Chemical and Sensory Characterization of Nine Spanish Monovarietal Olive Oils: An Emphasis on Wax Esters
Abstract
:(…) oleum saporis egregii, dum viride est, intra annum corrumpitur. |
Lucius Iunius Moderatus, a.k.a. Columella |
De re rustica (Book V) |
1. Introduction
2. Materials and Methods
2.1. Plant Material and Oil Extraction
2.2. Chemical Characterization
2.3. Wax Ester Profiles
2.4. Sensory Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical and Organoleptic Quality Characteristics
3.2. Wax Content and Wax Ester Profiles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tripoli, E.; Gianmanco, M.; Di Majo, D.; Gianmanco, S.; La Guardia, M.; Crescimanno, M. The phenolic compounds of olive oil and human health. In Recent Advances in Olive Industry Special Seminars and Invited Lectures, Proceedings of the 2nd International Seminar Olivebioteq, Marsala, Mazara del Vallo, Italy, 5–10 November 2006; Campo: Mazara del Vallo, Italy, 2006; pp. 265–271. [Google Scholar]
- Rodríguez-Morató, J.; Xicota, L.; Fitó, M.; Farré, M.; Dierssen, M.; de la Torre, R. Potential role of olive oil phenolic compounds in the prevention of neurodegenerative diseases. Molecules 2015, 20, 4655–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Condelli, N.; Caruso, M.C.; Galgano, D.; Russo, D.; Milella, L.; Favati, F. Prediction of the antioxidant activity of extra virgin olive oils produced in the Mediterranean area. Food Chem. 2015, 177, 233–239. [Google Scholar] [CrossRef] [PubMed]
- EU. Commission Delegated Regulation (EU) No. 2015/1830 of 8 July 2015 amending Regulation (EEC) No. 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Union 2015, L266, 9–13. [Google Scholar]
- Kunst, L.; Samuels, A.L. Plant cuticles shine: Advances in wax biosynthesis and export. Curr. Opin. Plant Biol. 2009, 12, 721–727. [Google Scholar] [CrossRef]
- Diarte, C.; Lai, P.; Huang, H.; Romero, A.; Casero, T.; Gatius, F.; Graell, J.; Medina, V.; East, A.; Riederer, M.; et al. Insights into olive fruit surface functions: A comparison of cuticular composition, water permeability, and surface topography in nine cultivars during maturation. Front. Plant Sci. 2019, 10, 1484. [Google Scholar] [CrossRef] [PubMed]
- Vichi, S.; Cortés-Francisco, N.; Caixach, J.; Barrios, G.; Mateu, J.; Ninot, A.; Romero, A. Epicuticular wax developing olives (Olea europaea) is highly dependent upon culticar and fruit ripeness. J. Agric. Food Chem. 2016, 64, 5985–5994. [Google Scholar] [CrossRef] [PubMed]
- Samaniego-Sánchez, C.; Quesada-Granados, J.J.; López-García de la Serrana, H.; López-Martínez, M.C. β-Carotene, squalene and waxes determined by chromatographic method in Picual extra virgin olive oil obtained by a new cold extraction system. J. Food Compos. Anal. 2010, 23, 671–676. [Google Scholar] [CrossRef]
- Taticchi, A.; Selvaggini, R.; Esposto, S.; Sordini, B.; Veneziani, G.; Servili, M. Physicochemical characterization of virgin olive oil obtained using an ultrasound-assisted extraction at an industrial scale: Influence of olive maturity index and malaxation time. Food Chem. 2019, 289, 7–15. [Google Scholar] [CrossRef]
- Mihailova, A.; Abbado, D.; Pedentchouk, N. Differences in n-alkane profiles between olives and olive leaves as potential indicators for the assessment of olive leaf presence in virgin olive oils. Eur. J. Lipid Sci. Technol. 2015, 117, 1480–1485. [Google Scholar] [CrossRef]
- Huang, H.; Burghardt, M.; Schuster, A.C.; Leide, J.; Lara, I.; Riederer, M. Chemical composition and water permeability of fruit and leaf cuticles of Olea europaea L. J. Agric. Food Chem. 2017, 65, 8790–8797. [Google Scholar] [CrossRef]
- Giuffrè, A.M. Wax ester variation in olive oils produced in Calabria (southern Italy) during olive ripening. J. Am. Oil Chem. Soc. 2014, 91, 1355–1366. [Google Scholar] [CrossRef]
- Mele, M.A.; Islam, M.Z.; Kang, H.; Giuffrè, A.M. Pre-and post-harvest factors and their impact on oil composition and quality of olive fruit. Emir. J. Food Agric. 2018, 30, 592–603. [Google Scholar] [CrossRef] [Green Version]
- Biedermann, M.; Bongartz, A. Fatty acid methyl and ethyl esters as well as wax esters for evaluating the quality of olive oils. Eur. Food Res. Technol. 2008, 228, 65–74. [Google Scholar] [CrossRef]
- Grob, K.; Giuffrè, A.M.; Leuzzi, U.; Mincione, B. Recognition of adulterated oils by direct analysis of the minor components. Fat Sci. Technol. 1994, 96, 286–290. [Google Scholar] [CrossRef]
- Hodaifa, G.; Martínez Nieto, L.; Lozano, J.L.; Sánchez, S. Changes of the wax content in mixture of olive oil as determined by gas chromatography with flame ionization detector. J. AOAC Int. 2012, 95, 1720–1724. [Google Scholar] [CrossRef]
- Reiter, B.; Lorbeer, E. Analysis of the wax ester fraction of olive oil and sunflower oil by gas chromatography and gas chromatography-mass spectrometry. J. Am. Oil Chem. Soc. 2001, 78, 881–888. [Google Scholar] [CrossRef]
- Mariani, C.; Venturi, S. Sulla struttura delle cere degli oli delle olive. Riv. Ital. Sostanze Grasse 2002, 79, 49–57. [Google Scholar]
- Aragón, A.; Toledano, R.M.; Cortés, J.M.; Villén, J.; Vázquez, A. Wax ester composition of monovarietal olive oils from Designation of Origin (DO) “Campos de Hellin”. Food Chem. 2011, 129, 71–76. [Google Scholar] [CrossRef]
- Giuffrè, A.M. Influence of harvest year and cultivar on wax composition of olive oils. Eur. J. Lipid Sci. Technol. 2013, 115, 549–555. [Google Scholar] [CrossRef]
- Mariani, C.; Lucci, P.; Conte, L. Identification of phytyl vaccinate as a major component of wax ester fraction of extra virgin olive oil. Eur. J. Lipid Sci. Technol. 2018, 120, 1800154. [Google Scholar] [CrossRef]
- Uceda, M.; Frías, L. Harvest dates. Evolution of the fruit of content, oil composition and oil quality. In Proceedings of the II Seminario Oleícola International, International Olive Council, Córdoba, Spain, 6–17 October 1975; pp. 125–130. [Google Scholar]
- Romero, A.; Tous, J.; Guerrero, L. El análisis sensorial del aceite de oliva virgen. In Introducción al Análisis Sensorial de Los Alimentos; Sancho, J., Bota, E., de Castro, J., Eds.; Universitat de Barcelona: Barcelona, Spain, 1999; pp. 183–197. ISBN 8483380528. [Google Scholar]
- Guerrero, L.; Romero-Aroca, A.; Tous, J. Importance of generalised procrustes analysis in sensory characterisation of virgin olive oil. Food Qual. Prefer. 2001, 12, 515–520. [Google Scholar] [CrossRef]
- Tous, J.; Romero, A. Variedades del olivo: Con especial referencia a Cataluña; Fundació ‘La Caixa’ and AEDOS: Barcelona, Spain, 1993; ISBN 84-7664-376-4. [Google Scholar]
- Bengana, M.; Bakhouche, A.; Lozano-Sánchez, J.; Amir, Y.; Youyou, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Influence of olive ripeness on chemical properties and phenolic composition of Chemlal extra-virgin olive oil. Food Res. Inter. 2013, 54, 1868–1875. [Google Scholar] [CrossRef]
- Alvarruiz, A.; Álvarez-Ortí, M.; Mateos, B.; Sena, E.; Pardo, J.E. Quality and composition of virgin olive oil from varieties grown in Castilla-La Mancha (Spain). J. Oleo Sci. 2015, 64, 1075–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez Roncero, A.; Janer del Valle, C.; Janer del Valle, M.L. Polifenoles naturales y estabilidad del aceite de oliva. Grasas y Aceites 1975, 26, 14–18. [Google Scholar]
- García, A.; Brenes, M.; García, P.; Romero, C.; Garrido, A. Phenolic content of commercial olive oils. Eur. Food Res. Technol. 2003, 216, 520–725. [Google Scholar] [CrossRef]
- Vichi, S.; Tres, A.; Quintanilla-Casa, B.; Bustamante, J.; Guardiola, F.; Martí, E.; Hermoso, J.F.; Ninot, A.; Romero, A. Catalan virgin olive oil protected designations of origin: Physicochemical and major sensory attributes. Eur. J. Lipid Sci. Technol. 2019, 121, 1800130. [Google Scholar] [CrossRef] [Green Version]
- Alowaiesh, B.; Singh, Z.; Fang, Z.; Kailis, S.G. Harvest time impacts the fatty acid compositions, phenolic compounds and sensory attributes of Frantoio and Manzanilla olive oil. Sci. Hortic. 2018, 234, 74–80. [Google Scholar] [CrossRef]
- Ninot, A.; Howad, W.; Romero, A. Les varietats catalanes d’olivera. In Quaderns Agraris; Institució Catalana d’Estudis Agraris: Barcelona, Spain, 2019; Volume 46, pp. 7–36. [Google Scholar] [CrossRef]
- Morelló, J.R.; Romero, M.P.; Motilva, M.J. Effect of the maturation process of olive fruit on the phenolic fraction of drupes and oils from Arbequina, Farga and Morrut cultivars. J. Agric. Food Chem. 2004, 52, 6002–6009. [Google Scholar] [CrossRef]
- Servili, M.; Selvaggini, R.; Esposto, S.; Taticchi, A.; Montedoro, G.F.; Morozzi, G. Health and sensory properties of virgin olive oil hydrophilic phenols: Agronomic and technological aspect of production that affect their occurence in the oil. J. Chromatogr. A 2004, 1054, 113–127. [Google Scholar] [CrossRef]
- Baldioli, M.; Servili, M.; Perreti, G.; Montedoro, G.F. Antioxidant activity of tocopherols and phenolic compounds of virgin olive oil. J. Am. Oil Chem. Soc. 1996, 73, 1589–1593. [Google Scholar] [CrossRef]
- Abenoza, M.; Raso, J.; Oria, R.; Sánchez-Gimeno, A.C. Modulating the bitterness of Empeltre olive oil by partitioning polyphenols between oil and water phases: Effect on quality and shelf life. Food Sci. Technol. Int. 2018, 25, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Mariani, C.; Cesa, S.; Ingallina, C.; Mannina, L. Identification of tetrahydrogeraniol and dihydrogeranylgeraniol in extra virgin olive oil. Grasas y Aceites 2018, 69, e263. [Google Scholar] [CrossRef]
- Krauβ, S.; Vetter, W. Phytol and phytyl fatty acid esters: Occurrence, concentration, and relevance. Eur. J. Lipid Sci. Technol. 2018, 120, 1700387. [Google Scholar] [CrossRef]
- Krauβ, S.; Hammann, S.; Vetter, W. Phytyl fatty acid esters in pulp of bell pepper (Capsicum annuum). J. Agric. Food Chem. 2016, 64, 6306–6311. [Google Scholar] [CrossRef]
- Rotondo, A.; La Torre, G.L.; Dugo, G.; Cicero, N.; Santini, A.; Salvo, A. Oleic acid is not the only fatty ester in olive oil. Foods 2020, 9, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cultivar | Weight (g) | Maturity Index | Acidity (% Oleic Acid) | Peroxide Value (mEq O2 kg−1) | K232 Index | K270 Index | Oxidative Stability (h) | Wax Content 1 (mg kg−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
‘Arbequina’ | 1.69 | 2.4 | 0.14 | h | 6.89 | d | 1.68 | c | 0.07 | f | 8.53 | d | 143.97 | a |
‘Argudell’ | 3.10 | 3.2 | 0.16 | g | 9.40 | a | 1.94 | b | 0.11 | c | 8.34 | d | 51.20 | c |
‘Empeltre’ | 1.41 | 5.0 | 0.64 | b | 3.76 | h | 1.81 | bc | 0.06 | g | 8.27 | d | 65.95 | b |
‘Farga’ | 2.20 | 3.6 | 0.21 | e | 5.52 | f | 1.67 | c | 0.08 | e | 8.53 | d | 60.04 | bc |
‘Manzanilla’ | 5.79 | 6.4 | 0.51 | c | 4.44 | g | 1.53 | d | 0.10 | d | 22.11 | b | 25.85 | d |
‘Marfil’ | 1.98 | 1.9 | 0.18 | f | 7.35 | c | 2.12 | a | 0.13 | a | 17.45 | c | 35.30 | d |
‘Morrut’ | 2.98 | 3.1 | 0.45 | d | 2.57 | i | 1.68 | c | 0.08 | e | 8.45 | d | 68.77 | b |
‘Picual’ | 3.61 | 2.3 | 0.14 | h | 8.89 | b | 1.70 | c | 0.13 | a | 33.24 | a | nd | |
‘Sevillenca’ | 4.04 | 4.7 | 1.60 | a | 5.74 | e | 1.81 | bc | 0.12 | b | 4.43 | e | 67.87 | b |
Cultivar | Fruity | Bitter | Pungent | Global Sensory Score |
---|---|---|---|---|
‘Arbequina’ | 4.40 | 2.55 | 3.40 | 6.6 |
‘Argudell’ | 4.65 | 3.15 | 3.60 | 7.0 |
‘Empeltre’ | 4.10 | 2.70 | 3.25 | 6.7 |
‘Farga’ | 5.05 | 2.85 | 3.80 | 6.8 |
‘Manzanilla’ | 4.30 | 4.05 | 4.45 | 6.5 |
‘Marfil’ | 5.75 | 4.70 | 5.15 | 7.6 |
‘Morrut’ | 4.35 | 3.45 | 3.90 | 7.0 |
‘Picual’ | 6.15 | 5.20 | 5.15 | 7.4 |
‘Sevillenca’ | 3.75 | 3.45 | 4.30 | 6.1 |
‘Arbequina’ | ‘Argudell’ | ‘Empeltre’ | ‘Farga’ | ‘Manzanilla’ | ‘Marfil’ | ‘Morrut’ | ‘Picual’ | ‘Sevillenca’ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ester C36 | ||||||||||||||||||
Phy-C16:0 | 61.09 | a | 18.73 | b | 15.78 | b | 10.82 | c | 4.38 | d | 19.25 | b | 8.54 | c | nd | 7.88 | cd | |
Ester C38 | ||||||||||||||||||
Phy-C18:0 | 92.95 | a | 22.79 | bc | 27.09 | b | 19.28 | c | 13.83 | d | 22.46 | bc | 23.64 | bc | 1.51 | e | 20.76 | c |
Phy-C18:1 | 434.46 | a | 117.99 | b | 132.96 | b | 86.97 | c | 32.01 | de | 125.59 | b | 65.96 | c | 2.79 | e | 56.24 | cd |
Ester C40 | ||||||||||||||||||
Phy-C20:0 | 307.84 | a | 95.43 | b | 95.63 | b | 79.31 | c | 32.33 | d | 77.00 | c | 79.40 | c | 2.21 | e | 86.08 | bc |
Phy-C20:1 | 150.46 | a | 45.78 | bc | 42.96 | bc | 37.18 | cd | 8.26 | e | 48.77 | b | 29.04 | d | nd | 29.06 | d | |
Ester C42 | ||||||||||||||||||
Phy-C22:0 | 117.05 | a | 40.09 | b | 48.15 | b | 40.51 | b | 11.94 | d | 26.59 | c | 45.22 | b | nd | 46.96 | b | |
Ester C44 | ||||||||||||||||||
Phy-C24:0 | 26.92 | a | 11.11 | d | 17.87 | c | 19.53 | c | 7.29 | e | 8.71 | de | 23.55 | b | nd | 20.90 | bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diarte, C.; Romero, A.; Romero, M.P.; Graell, J.; Lara, I. Chemical and Sensory Characterization of Nine Spanish Monovarietal Olive Oils: An Emphasis on Wax Esters. Agriculture 2021, 11, 170. https://doi.org/10.3390/agriculture11020170
Diarte C, Romero A, Romero MP, Graell J, Lara I. Chemical and Sensory Characterization of Nine Spanish Monovarietal Olive Oils: An Emphasis on Wax Esters. Agriculture. 2021; 11(2):170. https://doi.org/10.3390/agriculture11020170
Chicago/Turabian StyleDiarte, Clara, Agustí Romero, María Paz Romero, Jordi Graell, and Isabel Lara. 2021. "Chemical and Sensory Characterization of Nine Spanish Monovarietal Olive Oils: An Emphasis on Wax Esters" Agriculture 11, no. 2: 170. https://doi.org/10.3390/agriculture11020170
APA StyleDiarte, C., Romero, A., Romero, M. P., Graell, J., & Lara, I. (2021). Chemical and Sensory Characterization of Nine Spanish Monovarietal Olive Oils: An Emphasis on Wax Esters. Agriculture, 11(2), 170. https://doi.org/10.3390/agriculture11020170