Potassium and Nitrogen Fertilization vs. Trace Element Content of Maize (Zea mays L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodological Design
2.2. Methods of Plant and Soil Analyses
2.3. Methods of Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Njira, K.O.W.; Nabwami, J. A review of effects of nutrient elements on crop quality. Afr. J. Food Agric. Nutr. Dev. 2015, 15, 9777–9793. Available online: https://www.ajol.info/index.php/ajfand/article/view/113419/103140 (accessed on 14 October 2020).
- Kosiorek, M.; Wyszkowski, M. Remediation of cobalt-contaminated soil using manure, clay, charcoal, zeolite, calcium oxide, main crop (Hordeum vulgare L.), and after-crop (Synapis alba L.). Minerals 2020, 10, 429. [Google Scholar] [CrossRef]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Aladesanmi, O.T.; Oroboade, J.G.; Osisiogu, C.P.; Osewole, A.O. Bioaccumulation factor of selected heavy metals in Zea mays. J. Health Pollut. 2019, 9, 191207. Available online: https://www.journalhealthpollution.org/doi/pdf/10.5696/2156-9614-9.24.191207 (accessed on 19 October 2020). [PubMed]
- Wang, Y.; Qiao, M.; Liu, Y.; Zhu, Y. Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing-Tianjin city cluster, China. J. Environ. Sci. 2012, 24, 690–698. [Google Scholar] [CrossRef]
- Osakwe, S.A.; Akpoveta, O.V.; Okoh, B.E.; Ize-Iyamu, O.K. Chemical forms of heavy metals in soils around municipal waste dumpsites in Asaba Metropolis, Delta State, Nigeria. Chem. Spec. Bioavailab. 2012, 24, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Wyszkowski, M.; Brodowska, M.S. Content of trace elements in soil fertilized with potassium and nitrogen. Agriculture 2020, 10, 398. [Google Scholar] [CrossRef]
- Regulation (EC) No 2003/2003 of the European Parliament and of the Council of 13 October 2003 relating to fertilizers. Off. J. L 2003, 304, 1–194.
- Jordao, C.P.; Nascentes, C.C.; Cecon, P.R.; Fontes, R.L.; Pereira, J.L. Heavy metal availability in soil amended with composted urban solid wastes. Environ. Monit. Assess. 2006, 112, 309–326. [Google Scholar] [CrossRef]
- Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011; p. 403. Available online: http://base.dnsgb.com.ua/files/book/Agriculture/Soil/Trace-Elements-in-Soils-and-Plants.pdf (accessed on 2 October 2020).
- Perilli, P.; Mitchell, L.G.; Grant, C.A.; Pisante, M. Cadmium concentration in durum wheat grain (Triticum turgidum) as influenced by nitrogen rate, seeding date and soil type. J. Sci. Food Agric. 2010, 90, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Cazzato, E.; Laudadio, V.; Tufarelli, V. Effects of harvest period, nitrogen fertilization and mycorrhizal fungus inoculation on triticale (×Triticosecale Wittmack) forage yield and quality. Renew. Agric. Food Syst. 2012, 27, 278–286. [Google Scholar] [CrossRef]
- Strachel, R.; Wyszkowska, J.; Baćmaga, M. The effect of nitrogen on the microbiological and biochemical properties of zinc-contaminated soil. J. Environ. Eng. Landsc. Manag. 2017, 25, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.-Y.; Zeng, X.-B.; Li, L.-F.; Pen, C.; Li, S.-H. Effects of land use on heavy metal accumulation in soils and sources analysis. Agric. Sci. China 2010, 9, 1650–1658. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Li, X.; Li, J. Heavy metal contamination of agricultural soils in Taiyuan, China. Pedosphere 2015, 25, 901–909. [Google Scholar] [CrossRef]
- Czarnecki, S.; Düring, R.-A. Influence of long-term mineral fertilization on metal contents and properties of soil samples taken from different locations in Hesse, Germany. Soil 2015, 1, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Ajayi, S.O.; Odesanya, B.O.; Avwioroko, A.O.; Adebambo, G.S.; Okafor, B. Effects of long term fertilizer use on trace metal levels of soils in a farm settlement. J. Agricult. Res. Develop. 2012, 2, 44–51. [Google Scholar]
- Miner, G.L.; Delgado, J.A.; Ippolito, J.A.; Barbarick, K.A.; Stewart, C.E.; Manter, D.K.; Del Grosso, S.J.; Halvorson, A.D.; Floyd, B.A.; D’Adamo, R. Influence of long-term nitrogen fertilization on crop and soil micronutrients in a no-till maize cropping system. Field Crops Res. 2018, 228, 170–182. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference base for soil resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; WRB: London, UK, 2014; Volume 106, p. 182. [Google Scholar]
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods for Analysis and Evaluation of Soil and Plant Properties; IOŚ: Warszawa, Poland, 1991; pp. 1–334. (In Polish) [Google Scholar]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals-concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- PN-R-04032. Soil and Mineral Materials—Sampling and Determination of Particle Size Distribution; Polish Committee for Standardization: Warszawa, Poland, 1998. [Google Scholar]
- ISO 10390. Soil Quality—Determination of Ph; International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- ISO 11261. Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method; International Organization for Standardization: Geneva, Switzerland, 1995. [Google Scholar]
- Egner, H.; Riehm, H.; Domingo, W.R. Untersuchun-gen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extractionsmethoden zur Phospor- und Kaliumbestimmung. Ann. R. Agric. Coll. Sweden 1960, 26, 199–215. [Google Scholar]
- Schlichting, E.; Blume, H.P.; Stahr, K. Bodenkundliches Praktikum; Pareys Studientexte 81; Blackwell Wissenschafts-Verlag: Berlin, Germany, 1995; p. 81. [Google Scholar]
- Boratyński, K.; Grom, A.; Ziętecka, M. Research on the content of sulfur in soil. Part I. Rocz. Gleboz. 1975, 3, 121–139. [Google Scholar]
- Dell Inc. Dell Statistica (Data Analysis Software System). Version 13. 2016. Available online: http://software.dell.com (accessed on 29 September 2020).
- Leah, T. Effects of long-term application of fertilizers on the trace element content of soils. In Soil as World Heritage; Dent, D., Ed.; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Lasat, M.M. Phytoextraction of metals from contaminated soil: A review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J. Hazard. Subst. Res. 1999, 2, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.H.P.; Jarvis, S.C. The fate of heavy metals. In The Chemistry of Soil Processes; Green, D.J., Hayes, M.H.B., Eds.; John Wiley and Sons: New York, NY, USA, 1981; p. 593. [Google Scholar]
- Kacálková, L.; Tlustoš, P.; Száková, J. Chromium, nickel, cadmium, and lead accumulation in maize, sunflower, willow, and poplar. Pol. J. Environ. Stud. 2014, 23, 753–761. [Google Scholar]
- Ali, N.S.; Hassan, W.F.; Janno, F.O. Soil iron and nitrogen availability and their uptake by maize plants as related to mineral and bio nitrogen fertilizers application. Agric. Biol. J. North Am. 2015, 6, 118–122. [Google Scholar] [CrossRef]
- Losak, T.; Hlusek, J.; Martinec, J.; Jandak, J.; Szostkova, M.; Filipcik, R.; Manasek, J.; Prokes, K.; Peterka, J.; Varga, L.; et al. Nitrogen fertilization does not affect micronutrient uptake in grain maize (Zea mays L.). Acta Agric. Scand. B Soil Plant Sci. 2011, 61, 543–550. [Google Scholar] [CrossRef]
- Martínez-Trujillo, M.; Carreón-Abud, Y. Effect of mineral nutrients on the uptake of Cr(VI) by maize plants. New Biotechnol. 2015, 32, 396–402. [Google Scholar] [CrossRef]
- Li, X.; Ziadi, N.; Bélanger, G.; Cai, Z.; Xu, H. Cadmium accumulation in wheat grain as affected by mineral N fertilizer and soil characteristics. Can. J. Soil Sci. 2011, 91, 521–531. [Google Scholar] [CrossRef] [Green Version]
- Wångstrand, H.; Eriksson, J.; Öborn, I. Cadmium concentration in winter wheat as affected by nitrogen fertilization. Eur. J. Agron. 2007, 26, 209–214. [Google Scholar] [CrossRef]
- Carbonell, G.; de Imperial, R.M.; Torrijos, M.; Delgado, M.; Rodriguez, J.A. Effects of municipal solid waste compost and mineral fertilizer amendments on soil properties and heavy metals distribution in maize plants (Zea mays L.). Chemosphere 2011, 85, 1614–1623. [Google Scholar] [CrossRef]
- Pogrzeba, M.; Rusinowski, S.Z.; Sitko, K.; Krzyżak, J.; Skalska, A.; Małkowski, E.; Ciszek, D.; Werle, S.; McCalmont, J.P.; Mos, M.; et al. Relationships between soil parameters and physiological status of Miscanthus × giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation. Environ. Pollut. 2017, 225, 163–174. [Google Scholar] [CrossRef]
- Brodowska, M.S.; Kurzyna-Szklarek, M.; Filipek, T. Evaluation of the content of selected heavy metals in products of plant origin as a result of differentiated ratios of fertilizers. J. Elem. 2018, 23, 757–766. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaj, R.; Bąk, K.; Budka, A. Copper and manganese acquisition in maize (Zea mays L) under different P and K fertilization. Biometr. Lett. 2016, 53, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wu, W.; Liu, F.; Liao, R.; Hu, Y. Accumulation of heavy metals in soil-crop systems: A review for wheat and corn. Environ. Sci. Pollut. Res. 2017, 24, 15209–15225. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, P.; McBride, M.B.; Xia, H.P.; Li, N.Y.; Li, Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan Mine, South China. Sci. Total Environ. 2009, 407, 1551–1561. [Google Scholar] [CrossRef]
- Molina, M.; Escudey, M.; Chang, A.C.; Chen, W.; Arancibia-Miranda, N. Trace element uptake dynamics for maize (Zea mays L.) grown under field conditions. Plant Soil 2013, 370, 471–483. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Chi, Y.; Chu, S.; Hayat, K.; Zhi, Y.; Hayat, S.; Terziev, D.; Zhang, D.; Zhou, P. Optimization of NPK fertilization combined with phytoremediation of cadmium contaminated soil by orthogonal experiment. Ecotoxicol. Environ. Saf. 2020, 189, 109997. [Google Scholar] [CrossRef]
Potassium Dose (mg per kg of Soil) | Trace Elements | |||
---|---|---|---|---|
Cd | Pb | Cr | Co | |
Low-Nitrogen Dose (130 mg per kg of soil) | ||||
0 | 0.036 d | 0.163 a | 0.167 a | 0.085 d |
140 | 0.043 bc | 0.177 a | 0.248 a | 0.113 b |
190 | 0.044 c | 0.202 a | 0.241 a | 0.150 a |
240 | 0.047 c | 0.227 a | 0.201 a | 0.125 b |
Average | 0.042 | 0.192 | 0.214 | 0.118 |
r | 0.988 ** | 0.921 ** | 0.569 * | 0.824 ** |
High-Nitrogen Dose (170 mg per kg of soil) | ||||
0 | 0.019 a | 0.113 a | 0.243 a | 0.042 c |
140 | 0.035 e | 0.113 a | 0.231 a | 0.059 ce |
190 | 0.035 e | 0.115 a | 0.216 a | 0.075 de |
240 | 0.037 bd | 0.143 a | 0.164 a | 0.072 de |
Average | 0.031 | 0.121 | 0.213 | 0.062 |
r | 0.953 ** | 0.671 * | -0.834 ** | 0.952 ** |
Average | ||||
0 | 0.027 | 0.138 | 0.205 | 0.063 |
140 | 0.039 | 0.145 | 0.239 | 0.086 |
190 | 0.039 | 0.159 | 0.228 | 0.113 |
240 | 0.042 | 0.185 | 0.183 | 0.098 |
Average | 0.037 | 0.156 | 0.214 | 0.090 |
r | 0.974 ** | 0.864 ** | −0.147 | 0.879 ** |
LSD for | ||||
Nitrogen dose | 0.001 ** | n.s. | n.s. | 0.005 ** |
Potassium dose | 0.002 ** | n.s. | n.s. | 0.007 ** |
Interaction | 0.003 ** | n.s. | n.s. | 0.010 ** |
Potassium Dose (mg per kg of Soil) | Trace Elements | ||||
---|---|---|---|---|---|
Ni | Zn | Cu | Mn | Fe | |
Low-Nitrogen Dose (130 mg per kg of soil) | |||||
0 | 0.285 ab | 6.80 b | 0.324 a | 9.06 b | 15.29 b |
140 | 0.381 ab | 8.11 b | 0.388 a | 16.92 de | 21.30 bd |
190 | 0.410 b | 10.30 ab | 0.479 a | 16.95 de | 29.06 cd |
240 | 0.421 b | 13.06 a | 0.389 a | 22.60 ce | 19.51 bd |
Average | 0.374 | 9.57 | 0.395 | 16.38 | 21.29 |
r | 0.988 ** | 0.910 ** | 0.682 * | 0.970 ** | 0.588 * |
High-Nitrogen Dose (170 mg per kg of soil) | |||||
0 | 0.216 a | 7.01 b | 0.466 a | 11.83 bd | 28.52 cd |
140 | 0.279 ab | 9.02 ab | 0.492 a | 17.94 ce | 35.98 ac |
190 | 0.290 ab | 10.84 ab | 0.389 a | 23.78 ac | 34.62 ac |
240 | 0.302 ab | 12.18 a | 0.233 a | 28.98 a | 42.25 a |
Average | 0.272 | 9.76 | 0.395 | 20.63 | 35.34 |
r | 0.987 ** | 0.977 ** | −0.732 ** | 0.969 ** | 0.921 ** |
Average | |||||
0 | 0.250 | 6.90 | 0.395 | 10.45 | 21.90 |
140 | 0.330 | 8.56 | 0.440 | 17.43 | 28.64 |
190 | 0.350 | 10.57 | 0.434 | 20.36 | 31.84 |
240 | 0.361 | 12.62 | 0.311 | 25.79 | 30.88 |
Average | 0.323 | 9.66 | 0.395 | 18.51 | 28.31 |
r | 0.988 ** | 0.947 ** | −0.351 | 0.983 ** | 0.957 ** |
LSD for: | |||||
Nitrogen dose | 0.049 ** | n.s. | n.s. | 1.29 ** | 2.79 ** |
Potassium dose | 0.069 ** | 1.25 ** | 0.119 ** | 1.82 ** | 3.95 ** |
Interaction | n.s. | n.s. | n.s. | 2.58 ** | 5.58 ** |
Trace Element | Cd | Pb | Cr | Co | Ni | Zn | Cu | Mn |
---|---|---|---|---|---|---|---|---|
Pb | 0.484 * | |||||||
Cr | −0.075 | −0.035 | ||||||
Co | 0.851 ** | 0.601 ** | 0.127 | |||||
Ni | 0.843 ** | 0.501 ** | 0.006 | 0.860 ** | ||||
Zn | 0.521 ** | 0.192 | −0.247 | 0.349 | 0.457 * | |||
Cu | −0.100 | −0.087 | 0.762 ** | 0.068 | −0.107 | −0.295 | ||
Mn | 0.335 | 0.057 | −0.218 | 0.073 | 0.244 | 0.868 ** | −0.396 | |
Fe | −0.278 | −0.343 | −0.047 | −0.389 | −0.281 | 0.344 | −0.088 | 0.629 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyszkowski, M.; Brodowska, M.S. Potassium and Nitrogen Fertilization vs. Trace Element Content of Maize (Zea mays L.). Agriculture 2021, 11, 96. https://doi.org/10.3390/agriculture11020096
Wyszkowski M, Brodowska MS. Potassium and Nitrogen Fertilization vs. Trace Element Content of Maize (Zea mays L.). Agriculture. 2021; 11(2):96. https://doi.org/10.3390/agriculture11020096
Chicago/Turabian StyleWyszkowski, Mirosław, and Marzena S. Brodowska. 2021. "Potassium and Nitrogen Fertilization vs. Trace Element Content of Maize (Zea mays L.)" Agriculture 11, no. 2: 96. https://doi.org/10.3390/agriculture11020096
APA StyleWyszkowski, M., & Brodowska, M. S. (2021). Potassium and Nitrogen Fertilization vs. Trace Element Content of Maize (Zea mays L.). Agriculture, 11(2), 96. https://doi.org/10.3390/agriculture11020096