Crop Diversification in Viticulture with Aromatic Plants: Effects of Intercropping on Grapevine Productivity in a Steep-Slope Vineyard in the Mosel Area, Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
- Control (Vitis vinifera L. cv. ‘Riesling’ monocrop with regular mechanical tillage),
- Oregano (Vitis vinifera L. cv. ‘Riesling’ intercropped with Origanum vulgare),
- Thyme (Vitis vinifera L. cv. ‘Riesling’ intercropped with Thymus vulgaris).
2.3. Crop Monitoring
2.4. Vineyard Soil Sampling and Analytical Protocols
2.5. Soil Erosion Measurements
2.6. Statistical Analysis
3. Results
3.1. Climatic Phenomena and Effects on Intercrop Growth
3.2. Soil Resource Availability and Development
3.3. Grapevine Performance and Harvest Properties
4. Discussion
4.1. Effects of Weather Conditions and Crop Plant Diversification
4.2. Competition between Grapevine and Diversification Crops
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Organization of Vine and Wine. 2019: Statistical Report on World Vitiviniculture. Available online: http://oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitiviniculture.pdf (accessed on 5 August 2020).
- Mozell, M.R.; Thach, L. The Impact of Climate Change on the Global Wine Industry: Challenges & Solutions. Wine Econ. Policy 2014, 3, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Costantini, E.A.C.; Castaldini, M.; Diago, M.P.; Giffard, B.; Lagomarsino, A.; Schroers, H.-J.; Priori, S.; Valboa, G.; Agnelli, A.E.; Akça, E.; et al. Effects of Soil Erosion on Agro-Ecosystem Services and Soil Functions: A Multidisciplinary Study in Nineteen Organically Farmed European and Turkish Vineyards. J. Environ. Manag. 2018, 223, 614–624. [Google Scholar] [CrossRef]
- Komárek, M.; Čadková, E.; Chrastný, V.; Bordas, F.; Bollinger, J.-C. Contamination of Vineyard Soils with Fungicides: A Review of Environmental and Toxicological Aspects. Environ. Int. 2010, 36, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.M.; Penke, N.; Kriechbaum, M.; Kratschmer, S.; Jung, V.; Chollet, S.; Guernion, M.; Nicolai, A.; Burel, F.; Fertil, A.; et al. Vegetation Management Intensity and Landscape Diversity Alter Plant Species Richness, Functional Traits and Community Composition across European Vineyards. Agric. Syst. 2020, 177, 102706. [Google Scholar] [CrossRef]
- Paiola, A.; Assandri, G.; Brambilla, M.; Zottini, M.; Pedrini, P.; Nascimbene, J. Exploring the Potential of Vineyards for Biodiversity Conservation and Delivery of Biodiversity-Mediated Ecosystem Services: A Global-Scale Systematic Review. Sci. Total Environ. 2020, 706, 135839. [Google Scholar] [CrossRef] [PubMed]
- Schaller, K. Intensive Viticulture and Its Environmental Impacts: Nitrogen as a Case Study. Acta Hortic. 2000, 502. [Google Scholar] [CrossRef]
- Steenwerth, K.L.; Belina, K.M. Vineyard Weed Management Practices Influence Nitrate Leaching and Nitrous Oxide Emissions. Agric. Ecosyst. Environ. 2010, 138, 127–131. [Google Scholar] [CrossRef]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.-F.; Ferrer, A.; Peigné, J. Agroecological Practices for Sustainable Agriculture. A Review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Brooker, R.W.; Bennett, A.E.; Cong, W.-F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving Intercropping: A Synthesis of Research in Agronomy, Plant Physiology and Ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- Tamburini, G.; Bommarco, R.; Wanger, T.C.; Kremen, C.; van der Heijden, M.G.A.; Liebman, M.; Hallin, S. Agricultural Diversification Promotes Multiple Ecosystem Services without Compromising Yield. Sci. Adv. 2020, 6, eaba1715. [Google Scholar] [CrossRef]
- Guerra, B.; Steenwerth, K. Influence of Floor Management Technique on Grapevine Growth, Disease Pressure, and Juice and Wine Composition: A Review. Am. J. Enol. Vitic. 2012, 63, 149–164. [Google Scholar] [CrossRef]
- Mcgourty, G.; Reganold, J. Managing Vineyard Soil Organic Matter with Cover Crops. In Proceedings of the Soil Environment and Vine Mineral Nutrition Symposium, San Diego, CA, USA, 29–30 June 2004; American Society for Enology and Viticulture: Davis, CA, USA, 2005; pp. 145–151. [Google Scholar]
- Smith, R.; Bettiga, L.; Cahn, M.; Baumgartner, K.; Jackson, L.E.; Bensen, T. Vineyard Floor Management Affects Soil, Plant Nutrition, and Grape Yield and Quality. Calif. Agric. 2008, 62, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Garcia, L.; Celette, F.; Gary, C.; Ripoche, A.; Valdés-Gómez, H.; Metay, A. Management of Service Crops for the Provision of Ecosystem Services in Vineyards: A Review. Agric. Ecosyst. Environ. 2018, 251, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Steenwerth, K.; Belina, K.M. Cover Crops Enhance Soil Organic Matter, Carbon Dynamics and Microbiological Function in a Vineyard Agroecosystem. Appl. Soil Ecol. 2008, 40, 359–369. [Google Scholar] [CrossRef]
- Peregrina, F.; Pérez-Álvarez, E.P.; García-Escudero, E. Soil Microbiological Properties and Its Stratification Ratios for Soil Quality Assessment under Different Cover Crop Management Systems in a Semiarid Vineyard. J. Plant Nutr. Soil Sci. 2014, 177, 548–559. [Google Scholar] [CrossRef]
- Mercenaro, L.; Nieddu, G.; Pulina, P.; Porqueddu, C. Sustainable Management of an Intercropped Mediterranean Vineyard. Agric. Ecosyst. Environ. 2014, 192, 95–104. [Google Scholar] [CrossRef]
- Fiera, C.; Ulrich, W.; Popescu, D.; Bunea, C.-I.; Manu, M.; Nae, I.; Stan, M.; Markó, B.; Urák, I.; Giurginca, A.; et al. Effects of Vineyard Inter-Row Management on the Diversity and Abundance of Plants and Surface-Dwelling Invertebrates in Central Romania. J. Insect Conserv. 2020, 24, 175–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tesic, D.; Keller, M.; Hutton, R.J. Influence of Vineyard Floor Management Practices on Grapevine Vegetative Growth, Yield, and Fruit Composition. Am. J. Enol. Vitic. 2007, 58, 1–11. [Google Scholar]
- Leibar, U.; Pascual, I.; Aizpurua, A.; Morales, F.; Unamunzaga, O. Grapevine Nutritional Status and K Concentration of Must under Future Expected Climatic Conditions Texturally Different Soils. J. Soil Sci. Plant Nutr. 2017, 17, 385–397. [Google Scholar] [CrossRef] [Green Version]
- Bell, S.-J.; Henschke, P.A. Implications of Nitrogen Nutrition for Grapes, Fermentation and Wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Ingels, C.A.; Scow, K.M.; Whisson, D.A.; Drenovsky, R.E. Effects of Cover Crops on Grapevines, Yield, Juice Composition, Soil Microbial Ecology, and Gopher Activity. Am. J. Enol. Vitic. 2005, 56, 19–29. [Google Scholar]
- EIP-AGRI Focus Group. Plant-Based Medicinal and Cosmetic Products—EIP-AGRI—European Commission. Available online: Ec.europa.eu/eip/agriculture/en/publications/eip-agri-focus-group-plant-based-medicinal-and (accessed on 11 August 2020).
- Hoppe, B. Handbuch des Arznei- und Gewürzpflanzenanbaus, Band 5: Arznei- und Gewürzpflanzen L-Z;2013; Verein für Arznei- und Gewürzpflanzen Saluplanta e.V., Bernburg: Bernburg, Germany, 2013; ISBN 978-3-935971-64-5. [Google Scholar]
- Handbook for Cultivation of Medicinal and Aromatic Plants | Project Cult: Strengthening Capacities of Farmers for Cultivation of Medicinal and Aromatic Plants through Transfer of Knowledge and Good Practices. Available online: http://projectcult.com/wp-content/uploads/2016/11/PRIRACNIK_EN_.pdf (accessed on 21 January 2021).
- Rao, E.V.S.P. Economic and Ecological Aspects of Aromatic-Plant-Based Cropping Systems. CAB Rev. 2015, 10, 1–8. [Google Scholar] [CrossRef]
- Campos, E.V.R.; Proença, P.L.F.; Oliveira, J.L.; Bakshi, M.; Abhilash, P.C.; Fraceto, L.F. Use of Botanical Insecticides for Sustainable Agriculture: Future Perspectives. Ecol. Indic. 2019, 105, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.R.; Palada, M.C.; Becker, B.N. Medicinal and Aromatic Plants in Agroforestry Systems. Agrofor. Syst. 2004, 61, 107–122. [Google Scholar] [CrossRef]
- Song, B.; Han, Z. Assessment of the Biocontrol Effects of Three Aromatic Plants on Multiple Trophic Levels of the Arthropod Community in an Agroforestry Ecosystem. Ecol. Entomol. 2020, 45, 831–839. [Google Scholar] [CrossRef]
- Chen, X.; Song, B.; Yao, Y.; Wu, H.; Hu, J.; Zhao, L. Aromatic Plants Play an Important Role in Promoting Soil Biological Activity Related to Nitrogen Cycling in an Orchard Ecosystem. Sci. Total Environ. 2014, 472, 939–946. [Google Scholar] [CrossRef]
- Rao, E.V.S.P. Aromatic Plant Species in Agricultural Production Systems Based on Marginal Soils; CAB Int.: Wallingford, UK, 2012. [Google Scholar]
- Zheljazkov, V.D.; Craker, L.E.; Xing, B.; Nielsen, N.E.; Wilcox, A. Aromatic Plant Production on Metal Contaminated Soils. Sci. Total Environ. 2008, 395, 51–62. [Google Scholar] [CrossRef]
- Pandey, J.; Verma, R.K.; Singh, S. Suitability of Aromatic Plants for Phytoremediation of Heavy Metal Contaminated Areas: A Review. Int. J. Phytoremediat. 2019, 21, 405–418. [Google Scholar] [CrossRef]
- Ballabio, C.; Panagos, P.; Lugato, E.; Huang, J.-H.; Orgiazzi, A.; Jones, A.; Fernández-Ugalde, O.; Borrelli, P.; Montanarella, L. Copper Distribution in European Topsoils: An Assessment Based on LUCAS Soil Survey. Sci. Total Environ. 2018, 636, 282–298. [Google Scholar] [CrossRef]
- Cordier, S.; Harmand, D.; Lauer, T.; Voinchet, P.; Bahain, J.-J.; Frechen, M. Geochronological Reconstruction of the Pleistocene Evolution of the Sarre Valley (France and Germany) Using OSL and ESR Dating Techniques. Geomorphology 2012, 165–166, 91–106. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014; ISBN 978-92-5-108369-7. [Google Scholar]
- Schüller, H. Die CAL-Methode, Eine Neue Methode Zur Bestimmung des Pflanzenverfügbaren Phosphates in Böden. Z. Für Pflanzenernähr. Bodenkd. 1969, 123, 48–63. [Google Scholar] [CrossRef]
- Iserloh, T.; Seeger, M. Sediment load and concentration. In Handbook of Plant and Soil Analysis for Agricultural Systems; Álvaro-Fuentes, J., Loczy, D., Thiele-Bruhn, S., Zornoza, R., Eds.; CRAI: Boston, MA, USA, 2019; pp. 214–216. ISBN 978-84-16325-86-3. [Google Scholar]
- Gerlach, T. Hillslope Troughs for Measuring Sediment Movement. Rev. Geomorphol. Dyn. 1967, 17, 173–174. [Google Scholar]
- Schmidt, R.-G. Probleme Der Erfassung Und Quantifizierung von Ausmass Und Prozessen Der Aktuellen Bodenerosion (Abspülung) Auf Ackerflächen. In Physiogeographica, Baseler Beiträge zur Physiogeographie; Geographisch-Ethnologischen Gesellschaft: Basel, Switzerland, 1979; Volume 1. [Google Scholar]
- R Core. Team R: A Language and Environment for Statistical Computing; R Core: Vienna, Austria, 2016. [Google Scholar]
- Cortell, J.M.; Halbleib, M.; Gallagher, A.V.; Righetti, T.L.; Kennedy, J.A. Influence of Vine Vigor on Grape (Vitis vinifera, L. Cv. Pinot Noir) and Wine Proanthocyanidins. J. Agric. Food Chem. 2005, 53, 5798–5808. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, C. 9—Terroir: The effect of the physical environment on vine growth, grape ripening and wine sensory attributes. In Managing Wine Quality; Reynolds, A.G., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2010; pp. 273–315. ISBN 978-1-84569-484-5. [Google Scholar]
- Lebon, E.; Dumas, V.; Pieri, P.; Schultz, H.R. Modelling the Seasonal Dynamics of the Soil Water Balance of Vineyards. Funct. Plant Biol. 2003, 30, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Guilpart, N.; Metay, A.; Gary, C. Grapevine Bud Fertility and Number of Berries per Bunch are Determined by Water and Nitrogen Stress around Flowering in the Previous Year. Eur. J. Agron. 2014, 54, 9–20. [Google Scholar] [CrossRef]
- Fourie, J.C. Soil Management in the Breede River Valley Wine Grape Region, South Africa. 3. Grapevine Performance. S. Afr. J. Enol. Vitic. 2011, 32, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Lebon, G.; Wojnarowiez, G.; Holzapfel, B.; Fontaine, F.; Vaillant-Gaveau, N.; Clément, C. Sugars and Flowering in the Grapevine (Vitis vinifera L.). J. Exp. Bot. 2008, 59, 2565–2578. [Google Scholar] [CrossRef] [Green Version]
- Molitor, D.; Junk, J.; Evers, D.; Hoffmann, L.; Beyer, M. A High-Resolution Cumulative Degree Day-Based Model to Simulate Phenological Development of Grapevine. Am. J. Enol. Vitic. 2014, 65, 72–80. [Google Scholar] [CrossRef]
- García de Cortázar-Atauri, I.; Brisson, N.; Gaudillere, J.P. Performance of Several Models for Predicting Budburst Date of Grapevine (Vitis vinifera L.). Int. J. Biometeorol. 2009, 53, 317–326. [Google Scholar] [CrossRef]
- Keller, M. The Science of Grapevines; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 978-0-12-816365-8. [Google Scholar]
- Spayd, S.E.; Wample, R.L.; Evans, R.G.; Stevens, R.G.; Seymour, B.J.; Nagel, C.W. Nitrogen Fertilization of White Riesling Grapes in Washington. Must and Wine Composition. Am. J. Enol. Vitic. 1994, 45, 34–42. [Google Scholar]
- Keller, M.; Pool, R.M.; Henick-Kling, T. Excessive Nitrogen Supply and Shoot Trimming Can Impair Colour Development in Pinot Noir Grapes and Wine. Aust. J. Grape Wine Res. 1999, 5, 45–55. [Google Scholar] [CrossRef]
- Giese, G.; Velasco-Cruz, C.; Roberts, L.; Heitman, J.; Wolf, T.K. Complete Vineyard Floor Cover Crops Favorably Limit Grapevine Vegetative Growth. Sci. Hortic. 2014, 170, 256–266. [Google Scholar] [CrossRef]
- Sulas, L.; Mercenaro, L.; Campesi, G.; Nieddu, G. Different Cover Crops Affect Nitrogen Fluxes in Mediterranean Vineyard. Agron. J. 2017, 109, 2579–2585. [Google Scholar] [CrossRef]
- Gärtner, H. Tree Roots—Methodological Review and New Development in Dating and Quantifying Erosive Processes. Geomorphology 2007, 86, 243–251. [Google Scholar] [CrossRef]
- Durán Zuazo, V.H.; Rodríguez Pleguezuelo, C.R. Soil-Erosion and Runoff Prevention by Plant Covers. A Review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef] [Green Version]
- Keller, M. Deficit Irrigation and Vine Mineral Nutrition. Am. J. Enol. Vitic. 2005, 56, 267–283. [Google Scholar]
- Lehnart, R.; Michel, H.; Löhnertz, O.; Linsenmeier, A. Root Dynamics and Pattern of “Riesling” on 5C Rootstock Using Minirhizotrons. VITIS J. Grapevine Res. 2008, 47, 197. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Knapen, A.; Barberá, G.G.; Navarro, J.A. Root Characteristics of Representative Mediterranean Plant Species and Their Erosion-Reducing Potential during Concentrated Runoff. Plant Soil 2007, 294, 169–183. [Google Scholar] [CrossRef]
- Sotiropoulou, D.E.; Karamanos, A.J. Field Studies of Nitrogen Application on Growth and Yield of Greek Oregano (Origanum Vulgare Ssp. Hirtum (Link) Ietswaart). Ind. Crops Prod. 2010, 32, 450–457. [Google Scholar] [CrossRef]
- Murillo-Amador, B.; Nieto-Garibay, A.; López-Aguilar, R.; Troyo-Diéguez, E.; Rueda-Puente, E.O.; Flores-Hernández, A.; Ruiz-Espinoza, F.H. Physiological, Morphometric Characteristics and Yield of Origanum Vulgare L. and Thymus Vulgaris L. Exposed to Open-Field and Shade-Enclosure. Ind. Crops Prod. 2013, 49, 659–667. [Google Scholar] [CrossRef]
Precipitation Sum | Vegetation Days | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1990–2020 | 2005–2020 | 2017 | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 | ||
Quarter | Months | (mm) | (days) | |||||||
I | Jan-Mar | 166 | 153 | 113 | 207 | 149 | 265 | 40 | 51 | 68 |
II | Apr-Jun | 176 | 189 | 113 | 243 | 149 | 128 | 91 | 89 | 91 |
III | Jul-Sep | 193 | 187 | 251 | 124 | 164 | 100 | 92 | 92 | 92 |
IV | Oct-Dec | 205 | 193 | 250 | 185 | 267 | 234 | 71 | 69 | 66 |
∑ I-III | 535 | 529 | 477 | 574 | 462 | 493 | 223 | 232 | 251 | |
∑ I-IV | 740 | 722 | 727 | 759 | 729 | 727 | 294 | 301 | 317 |
Soil Moisture (wt.%) | NO3-N (mg/kg) | NH4-N (mg/kg) | Available K (mg/kg) | Available P (mg/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Depth [m] | 0–0.1 | 0.1–0.3 | 0–0.1 | 0.1–0.3 | 0–0.1 | 0.1–0.3 | 0–0.1 | 0.1–0.3 | 0–0.1 | 0.1–0.3 | |
October 2018 | Total | 9.0 (±1.4) F | 9.2 (±1.1) F | 6.9 (±4.0) A | na | 4.5 (±1.9) B | na | 689 (±120) A | 458 (±82) B | 195 (±25) A | 165 (±17) BC |
Control | 10.0 (±1.1) a | 9.0 (±1.1) a | 9.6 (±3.7) a | na | 5.0 (±1.8) a | na | 689 (±57) a | 508 (±63) a | 212 (±23) a | 177 (±15) a | |
Oregano | 8.6 (±1.4) b | 9.1 (±0.9) a | 4.7 (±2.3) b | na | 4.0 (±1.7) a | na | 710 (±160) a | 412 (±53) b | 179 (±25) b | 156 (±15) b | |
Thyme | 8.5 (±1.2) b | 9.3 (±1.3) a | 6.3 (±2.9) ab | na | 4.6 (±2.2) a | na | 669 (±129) a | 453 (±100) ab | 194 (±16) ab | 162 (±15) ab | |
April 2019 | Total | 17.3 (±1.9) CD | 15.4 (±1.4) D | nd0 | 2.8 (±0.9) BC | 1.3 (±0.8) DE | 6.0 (±1.8) A | 236 (±55) CD | 240 (±45) CD | 184 (±38) AB | 186 (±25) AB |
Control | 18.8 (±1.3) a | 14.9 (±1.7) a | nd0 | 2.8 (±1.0) a | 2.0 (±0.9) a | 5.9 (±2.7) a | 275 (±19) a | 247 (±62) a | 200 (±13) a | 181 (±15) a | |
Oregano | 16.4 (±2.1) a | 15.6 (±1.2) a | nd0 | 3.1 (±1.1) a | 0.8 (±0.3) b | 5.8 (±1.3) a | 222 (±66) a | 239 (±29) a | 180 (±41) a | 194 (±33) a | |
Thyme | 16.8 (±1.5) a | 15.7 (±1.2) a | nd0 | 2.6 (±0.6) a | 1.0 (±0.4) b | 6.2 (±1.6) a | 212 (±54) a | 233 (±46) a | 173 (±50) a | 182 (±27) a | |
October 2019 | Total | 20.3 (±1.5) B | 17.9 (±1.3) C | 1.7 (±1.0) BC | 3.5 (±3.4) B | 0.6 (±0.6) E | 0.6 (±1.3) E | 244 (±41) CD | 283 (±90) C | 142 (±9) C | 158 (±11) BC |
Control | 21.5 (±1.4) a | 17.8 (±1.6) a | 1.1 (±0.4) a | 3.6 (±3.8) a | 0.8 (±0.8) a | 0.1 (±0.2) a | 293 (±26) a | 288 (±30) a | 147 (±7) a | 162 (±6) a | |
Oregano | 20.2 (±1.1) ab | 18.0 (±1.3) a | 2.3 (±1.3) a | 2.5 (±3.1) a | 0.3 (±0.3) a | 0.1 (±0.2) a | 225 (±21) b | 289 (±115) a | 135 (±7) a | 155 (±7) a | |
Thyme | 19.2 (±1.0) b | 17.9 (±1.1) a | 1.7 (±0.7) a | 4.3 (±3.6) a | 0.7 (±0.5) a | 1.4 (±2.0) a | 215 (±19) b | 272 (±114) a | 142 (±10) a | 157 (±17) a | |
April 2020 | Total | 11.9 (±1.6) E | 11.7 (±1.2) E | 0.5 (±0.6) BC | 0.1 (±0.3) C | 1.9 (±0.6) CD | 2.3 (±0.8) C | 200 (±28) D | 211 (±38) D | 151 (±15) C | 157 (±42) C |
Control | 12.8 (±1.8) a | 12.3 (±1.4) a | 0.4 (±0.5) a | 0.3 (±0.3) a | 2.0 (±0.4) a | 2.6 (±0.9) a | 225 (±28) a | 232 (±47) a | 156 (±16) a | 168 (±62) a | |
Oregano | 11.4 (±1.5) a | 11.3 (±1.0) a | 0.7 (±0.8) a | 0.3 (±0.3) a | 1.9 (±0.9) a | 2.1 (±0.7) a | 186 (±9) b | 197 (±16) a | 149 (±17) a | 144 (±25) a | |
Thyme | 11.4 (±1.1) a | 11.6 (±0.9) a | 0.3 (±0.2) a | 0.4 (±0.2) a | 1.8 (±0.3) a | 2.4 (±0.6) a | 189 (±23) b | 204 (±36) a | 148 (±13) a | 159 (±31) a | |
October 2020 | Total | 26.1 (±3.1) A | 20.2 (±2.5) B | 6.9 (±3.6) A | 7.9 (±5.2) A | 2.3 (±0.8) CD | 1.7 (±0.9) CD | 278 (±35) C | 276 (±47) C | 143 (±19) C | 181 (±42) AB |
Control | 28.8 (±1.7) a | 20.7 (±2.3) a | 7.1 (±4.0) a | 8.6 (±6.2) a | 2.9 (±0.8) a | 1.9 (±0.8) a | 298 (±27) a | 276 (±31) a | 152 (±12) a | 167 (±33) a | |
Oregano | 25.4 (±3.1) b | 19.7 (±2.5) a | 8.3 (±3.9) a | 6.9 (±3.4) a | 1.8 (±0.6) b | 1.5 (±1.0) a | 287 (±33) a | 266 (±41) a | 140 (±26) a | 182 (±35) a | |
Thyme | 24.0 (±2.1) b | 20.1 (±2.8) a | 5.4 (±2.6) a | 8.1 (±6.1) a | 2.2 (±0.6) ab | 1.7 (±0.9) a | 249 (±26) b | 286 (±66) a | 137 (±16) a | 194 (±53) a |
Indices | Treatment | 2018 | 2019 | 2020 |
---|---|---|---|---|
Crop yield (kg/plant) | Total | 1.6 (±0.5) A | 1.3 (±0.5) A | 1.6 (±0.8) A |
Control | 1.6 (±0.3) a | 1.2 (±0.3) a | 1.8 (±0.9) a | |
Oregano | 1.8 (±0.4) a | 1.3 (±0.4) a | 1.3 (±0.6) a | |
Thyme | 1.4 (±0.6) a | 1.4 (±0.7) a | 1.6 (±1.0) a | |
Crop yield (kg/ha) | Total | 6749 (±536) A | 5393 (±698) B | 6901 (±1118) A |
Control | 6632 (±327) a | 5059 (±1108) a | 7249 (±1105) a | |
Oregano | 7113 (±802) a | 5329 (±244) a | 5952 (±1236) a | |
Thyme | 6501 (±297) a | 5791 (±498) a | 7501 (±426) a | |
Produced clusters (number/plant) | Total | 20.9 (±4.8) AB | 24.5 (±5.8) A | 18.2 (±7.8) B |
Control | 22.2 (±5.3) a | 23.7 (±5.2) a | 20.0 (±5.2) a | |
Oregano | 22.4 (±3.7) a | 25.1 (±7.0) a | 13.5 (±6.7) a | |
Thyme | 18.1 (±4.2) a | 24.7 (±5.9) a | 19.6 (±9.9) a | |
Cluster weight (g) | Total | 94B (±20) B | 75 (±21) C | 111 (±32) A |
Control | 89 (±22) a | 77 (±22) a | 107 (±36) a | |
Oregano | 96 (±23) a | 72 (±21) a | 114 (±18) a | |
Thyme | 96 (±15) a | 75 (±21) a | 112 (±41) a | |
Juice pH | Total | 2.9 (±0.05) C | 3.3 (±0.12) A | 3.2 (±0.10) B |
Control | 2.8 (±0.06) a | 3.3 (±0.20) a | 3.1 (±0.10) a | |
Oregano | 2.9 (±0.05) a | 3.2 (±0.05) a | 3.1 (±0.09) a | |
Thyme | 2.9 (±0.04) a | 3.2 (±0.04) a | 3.2 (±0.11) a | |
Titratable acidity (g/L) | Total | 9.0 (±0.7) A | 7.8 (±0.5) B | 9.2 (±1.4) A |
Control | 9.3 (±0.7) a | 7.3 (±0.2) b | 9.5 (±1.9) a | |
Oregano | 9.0 (±0.6) a | 8.0 (±0.4) a | 8.7 (±0.7) a | |
Thyme | 8.6 (±0.5) a | 8.0 (±0.4) a | 9.4 (±1.3) a | |
Total soluble solids (°Brix) | Total | 21.4 (±1.3) A | 22.1 (±1.5) A | 19.3 (±1.6) B |
Control | 20.9 (±1.7) a | 22.2 (±1.2) a | 18.7 (±1.2) a | |
Oregano | 21.7 (±1.1) a | 22.3 (±2.2) a | 20.1 (±2.2) a | |
Thyme | 21.5 (±1.2) a | 21.9 (±0.9) a | 19.2 (±1.0) a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dittrich, F.; Iserloh, T.; Treseler, C.-H.; Hüppi, R.; Ogan, S.; Seeger, M.; Thiele-Bruhn, S. Crop Diversification in Viticulture with Aromatic Plants: Effects of Intercropping on Grapevine Productivity in a Steep-Slope Vineyard in the Mosel Area, Germany. Agriculture 2021, 11, 95. https://doi.org/10.3390/agriculture11020095
Dittrich F, Iserloh T, Treseler C-H, Hüppi R, Ogan S, Seeger M, Thiele-Bruhn S. Crop Diversification in Viticulture with Aromatic Plants: Effects of Intercropping on Grapevine Productivity in a Steep-Slope Vineyard in the Mosel Area, Germany. Agriculture. 2021; 11(2):95. https://doi.org/10.3390/agriculture11020095
Chicago/Turabian StyleDittrich, Felix, Thomas Iserloh, Cord-Henrich Treseler, Roman Hüppi, Sophie Ogan, Manuel Seeger, and Sören Thiele-Bruhn. 2021. "Crop Diversification in Viticulture with Aromatic Plants: Effects of Intercropping on Grapevine Productivity in a Steep-Slope Vineyard in the Mosel Area, Germany" Agriculture 11, no. 2: 95. https://doi.org/10.3390/agriculture11020095
APA StyleDittrich, F., Iserloh, T., Treseler, C. -H., Hüppi, R., Ogan, S., Seeger, M., & Thiele-Bruhn, S. (2021). Crop Diversification in Viticulture with Aromatic Plants: Effects of Intercropping on Grapevine Productivity in a Steep-Slope Vineyard in the Mosel Area, Germany. Agriculture, 11(2), 95. https://doi.org/10.3390/agriculture11020095