Raliya, R.; Franke, C.; Chavalmane, S.; Nair, R.; Reed, N.; Biswas, P. Quantitative understanding of nanoparticle uptake in watermelon plants. Front. Plant Sci. 2016, 7, 1288. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, S.; Auth, T.; Gompper, G. Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett. 2014, 14, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Jurney, P.; Raythatha, M.; Singh, V.; Sreenivasan, S.V.; Shi, L.; Roy, K. Effect of shape, size, and aspect ratio on nanoparticle penetration and distribution inside solid tissues using 3D spheroid models. Adv. Healthc. Mater. 2015, 4, 2269–2280. [Google Scholar] [CrossRef]
- Chhabra, H.; Kumar, M. Modeling for size and shape dependence of critical temperature for different type of nanomaterials. J. Phys. Chem. Solids 2019, 135, 109075. [Google Scholar] [CrossRef]
- Bhatt, S.; Kumar, M. Effect of size and shape on melting and superheating of free standing and embedded nanoparticles. J. Phys. Chem. Solids 2017, 106, 112–117. [Google Scholar] [CrossRef]
- Buzea, C.; Pacheco, I. Nanomaterial and nanoparticle: Origin and activity. In Nanoscience and Plant–Soil Systems. Soil Biology; Ghorbanpour, M., Manika, K., Varma, A., Eds.; Springer: Cham, Switzerland, 2017; Volume 48, pp. 71–112. [Google Scholar] [CrossRef]
- Bhushan, B. Introduction to nanotechnology. In Springer Handbook of Nanotechnology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–19. [Google Scholar] [CrossRef]
- Zhang, W.; Ebbs, S.; Musante, C.; White, J.; Gao, C.; Ma, X. Uptake and accumulation of bulk and nano-sized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.). J. Agric. Food Chem. 2015, 63, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Ebbs, S.D.; Bradfield, S.J.; Kumar, P.; White, J.C.; Musante, C.; Ma, X. Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environ. Sci. Nano 2016, 3, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Bradfield, S.J.; Kumar, P.; White, J.C.; Ebbs, S.D. Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: Yield effects and projected dietary intake from consumption. Plant Physiol. Biochem. 2017, 110, 128–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarizade, K.; Hosseini, R. Expression analysis of ADS, DBR2, ALDH1 and SQS genes in Artemisia vulgaris hairy root culture under nano cobalt and nano zinc elicitation. Ext. J. App. Sci. 2015, 3, 69–76. [Google Scholar]
- Hasanuzzaman, M.; Bhuyan, M.H.M.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Vannini, C.; Domingo, G.; Onelli, E.; Prinsi, B.; Marsoni, M.; Espen, L.; Bracale, M. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE 2013, 8, 68–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tassi, E.; Giorgetti, L.; Morelli, E.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L.; Barbafieri, M. Physiological and biochemical responses of sunflower (Helianthus annuus L.) exposed to nano-CeO2 and excess boron: Modulation of boron phytotoxicity. Plant Physiol. Biochem. 2017, 110, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Juarez-Maldonado, A.; Ortega-Ortíz, H.; Pérez-Labrada, F.; Cadenas-Pliego, G.; Benavides-Mendoza, A. Cu Nanoparticles absorbed on chitosan hydrogels positively alter morphological, production, and quality characteristics of tomato. J. Appl. Bot. Food Qual. 2016, 89. [Google Scholar] [CrossRef]
- Pinedo-Guerrero, Z.H.; Hernández-Fuentes, A.D.; Ortega-Ortiz, H.; Benavides-Mendoza, A.; Cadenas-Pliego, G. Cu nanoparticles in hydrogels of chitosan-PVA affects the characteristics of post-harvest and bioactive compounds of jalapeño pepper. Molecules 2017, 22, 926. [Google Scholar] [CrossRef] [Green Version]
- Večeřová, K.; Večeřa, Z.; Dočekal, B.; Oravec, M.; Pompeiano, A.; Tříska, J.; Urban, O. Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles. Environ. Pollut. 2016, 218, 207–218. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, J.; Huang, Y.; Wang, H.; Adeleye, A.; Ortiz, C.; Keller, A.A. 1H NMR and GC–MS based metabolomics reveal nano-Cu altered cucumber (Cucumis sativus) fruit nutritional supply. Plant Physiol. Biochem. 2017, 110, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Barrios, A.C.; Medina-Velo, I.A.; Zuverza-Mena, N.; Dominguez, O.E.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Nutritional quality assessment of tomato fruits after exposure to uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate and citric acid. Plant Physiol. Biochem. 2017, 110, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Ghanati, F.; Bakhtiarian, S. Effect of methyl jasmonate and silver nanoparticles on production of secondary metabolites by Calendula officinalis L (Asteraceae). Trop. J. Pharm. Res. 2014, 13, 1783–1789. [Google Scholar] [CrossRef] [Green Version]
- Singh, O.S.; Pant, N.C.; Laishram, L.; Tewari, M.; Dhoundiyal, R.; Joshi, K.; Pandey, C. Effect of CuO nanoparticles on polyphenols content and antioxidant activity in Ashwagandha (Withania somnifera L. Dunal). J. Pharmacogn. Phytochem. 2018, 7, 3433–3439. [Google Scholar]
- Fazal, H.; Abbasi, B.H.; Ahmad, N.; Ali, M.; Shujait Ali, S.; Khan, A.; Wei, D.Q. Sustainable production of biomass and industrially important secondary metabolites in cell cultures of selfheal (Prunella vulgaris L.) elicited by silver and gold nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2553–2561. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi, M.; Ghanati, F. Taxanes content and cytotoxicity of hazel cells extract after elicitation with silver nanoparticles. Plant Physiol. Biochem. 2017, 110, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.M.; Rajakumar, G.; Thiruvengadam, M. Effect of silver nanoparticles on phenolic compounds production and biological activities in hairy root cultures of Cucumis anguria. Acta Biol. Hung. 2018, 69, 97–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, M.A.; Javed, R.; Adeel, M.; Rizwan, M.; Ao, Q.; Yang, Y. Engineered ZnO and CuO Nanoparticles Ameliorate Morphological and Biochemical Response in Tissue Culture Regenerants of Candyleaf (Stevia rebaudiana). Molecules 2020, 25, 1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharifi-Rad, R.; Bahabadi, S.E.; Samzadeh-Kermani, A.; Gholami, M. The Effect of Non-biological Elicitors on Physiological and Biochemical Properties of Medicinal Plant Momordica charantia L. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 1315–1326. [Google Scholar] [CrossRef]
- Karakas, O. Effect of Silver Nanoparticles on Production of Indole Alkaloids in Isatis constricta. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 621–627. [Google Scholar] [CrossRef]
- Khajavi, M.; Rahaie, M.; Ebrahimi, A. The effect of TiO2 and SiO2 nanoparticles and salinity stress on expression of genes involved in parthenolide biosynthesis in Feverfew (Tanacetum parthenium L.). Caryologia Int. J. Cytol. Cytosyst. Cytogenet. 2019, 72, 3–14. [Google Scholar] [CrossRef]
- Hegazi, G.A.; Ibrahim, W.M.; Hendawy, M.H.; Salem, H.M.; Ghareb, H.E. Improving α-Tocopherol Accumulation in Argania Spinosa Suspension Cultures by Precursor and Nanoparticles Feeding. Plant Arch. 2020, 20, 2431–2437. [Google Scholar] [CrossRef]
- Kruszka, D.; Sawikowska, A.; Selvakesavan, R.K.; Krajewski, P.; Kachlicki, P.; Franklin, G. Silver nanoparticles affect phenolic and phytoalexin composition of Arabidopsis thaliana. Sci. Total Environ. 2020, 716, 135361. [Google Scholar] [CrossRef] [PubMed]
- Ogunkunle, C.O.; Adegboye, E.F.; Okoro, H.K.; Vishwakarma, V.; Alagarsamy, K.; Fatoba, P.O. Effect of nanosized anatase TiO2 on germination, stress defense enzymes, and fruit nutritional quality of Abelmoschus esculentus (L.) Moench (okra). Arab. J. Geosci. 2020, 13, 120. [Google Scholar] [CrossRef]
- Li, D.; An, Q.; Wu, Y.; Li, J.Q.; Pan, C. Foliar application of selenium nanoparticles on celery stimulates several nutrient component levels by regulating the α-linolenic acid pathway. ACS Sustain. Chem. Eng. 2020, 8, 10502–10510. [Google Scholar] [CrossRef]
- Hezaveh, T.A.; Rahmani, F.; Alipour, H.; Pourakbar, L. Effects of Foliar Application of ZnO Nanoparticles on Secondary Metabolite and Micro-elements of Camelina (Camelina sativa L.) Under Salinity Stress. J. Stress Physiol. Biochem. 2020, 16, 54–69. [Google Scholar]
- Mosavat, N.; Golkar, P.; Yousefifard, M.; Javed, R. Modulation of callus growth and secondary metabolites in different Thymus species and Zataria multiflora micropropagated under ZnO nanoparticles stress. Biotechnol. Appl. Biochem. 2019, 66, 316–322. [Google Scholar] [CrossRef]
- Ali, A.; Mohammad, S.; Khan, M.A.; Raja, N.I.; Arif, M.; Kamil, A.; Mashwani, Z. Silver nanoparticles elicited in vitro callus cultures for accumulation of biomass and secondary metabolites in Caralluma tuberculata. Artif. Cells Nanomed. Biotechnol. 2019, 47, 715–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.A.; Wallace, W.T.; Sambi, J.; Rogers, D.T.; Littleton, J.M.; Rankin, S.E.; Knutson, B.L. Nanoharvesting of bioactive materials from living plant cultures using engineered silica nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 106, 110190. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.P.; Xia, Q.; Hwang, H.M.; Ray, P.C.; Yu, H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J. Food Drug Anal. 2014, 22, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zheng, L.P.; Yi Li, W.; Wen Wang, J. Stimulation of artemisinin production in Artemisia annua hairy roots by Ag-SiO2 core-shell nanoparticles. Curr. Nanosci. 2013, 9, 363–370. [Google Scholar] [CrossRef]
- Muley, B.P.; Khadabadi, S.S.; Banarase, N.B. Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): A review. Trop. J. Pharm. Res. 2009, 8. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, A.; Ghanati, F.; Behmanesh, M.; Mokhtari-Dizaji, M. Ultrasound-potentiated salicylic acid–induced physiological effects and production of taxol in hazelnut (Corylus avellana L.) cell culture. Ultrasound Med. Biol. 2011, 37, 1938–1947. [Google Scholar] [CrossRef]
- Ma, X.; Geiser-Lee, J.; Deng, Y.; Kolmakov, A. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Environ. 2010, 408, 3053–3061. [Google Scholar] [CrossRef]
- Khodakovskaya, M.V.; Kim, B.S.; Kim, J.N.; Alimohammadi, M.; Dervishi, E.; Mustafa, T.; Cernigla, C.E. Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small 2013, 9, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.H.; Al-Whaibi, M.H. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill). Saudi J. Biol. Sci. 2014, 21, 13–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, M.H.; Al-Whaibi, M.H.; Mohammad, F. Nanotechnology and Plant Sciences: Nanoparticles and Their Impact on Plants; Springer International Publishing: Cham, Switzerland, 2015; Volume 978, 303p. [Google Scholar]
- Srivastava, V.; Gusain, D.; Sharma, Y.C. Critical review on the toxicity of some widely used engineered nanoparticles. Ind. Eng. Chem. Res. 2015, 54, 6209–6233. [Google Scholar] [CrossRef]
- Nair, R.; Varghese, S.H.; Nair, B.G.; Maekawa, T.; Yoshida, Y.; Kumar, D.S. Nanoparticulate material delivery to plants. Plant Sci. 2010, 179, 154–163. [Google Scholar] [CrossRef]
- Yan, A.; Chen, Z. Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism. Int. J. Mol. Sci. 2019, 20, 1003. [Google Scholar] [CrossRef]
- Capaldi Arruda, S.C.; Diniz Silva, A.L.; Moretto Galazzi, R.; Antunes Azevedo, R.; Zezzi Arruda, M.A. Nanoparticles applied to plant science: A review. Talanta 2015, 131, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Dietz, K.-J.; Herth, S. Plant nanotoxicology. Trends Plant Sci. 2011, 16, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Aslani, F.; Bagheri, S.; Muhd Julkapli, N.; Juraimi, A.S.; Hashemi, F.S.G.; Baghdadi, A. Effects of engineered nanomaterials on plants growth: An overview. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef]
- Wang, X.; Yang, X.; Chen, S.; Li, Q.; Wang, W.; Hou, C.; Wang, S. Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front. Plant Sci. 2016, 6, 1243. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M.L.; Stroeve, P.; Mahmoudi, M. Toxicity of nanomaterials. Chem. Soc. Rev. 2012, 41, 2323–2343. [Google Scholar] [CrossRef]
- Mortezaee, K.; Najafi, M.; Samadian, H.; Barabadi, H.; Azarnezhad, A.; Ahmadi, A. Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Chem. Biol. Interact. 2019, 312, 108814. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Rico, C.M.; Zhao, L.; Adeleye, A.S.; Keller, A.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ. Sci. Process. Impacts 2015, 17, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Melegari, S.P.; Perreault, F.; Costa, R.H.R.; Popovic, R.; Matias, W.G. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat. Toxicol. 2013, 142, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, C.; Liedl, T.; Kudera, S.; Pellegrino, T.; Muñoz Javier, A.; Gaub, H.E.; Stölzle, S.; Fertig, N.; Parak, W.J. Cytotoxicity of Colloidal CdSe and CdSe/ZnS Nanoparticles. Nano Lett. 2005, 5, 331. [Google Scholar] [CrossRef]
- Li, N.; Xia, T.; Nel, A.E. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic. Biol. Med. 2008, 44, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Abdal Dayem, A.; Hossain, M.K.; Lee, S.B.; Kim, K.; Saha, S.K.; Yang, G.M.; Cho, S.G. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci. 2017, 18, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, V.; Johnston, H.; Clift, M.J. Air pollution, ultrafine and nanoparticle toxicology: Cellular and molecular interactions. IEEE Trans. Nanobiosci. 2007, 6, 331–340. [Google Scholar] [CrossRef]
- Karimi, M.; Sadeghi, R.; Kokini, J. Human exposure to nanoparticles through trophic transfer and the biosafety concerns that nanoparticle-contaminated foods pose to consumers. Trends Food Sci. Technol. 2018, 75, 129–145. [Google Scholar] [CrossRef]
Nanoparticles | Size | Concentration | NPs Treatment | Plant | Tissue/Organ | Effects | Reference |
---|---|---|---|---|---|---|---|
Cu absorbed on chitosan hydrogel | 100 mg/kg 0.3, 0.15, 0.06, 0.03 and 0.015 g/L | One time only prior to transplantation | Saladette tomato hybrid variety “Toro” (Solanum lycopersicum) | Seedlings, fruits and leaves | An increment of lycopene, titratable acidity and catalase activity, | [59] | |
Cu absorbed on chitosan hydrogel | 25 nm | 0.02, 0.2,2 and 10 m(nCu) g−1 (Cs-PVA) | One time only prior to transplantation | Jalapeño pepper (Capsicum annuum L.) | Fruits | Rise the content of antioxidants ABTS and DPPH, total phenols and flavonoids, titratable acidity and reduce of loss weight in fruits post-harvest | [60] |
CdO | 7–60 nm | 2.03 ± 0.45 × 105 CdONPs particles per cm3 of air. | 3 weeks | Barley (Hordeum vulgare L.) | Leaves-root | Increased of ferulic acid, saponarin, palmitic acid, linoleic acid, isovitexin, phenylalanine and tryptophan, reduction of flavonol, reductions in maximum quantum yield of photosystem II photochemistry, decrease of saccharides except 2-deoxy-D-ribose, reduction of fatty acids in roots | [61] |
Cu | 40 nm | 0, 200, 400 and 800 mg/kg | Soil pre-treated with a suspension of nCu | Cucumber (Cucumis sativus) | Fruits | Augmentation of valine, leucine, isoleucine, threonine, tyrosine, xylose, fructose, glycine, proline, benzoic acid, glutaric acid, caprylic acid, linolenic acid and imidazole. Decrease of lysine and methionine | [62] |
Cerium oxide (nCeO2) and Citric acid coated cerium oxide (nCeO2 +CA) | nCeO2:8 ± 1 (primary size) and 231 ± 16 (in deionized water) nCeO2 +CA: 12.4 nm (primary size) and 189 ± 2 (in deionized water) | 0, 62.5, 125, 250 and 500 mg/kg | Soil pre-treated with a suspension of nCeO2 and nCeO2 +CA | Roma tomato (Solanum lycopersicum) | Fruits | Increased of lycopene. nCeO2 +CA decrease reducing sugar, reduce starch, nCeO2 reduce copper, manganese, magnesium, calcium and iron | [63] |
MeJA and Ag | 40 nm | MeJA: 50 and 100 µM Ag: 0.4,0.8, 1.2 mM | 24 h by hydroponic | Marigold (Calendula officinalis L.) | Aerial part | Enhance of saponin and the reduction of HeLa cells was more pronounced, increase membrane lipid peroxidation. Decreased anthocyanin, flavonoid and DPPH radical scavenging activity chlorophyll production and carotenoid | [64] |
CuO | NR | 1 ppm | In solution | Ashwagandha (Withania somnifera L. Dunal) | Shoots and roots | Polyphenols (total phenol content, flavonoid content) and antioxidant activity | [65] |
Ag, Au and Naphthalene acetic acid (NAA) | NR | 30 µg/ L of each NPs in ratios of AgAu: 1:2; 1:3; 2:1 and 3:1 with NAA | One time only added to the culture media | Selfheal (Prunella vulgaris L.) | Calli cultures | Improved biomass, total phenols and flavonoids and DPPH-radical scavenging activity | [66] |
Ag | 30–50 nm | 0, 2.5, 5 and 10 ppm | One time only added to the culture media | Hazel (Corylus avellana L. cv. Gerd Eshkevar) | Hazel cells | Increased taxanes content (taxol and baccatin III) and reduce the viability of HeLa cells at 55%, increased lipid peroxidation. Decreased the content of total soluble phenols and the total contents of flavonoids | [67] |
AgNPs and AgNO3 | NR | 0.5, 1.0 and 2.0 mg/L | One time only added on 18 days to the culture media | Gherkin (Cucumis anguria L.) | Hairy root | Increment the biomass accumulation, total phenols content (hydroxybenzoic acid, protocatechuic, syringic, β-resorcylic, vanillic acid, caffeic, chlorogenic, ρ-coumaric, ferulic, ο-coumaric and t-cinnamic) and biological activity (antioxidant, antibacterial, antifungal and anticancer). Reduced of biomass | [68] |
ZnO and CuO | ZnO: 20–30 nm CuO: 25–30 nm | 0, 2, 20, 200 and 2000 mg/L | One time only added to the culture media | Candyleaf (Stevia rebaudiana) | Shoots | Up of rebaudioside A, stevioside content, total phenolic content, total flavonoid content, total antioxidant activity, total reducing power and % DPPH inhibition. In higher concentration reduce weight and quality of callus | [69] |
ZnO NPs, jasmonate and chittosan | NR | ZnO; 20, 60 and 100 ppm Jasmonate: 100, 250 and 500 µM Chittosan: 10, 50 and 100 µM | Foliar sprays | Carla (Momordica charantia L.) | Shoots | Rise of phenols, flavonoids, anthocyanin content and carotenoids as well as carbohydrate, proline content and up-regulated antioxidant enzyme activity. | [70] |
Ag | NR | 0, 0.25, 0.5, 1, 1.5 and 2 mg/L | One time only added to the culture media | Isatis (Isatis constricta) | Plantlets | Increased of indigo and tryptanthrin but decreased on 10 and 15 days post-treatment and indirubin decreased | [71] |
SiO2 and TiO2 NPs and NaCl | SiO2: 10–15 nm TiO2: an average of 24.5 nm | SiO2 and TiO2 NPs: 25 and 50 mg/L NaCl: 0.3 M | One time only added to the pot | Feverfew (Tanacetum parthenium L.) | Leaves | Increment of parthenolide, TpCarS, COST and TpGAS gene involved parthenolide and β-caryophyllen biosynthesis pathway | [72] |
SiO2 and TiO2 | SiO2: 5–15 nm TiO2: an average of 25 nm | 5, 10 and 20 ppm after 15 days of incubation | One time only added to the MS medium supplemented with 4.5 µM 2,4-dichlorophenoxyacetic acid and 5 μM NAA | Argan (Argania spinosa) | Callus culture (leaves) | Enhance α-tocopherol accumulation | [73] |
nTiO2 and bTiO2 | nTiO2: <50 nm and bTiO2: 68 nm | 200 and 800 mg/kg mixed in potting soil | Mix one time in soil (2 kg soil for pot) | Okra (Abelmoschus esculentus L. (Moench)) | Roots, leaves and fruits | Promoted seed germination, enhanced chlorophylls, increment superoxide dismutase (SOD), reduce ascorbate peroxidase (APX) and glutathione reductase (GR) in roots. In leaves reduce APX, increased GR and malondialdehyde. In fruit increased Na, reduced Ca, Mg and Fe | [74] |
Ag | 10, 40 and 100 nm | 0.5, 1.0, 5.0 mg/L | 12, 24 and 72 h in MS medium | Mouseear cress (Arabidopsis thaliana) | Seedlings | An increment of glutathione disulphide, 6-GluO-ICOOGlu, 4-glucosyloxy-benzoate, 4-hydroxyglucobrassicin, sinapoyl malate, kaempferitrin, G(8-5)FA dihexoside, G(8-0-4)G hexoside, 6-MeO-ICOOH, sinapic acid, G(8-0-4)G(8-0-4)G hexoside, coniferylaldehyde hexoside and camalexin. Decreased of 4-glucosyloxy-benzoate, pinresinol hexoside and kaempferol-3-O-glucoside | [75] |
Se | 50–78 nm | 5 mg/L | Sprayed on the stems and leaves every 10 days (three times total applications) | Celery (Apium graveolens L.) | Stems-leaves | Increased of chlorophyll, soluble sugar, proteins, beta-carotenes, ariginine, tryptophan, aspartic acid, glutamic acid, proline, jasmonic acid, total antioxidant capacity, vitamin C, total phenols and flavonoids | [76] |
ZnO and NaCl | 10–30 nm | ZnO: 0, 20, 40 and 80 mg/L NaCl: 0, 50 and 100 mM | Foliar sprays of NPs (two times) and NaCl irrigation (in greenhouse) | Camelina (Camelina sativa) | Shoot-root | Rise of total phenol content, anthocyanins, carotenoid calcium, zinc and phosphorus. Decreased antioxidant capacity, total flavonoid content | [77] |
ZnO | NR | 100 and 150 mg/L | One time added to the MS medium supplemented with 2 mg/L 2,4-D and 2 mg/L Kin | Garden thyme (T. vulgaris), T. daenensis, T. kotschyanus and Satar (Zataria multiflora) | Callus culture | Augmentation of thymol and carvacrol content | [78] |
Ag | 40 nm | 30, 60 and 90 µg/L | One time added to the MS medium supplemented with 0.5 mg/L 2,4-D and 3.0 mg/L BA | Caralluma tuberculata | Callus culture | An increment of fresh and dry biomass accumulation, total phenols and flavonoids content, PAL, SOD, POD, CAT and APX. | [79] |
Mesoporous silica functionalized with amines and TiO2 | 165 nm | 1 µg/mL, 10 µg/mL, 100 µg/mL, 1 mg/mL and 2.5 mg/mL | One time added to the MS medium | Gray goldenroad (Solidago nemoralis) | Hair root culture | Increased of antiradical activity, flavonoids, include the continued flavonoid synthesis after harvest. | [80] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivero-Montejo, S.d.J.; Vargas-Hernandez, M.; Torres-Pacheco, I. Nanoparticles as Novel Elicitors to Improve Bioactive Compounds in Plants. Agriculture 2021, 11, 134. https://doi.org/10.3390/agriculture11020134
Rivero-Montejo SdJ, Vargas-Hernandez M, Torres-Pacheco I. Nanoparticles as Novel Elicitors to Improve Bioactive Compounds in Plants. Agriculture. 2021; 11(2):134. https://doi.org/10.3390/agriculture11020134
Chicago/Turabian StyleRivero-Montejo, Samantha de Jesus, Marcela Vargas-Hernandez, and Irineo Torres-Pacheco. 2021. "Nanoparticles as Novel Elicitors to Improve Bioactive Compounds in Plants" Agriculture 11, no. 2: 134. https://doi.org/10.3390/agriculture11020134
APA StyleRivero-Montejo, S. d. J., Vargas-Hernandez, M., & Torres-Pacheco, I. (2021). Nanoparticles as Novel Elicitors to Improve Bioactive Compounds in Plants. Agriculture, 11(2), 134. https://doi.org/10.3390/agriculture11020134