Land Uses, Altitude and Texture Effects on Soil Parameters. A Comparative Study in Two Districts of Nagaland, Northeast India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Land Uses
2.2. Soil Sampling and Analysis
2.3. Data Analysis
3. Results
3.1. General Soil Parameters
3.2. Effect of Land Use, Altitude and Texture on Soil Parameters
3.3. Correlation among Soil Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basu, P. A green investment. If growing forest in India can generate lucrative carbon credits, then why isn’t everyone planting trees? Nat. News 2009, 457, 144–146. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Islam, M.; Islam, R.; Sobuj, N.A. Towards Sustainability of Tropical Forests: Implications for Enhanced Carbon Stock and Climate Change Mitigation. J. Forest. Environ. Sci. 2017, 33, 292–299. [Google Scholar]
- Saikia, P.; Deka, J.; Bharali, S.; Kumar, A.; Tripathi, O.P.; Singha, L.B.; Dayanandan, S.; Khan, M.L. Plant diversity patterns and conservation status of eastern Himalayan forests in Arunachal Pradesh, Northeast India. For. Ecosyst. 2017, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S. Landscape rehabilitation of degraded tropical forest ecosystems. For. Ecol. Manag. 2004, 201, 13–22. [Google Scholar] [CrossRef]
- Center for Global Development. 2014. Available online: https://www.cgdev.org/publication/ecosystem-services-tropical-forests-review-current-science-working-paper-380 (accessed on 21 October 2020).
- FAO. Shifting cultivation. Unasylva 1957, 11, 9–11. [Google Scholar]
- Chaplot, V.; Bouahom, B.; Valentin, C. Soil organic carbon stocks in Laos: Spatial variations and controlling factors. Glob. Chang. Biol. 2010, 16, 1380–1393. [Google Scholar] [CrossRef]
- Grogan, P.; Lalnunmawia, F.; Tripathi, S.K. Shifting cultivation in steeply sloped regions: A review of management options and research priorities for Mizoram state, Northeast India. Agrofor. Syst. 2012, 84, 163–177. [Google Scholar] [CrossRef]
- Choudhury, B.U.; Fiyaz, A.R.; Mohapatra, K.P.; Ngachan, S. Impact of land uses, agrophysical variables and altitudinal gra-dient on soil organic carbon concentration of North Eastern Himalayan Region of India. Land Degrad. Dev. 2016, 27, 1163–1174. [Google Scholar] [CrossRef]
- Sharma, P.; Deka, D.; Saikia, R. An analysis of changing land use pattern and its effect on Umtrew Basin, Northeast India. Hung. Geogr. Bull. 2011, 60, 67–78. [Google Scholar]
- Choudhury, B.U.; Mohapatra, K.P.; Das, A.; Das, P.T.; Nongkhlaw, L.R.; Fiyaz, A.; Ngachan, S.V.; Hazarika, S.; Rajkhowa, D.J.; Munda, G.C. Spatial variability in distribution of organic carbon stocks in the soils of North East India. Curr. Sci. 2013, 104, 604–614. [Google Scholar]
- Saha, R.; Chaudhary, R.S.; Somasundaram, J. Soil Health Management under Hill Agroecosystem of North East India. Appl. Environ. Soil Sci. 2012, 2012, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Patel, T.; Karmakar, S.; Sanjog, J.; Kumar, S.; Chowdhury, A. Socio-economic and environmental changes with transition from shifting to settled cultivation in North-Eastern India: An ergonomics perspective. Int. J. Agric. Sci. Res. 2013, 3, 117–136. [Google Scholar]
- Yadav, P. Slash-and-Burn Agriculture in North-East India. Expert Opin. Environ. Biol. 2013, 2, 1–4. [Google Scholar] [CrossRef]
- Baruah, U.; Bandyopadhyay, S.; Reza, S.K. Land use planning and strategic measures in North Eastern Region of India. Agropedology 2014, 24, 292–303. [Google Scholar]
- Salehi, A.; Wilhelmsson, E.; Söderberg, U. Land cover changes in a forested watershed, southern Zagros, Iran. Land Degrad. Dev. 2008, 19, 542–553. [Google Scholar] [CrossRef]
- Chase, P.; Singh, O.P. Soil nutrients and fertility in three traditional land use systems of Khonoma, Nagaland, India. Resour. Environ. 2014, 4, 181–189. [Google Scholar]
- Mishra, G.; Giri, K.; Jangir, A.; Francaviglia, R. Projected trends of soil organic carbon stocks in Meghalaya state of Northeast Himalayas, India. Implications for a policy perspective. Sci. Total Environ. 2020, 698, 134266. [Google Scholar] [CrossRef] [PubMed]
- Mishra, G.; Das, P.K.; Borah, R.; Dutta, A. Investigation of phytosociological parameters and physico-chemical properties of soil in tropical semi-evergreen forests of Eastern Himalaya. J. For. Res. 2016, 28, 513–520. [Google Scholar] [CrossRef]
- Singh, A.K.; Bordoloi, L.J.; Kumar, M.; Hazarika, S.; Parmar, B. Land use impact on soil quality in eastern Himalayan region of India. Environ. Monit. Assess. 2013, 186, 2013–2024. [Google Scholar] [CrossRef] [PubMed]
- Mishra, G.; Marzaioli, R.; Giri, K.; Borah, R.; Dutta, A.; Jayaraj, R. Soil quality assessment under shifting cultivation and forests in Northeastern Himalaya of India. Arch. Agron. Soil Sci. 2017, 63, 1355–1368. [Google Scholar] [CrossRef]
- Mishra, G.; Marzaioli, R.; Giri, K.; Pandey, S. Soil quality assessment across different stands in tropical moist deciduous forests of Nagaland, India. J. For. Res. 2019, 30, 1479–1485. [Google Scholar] [CrossRef]
- Mishra, G.; Giri, K.; Das, J. Carbon stock assessment in changing land uses of Mon, Nagaland: An important learning for climate change mitigation from North East India. Curr. Sci. 2019, 116, 174–175. [Google Scholar]
- Mishra, G.; Gorai, A.K. Horizontal and vertical profiling of soil organic carbon stock in Nagaland, North East India. Curr. Sci. 2020, 119, 632–640. [Google Scholar]
- Mishra, G.; Jangir, A.; Francaviglia, R. Modeling soil organic carbon dynamics under shifting cultivation and forests using Rothc model. Ecol. Model. 2019, 396, 33–41. [Google Scholar] [CrossRef]
- Government of Nagaland. Nagaland State Action Plan on Climate Change. Available online: http://moef.gov.in/wp-content/uploads/2017/09/Nagaland.pdf (accessed on 29 November 2020).
- Department of Planning and Coordination. District Census Handbook, Mon; Government of Nagaland: Kohima, India, 2011; p. 259.
- Department of Planning and Coordination. District Human Development Report—Zunheboto; Government of Nagaland: Kohima, India, 2014; p. 203.
- Soil Survey Staff. Keys to Soil Taxonomy; United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2008.
- Gee, G.W.; Bauder, J.W. Particle-size Analysis. In Methods in Biogeochemistry of Wetlands; Wiley: Hoboken, NJ, USA, 2018; pp. 383–411. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods in Biogeochemistry of Wetlands; Wiley: Hoboken, NJ, USA, 2018; pp. 363–375. [Google Scholar]
- USDA, Natural Resources Conservation Service. Soil Survey Laboratory Methods Manual. In Soil Survey Investigations Report No. 42, Version 4.0; National Soil Survey Center: Lincoln, NE, USA, 2004; p. 1031. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modi-fication of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Subbiah, B.; Asija, C.L. A rapid procedure for the estimation of available nitrogen in soils. Curr. Sci. 1956, 25, 256–260. [Google Scholar]
- Schollenberger, C.J.; Simon, R.H. Determination of exchange capacity and exchangeable bases in soil—Ammonium acetate method. Soil Sci. 1945, 59, 13–24. [Google Scholar] [CrossRef]
- Sumner, M.E.; Miller, W.P. Cation Exchange Capacity and Exchange Coefficients; SSSA Book Series; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America: Madison, WI, USA, 2018; pp. 1201–1229. [Google Scholar]
- McLean, E.O. Aluminum. In Methods of Soil Analysis Part 2, Chemical Methods; Black, C.A., Ed.; Soil Society of Agronomy: Madison WI, USA, 1965; pp. 978–998. [Google Scholar]
- Rao, P.; Wagenet, R.J. Spatial Variability of Pesticides in Field Soils: Methods for Data Analysis and Consequences. Weed Sci. 1985, 33, 18–24. [Google Scholar] [CrossRef]
- Mishra, G.; Das, J.; Sulieman, M. Modelling Soil Cation Exchange Capacity in Different Land-Use Systems using Artificial Neural Networks and Multiple Regression Analysis. Curr. Sci. 2019, 116, 2020–2027. [Google Scholar] [CrossRef]
- Hanawalt, R.B.; Whittaker, R.H. Attitudinally coordinated patterns of soils and vegetation in-the San Jacinto Mountains. California. Soil Sci. 1976, 121, 114–124. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Change Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Prevost, M. Predicting soil properties from organic matter content following mechanical site preparation of forest soils. Soil Sci. Soc. Am. J. 2004, 68, 943–949. [Google Scholar] [CrossRef]
- Mestdagh, I.; Lootens, P.; Van Cleemput, O.; Carlier, L. Variation in organic-carbon concentration and bulk density in Flemish grassland soils. J. Plant Nutr. Soil Sci. 2006, 169, 616–622. [Google Scholar] [CrossRef]
- De Hann, S. Organic Matter Studies; International Atomic Energy Agency: Vienna, Austria, 1977; Volume 1, pp. 21–30. [Google Scholar]
- Vasu, D.; Singh, S.K.; Ray, S.K.; Duraisami, V.P.; Tiwary, P.; Chandran, P.; Nimkar, A.M.; Anantwar, S.G. Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma 2016, 282, 70–79. [Google Scholar] [CrossRef]
- Nayak, D.C.; Gangopadhyay, S.K.; Sarkar, D.K.; Sen, T.K. Characteristics and classification of some acid soils of lower Su-bansiri district of Arunachal Pradesh. Agropedology 2002, 12, 112–121. [Google Scholar]
- Khaledian, Y.; Brevik, E.C.; Pereira, P.; Cerdà, A.; Fattahe, M.A.; Tazikehf, H. Modeling soil cation exchange capacity in mul-tiple countries. Catena 2017, 158, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Zimmerman, A.R. Organic carbon and nutrient release from a range of laboratory-produced biochars and bi-ochar–soil mixtures. Geoderma 2013, 193, 122–130. [Google Scholar] [CrossRef]
- Bpk, Y.; Enang, R.; Kome, G.; Van Ranst, E. Exchangeable aluminium and acidity in Acrisols and Ferralsols of the north-west highlands of Cameroon. Geoderma Reg. 2020, 23, e00343. [Google Scholar] [CrossRef]
- Jenny, H. The Soil Resource: Origin and behavior. In Ecological Studies; Springer: Berlin/Heidelberg, Germany, 1980; Volume 37, p. 377. [Google Scholar]
- Xu, M.; Ma, L.; Jia, Y.; Liu, M. Integrating the effects of latitude and altitude on the spatial differentiation of plant community diversity in a mountainous ecosystem in China. PLoS ONE 2017, 12, e0174231. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Kang, H.; Pumpanen, J.; Zhu, P.; Yin, S.; Zou, Q.; Wang, Z.; Kong, F.; Liu, C. Soil organic carbon stock and chemical composition along an altitude gradient in the Lushan Mountain, subtropical China. Ecol. Res. 2014, 29, 433–439. [Google Scholar] [CrossRef]
- Lugo, A.E.; Sanchez, M.J.; Brown, S. Land use and organic carbon content of some subtropical soils. Plant Soil 1986, 96, 185–196. [Google Scholar] [CrossRef]
- Grandy, A.S.; Robertson, G.P. Land-Use Intensity Effects on Soil Organic Carbon Accumulation Rates and Mechanisms. Ecosystems 2007, 10, 59–74. [Google Scholar] [CrossRef]
- Nichols, J.D. Relation of Organic Carbon to Soil Properties and Climate in the Southern Great Plains. Soil Sci. Soc. Am. J. 1984, 48, 1382–1384. [Google Scholar] [CrossRef]
- Tellen, V.A.; Yerima, B.P. Effects of land use change on soil physicochemical properties in selected areas in the North West region of Cameroon. Environ. Syst. Res. 2018, 7, 3. [Google Scholar] [CrossRef] [Green Version]
Mon District (n = 103) | Zunheboto District (n = 102) | |||||||
---|---|---|---|---|---|---|---|---|
Land uses | Forest | Plantation | Fallow jhum | Jhum | Forest | Plantation | Fallow jhum | Jhum |
19 | 48 | 12 | 24 | 26 | 35 | 18 | 23 | |
Altitude | <500 | 500–1000 | >1000 | <500 | 500–1000 | >1000 | ||
46 | 32 | 25 | 3 | 34 | 65 | |||
Texture 1 | Coarse | Medium | Fine | Coarse | Medium | Fine | ||
34 | 37 | 2 | 21 | 53 | 14 |
Variable 1 | Mon District (n = 103) | Zunheboto District (n = 102) | ||||||
---|---|---|---|---|---|---|---|---|
Mean | Min | Max | Std. Dev. | Mean | Min | Max | Std. Dev. | |
Altitude (m) | 627a | 100 | 1332 | 405 | 1240b | 133 | 1845 | 409 |
Clay (%) | 22.9 | 0.4 | 40.9 | 8.5 | 25.5 | 1.5 | 57.8 | 14.6 |
Sand (%) | 50.3 | 24.0 | 85.2 | 12.6 | 46.0 | 16.0 | 94.6 | 19.7 |
Silt (%) | 26.8 | 2.6 | 67.5 | 9.0 | 28.5 | 3.4 | 73.6 | 13.4 |
BD (Mg m−3) | 0.90b | 0.60 | 1.19 | 0.14 | 0.85a | 0.62 | 1.10 | 0.10 |
Porosity (%) | 65.9a | 55.1 | 77.4 | 5.4 | 67.8b | 58.5 | 76.6 | 4.0 |
pH | 5.22b | 3.61 | 6.69 | 0.90 | 4.99a | 3.70 | 6.59 | 0.74 |
EC (d sm−1) | 0.063 | 0.020 | 0.280 | 0.042 | 0.067 | 0.010 | 0.260 | 0.056 |
SOC (%) | 2.19 | 0.62 | 4.57 | 0.73 | 2.19 | 0.70 | 3.40 | 0.57 |
Stock (Mg C ha−1) | 29.33 | 9.70 | 70.61 | 10.21 | 27.94 | 6.82 | 44.09 | 7.51 |
CEC (Cmol+ kg−1) | 9.71a | 4.07 | 15.52 | 2.55 | 10.94b | 5.82 | 20.00 | 2.71 |
Ex. Ca (Cmol+ kg−1) | 1.92 | 0.59 | 3.96 | 0.55 | 2.03 | 1.25 | 3.92 | 0.51 |
Ex. Mg (Cmol+ kg−1) | 1.65a | 0.52 | 4.10 | 0.63 | 1.88b | 0.75 | 4.36 | 0.66 |
Ca:Mg | 1.23 | 0.37 | 2.09 | 0.31 | 1.16 | 0.38 | 2.96 | 0.35 |
Ex. Na (Cmol+ kg−1) | 0.70 | 0.17 | 2.34 | 0.43 | 0.84 | 0.17 | 3.30 | 0.64 |
Ex. K (Cmol+ kg−1) | 1.52a | 0.20 | 4.76 | 1.02 | 1.77b | 0.43 | 4.30 | 0.72 |
BS (%) | 62.00 | 18.63 | 92.63 | 17.68 | 61.86 | 29.99 | 94.85 | 13.77 |
Ex. Al (Cmol+ kg−1) | 3.92 | 0.30 | 11.40 | 2.47 | 4.41 | 0.30 | 14.00 | 2.42 |
Av. N (mg kg−1) | 356.4 | 67.9 | 853.3 | 174.8 | 336.5 | 101.2 | 690.9 | 134.2 |
Av. P (mg kg−1) | 8.08 | 3.66 | 16.25 | 2.48 | 8.19 | 5.15 | 12.04 | 1.60 |
Av. K (mg kg−1) | 33.79 | 7.73 | 147.59 | 25.25 | 38.72 | 9.78 | 157.87 | 29.13 |
Land Uses 1 | Soil Carbon Stock (Mg C ha−1) | Available N (mg kg−1) | Available P (mg kg−1) | Available K (mg kg−1) | ||||
---|---|---|---|---|---|---|---|---|
Mon | Zunheboto | Mon | Zunheboto | Mon | Zunheboto | Mon | Zunheboto | |
Forest | 32.56b | 29.54 | 352.18 | 308.59 | 7.99 | 7.53a | 24.50a | 33.12 |
Plantation | 29.55ab | 27.95 | 369.41 | 343.94 | 8.30 | 8.77b | 31.08ab | 36.99 |
Jhum | 29.71ab | 24.46 | 323.16 | 329.63 | 7.95 | 7.94ab | 47.91b | 46.89 |
Fallow Jhum | 22.52a | 29.44 | 377.91 | 371.16 | 7.58 | 8.31ab | 31.04ab | 39.72 |
Altitude Range 1 (m) | Soil Carbon Stock (Mg C ha−1) | Available N (mg kg−1) | Available P (mg kg−1) | Available K (mg kg−1) | ||||
---|---|---|---|---|---|---|---|---|
Mon | Zunheboto | Mon | Zunheboto | Mon | Zunheboto | Mon | Zunheboto | |
<500 2 | 27.31 | 24.54 | 427.99b | 312.72 | 9.30b | 8.78b | 32.49 | 53.66c |
500–1000 | 29.23 | 27.21 | 278.48a | 317.97 | 7.11a | 7.39a | 30.48 | 27.99a |
>1000 | 33.14 | 29.62 | 324.59a | 347.30 | 7.07a | 8.58ab | 40.40 | 43.64b |
Texture Class 1 | Soil Carbon Stock (Mg C ha−1) | Available N (mg kg−1) | Available P (mg kg−1) | Available K (mg kg−1) | ||||
---|---|---|---|---|---|---|---|---|
Mon | Zunheboto | Mon | Zunheboto | Mon | Zunheboto | Mon | Zunheboto | |
Coarse | 25.02a | 27.12 | 285.32a | 422.07b | 7.33a | 8.57 | 33.15 | 48.96 |
Medium | 31.55b | 28.38 | 391.50b | 307.40a | 8.34ab | 8.07 | 33.30 | 36.95 |
Fine 2 | 27.88ab | 27.00 | 391.26b | 347.44ab | 11.94b | 8.16 | 60.17 | 31.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, G.; Francaviglia, R. Land Uses, Altitude and Texture Effects on Soil Parameters. A Comparative Study in Two Districts of Nagaland, Northeast India. Agriculture 2021, 11, 171. https://doi.org/10.3390/agriculture11020171
Mishra G, Francaviglia R. Land Uses, Altitude and Texture Effects on Soil Parameters. A Comparative Study in Two Districts of Nagaland, Northeast India. Agriculture. 2021; 11(2):171. https://doi.org/10.3390/agriculture11020171
Chicago/Turabian StyleMishra, Gaurav, and Rosa Francaviglia. 2021. "Land Uses, Altitude and Texture Effects on Soil Parameters. A Comparative Study in Two Districts of Nagaland, Northeast India" Agriculture 11, no. 2: 171. https://doi.org/10.3390/agriculture11020171
APA StyleMishra, G., & Francaviglia, R. (2021). Land Uses, Altitude and Texture Effects on Soil Parameters. A Comparative Study in Two Districts of Nagaland, Northeast India. Agriculture, 11(2), 171. https://doi.org/10.3390/agriculture11020171