A Review of Representative Methods Used in Wine Authentication
Abstract
:1. Introduction
2. Methods in Wine Authenticity
2.1. Mineral Analysis as a Method of Wine Authentication
2.2. Organic Profiles as a Method of Wine Authentication (Phenolic Compounds, Amino Acids and Volatiles)
2.2.1. Phenolic Compounds
2.2.2. Amino Acids
2.2.3. Volatiles
2.3. Isotopic Ratios in Wine Authenticity
2.4. DNA Analyses: Variety Authentication
2.5. Others Techniques and Analytical Methods for Wine Authenticity
2.5.1. Capillary Electrophoresis
2.5.2. Sensorial Analysis (e-Tongue, e-Nose)
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wurz, D. Wine and health: A review of its benefits to human health. BIO Web Conf. 2019, 12, 04001. [Google Scholar] [CrossRef]
- Verbeke, W. Agriculture and the food industry in the information age. Eur. Rev. Agric. Econ. 2005, 32, 347–368. [Google Scholar] [CrossRef]
- Pereira, L.; Gomes, S.; Barrias, S.; Fernandes, J.R.; Martins-Lopes, P. Applying high-resolution melting (HRM) technology to olive oil and wine authenticity. Food Res. Int. 2018, 103, 170–181. [Google Scholar] [CrossRef]
- Pop, C. Managementul Calității; Tipo Moldova: Iasi, Romania, 2009; pp. 296–302. ISBN 978-973-168-023-1. [Google Scholar]
- Tesfaye, W.; Morales, M.; García-Parrilla, M.; Troncoso, A. Wine vinegar: Technology, authenticity and quality evaluation. Trends Food Sci. Technol. 2002, 13, 12–21. [Google Scholar] [CrossRef]
- Fuhrman, B.; Volkova, N.; Coleman, R.; Aviram, M. Grape Powder Polyphenols Attenuate Atherosclerosis Development in Apolipoprotein E Deficient (E0) Mice and Reduce Macrophage Atherogenicity. J. Nutr. 2005, 135, 722–728. [Google Scholar] [CrossRef] [Green Version]
- Moret, I.; Scarponi, G.; Cescon, P. Chemometric Characterization and Classification of Five Venetian White Wines. J. Agric. Food Chem. 1994, 42, 1143–1153. [Google Scholar] [CrossRef]
- Holmberg, L. Wine Fraud. Int. J. Wine Res. 2010, 2, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Cuadros-Inostroza, A.; Giavalisco, P.; Hummel, J.; Eckardt, A.; Willmitzer, L.; Peña-Cortés, H. Discrimination of Wine Attributes by Metabolome Analysis. Anal. Chem. 2010, 82, 3573–3580. [Google Scholar] [CrossRef] [PubMed]
- Smajlovic, I.; Wang, D.; Túri, M.; Qiding, Z.; Futó, I.; Veres, M.; Sparks, K.; Sparks, J.; Jakšić, D.; Vuković, A.; et al. Quantitative analysis and detection of chaptalization and watering down of wine using isotope ratio mass spectrometry. BIO Web Conf. 2019, 15, 02007. [Google Scholar] [CrossRef]
- The OIV: A Technical Reference in New Chilean Regulations. Available online: https://www.oiv.int/en/oiv-life/the-oiv-a-technical-reference-in-new-chilean-regulations (accessed on 26 February 2021).
- Galletto, L.; Caracciolo, F.; Boatto, V.; Barisan, L.; Franceschi, D.; Lillo, M. Do consumers really recognise a distinct quality hierarchy amongst PDO sparkling wines? The answer from experimental auctions. Br. Food J. 2020, 123, 1478–1493. [Google Scholar] [CrossRef]
- Chandra, S.; Chapman, J.; Power, A.; Roberts, J.; Cozzolino, D. Origin and Regionality of Wines—The Role of Molecular Spectroscopy. Food Anal. Methods 2017, 10, 3947–3955. [Google Scholar] [CrossRef]
- Caracciolo, F.; D’Amico, M.; Di Vita, G.; Pomarici, E.; Dal Bianco, A.; Cembalo, L. Private vs. Collective Wine Reputation. Int. Food Agribus. Manag. Rev. 2016, 19, 191–210. [Google Scholar] [CrossRef]
- Bianco, A.D.; Boatto, V.; Trestini, S.; Caracciolo, F. Understanding consumption choice of prosecco wine: An empirical analysis using Italian and German Homescan data. J. Wine Res. 2018, 29, 190–203. [Google Scholar] [CrossRef] [Green Version]
- Arvanitoyannis, I. Wine authenticity, traceability and safety monitoring. In Managing Wine Quality; Elsevier: Amsterdam, The Netherlands, 2010; pp. 218–270. [Google Scholar]
- Guerrero, M.I.; Herce-Pagliai, C.; Camean, A.M.; Troncoso, A.M.; Gonzalez, A.G. Multivariate characterization of wine vinegars from the south of Spain according to their metallic content. Talanta 1997, 45, 379–386. [Google Scholar] [CrossRef]
- Zoecklein, B.W.; Fugelsang, K.C.; Gump, B.H.; Nury, F.S. Wine Analysis and Production; Chapman and Hall: New York, NY, USA, 1994. [Google Scholar]
- Pérez-Trujillo, J.-P.; Barbaste, M.; Médina, B. Chemometric Study of Bottled Wines with Denomination of Origin from the Canary Islands (Spain) Based on Ultra-Trace Elemental Content Determined by ICP-MS. Anal. Lett. 2003, 36, 679–697. [Google Scholar] [CrossRef]
- Pazourek, J.; González, G.; Revilla, A.L.; Havel, J. Separation of polyphenols in Canary Islands wine by capillary zone electrophoresis without preconcentration. J. Chromatogr. A 2000, 874, 111–119. [Google Scholar] [CrossRef]
- Galaninikolakaki, S.M.; Kallithrakas-Kontos, N.; Katsanos, A. Trace element analysis of Cretan wines and wine products. Sci. Total. Environ. 2002, 285, 155–163. [Google Scholar] [CrossRef]
- Frías, S. Classification of commercial wines from the Canary Islands (Spain) by chemometric techniques using metallic contents. Talanta 2003, 59, 335–344. [Google Scholar] [CrossRef]
- Suhaj, M.; Korenovská, M. Application of Elemental Analysis for Identification of Wine Origin: A Review. Acta Aliment. 2005, 34, 393–401. [Google Scholar] [CrossRef]
- Geana, I.; Iordache, A.; Ionete, R.; Marinescu, A.; Ranca, A.; Culea, M. Geographical origin identification of Romanian wines by ICP-MS elemental analysis. Food Chem. 2013, 138, 1125–1134. [Google Scholar] [CrossRef]
- Rodrigues, N.P.; Rodrigues, E.; Celso, P.G.; Kahmann, A.; Yamashita, G.H.; Anzanello, M.J.; Manfroi, V.; Hertz, P.F. Discrimination of sparkling wines samples according to the country of origin by ICP-OES coupled with multivariate analysis. LWT 2020, 131, 109760. [Google Scholar] [CrossRef]
- Díaz, C.; Conde, J.E.; Estévez, D.; Olivero, S.J.P.; Trujillo, J.P.P. Application of Multivariate Analysis and Artificial Neural Networks for the Differentiation of Red Wines from the Canary Islands According to the Island of Origin. J. Agric. Food Chem. 2003, 51, 4303–4307. [Google Scholar] [CrossRef]
- Cozzolino, D.M.J.; Kwiatkowski, R.G.; Dambergs, W.U.; Cynkar, L.J.; Janik, G. Analysis of Elements in Wine using near Infrared Spectroscopy and Partial Least Squares Regression. Talanta 2008, 74, 711–716. [Google Scholar] [CrossRef]
- Martin, A.E.; Watling, R.J.; Lee, G.S. The multi-element determination and regional discrimination of Australian wines. Food Chem. 2012, 133, 1081–1089. [Google Scholar] [CrossRef]
- Durdic, S.; Pantelić, M.; Trifković, J.; Vukojević, V.; Natić, M.; Tešić, Ž. Elemental Composition as a Tool for the Assessment of Type, Seasonal Variability, and Geographical Origin of Wine and its Contribution to Daily Elemental Intake. RSC Adv. 2017, 7, 2151–2162. [Google Scholar] [CrossRef] [Green Version]
- Gerard, J.M. The use of trace element data to complement stable isotope methods in the characterization of grape musts. Am. J. Enol. Vitic. 1994, 45, 79–85. [Google Scholar]
- Latorre, J.M.; Garcia-Jares, C.; Medina, B.; Carlos, H. Pattern Recognition Analysis Applied to Classification of Wines from Galicia (Northwestern Spain) with Certified Brand of Origin. J. Agric. Food Chem. 1994, 42, 1451–1455. [Google Scholar] [CrossRef]
- Baxter, J.; Malcolm, H.; Crews, M.J.D.; Anderson, D. The Determination of the Authenticity of Wine from Its Trace Element Composition. Food Chem. 1997, 60, 443–450. [Google Scholar] [CrossRef]
- Marengo, E.; Aceto, M. Statistical Investigation of the Differences in the Distribution of Metals in Nebbiolo-Based Wines. Food Chem. 2003, 81, 621–630. [Google Scholar] [CrossRef]
- Thiel, G.; Geisler, G.; Blechschmidt, I.; Danzer, K. Determination of Trace Elements in Wines and Classification According to their Provenance. Anal. Bioanal. Chem. 2004, 378, 1630–1636. [Google Scholar] [CrossRef] [PubMed]
- Castiñeira, M.D.M.; Feldmann, I.; Jakubowski, N.; Andersson, J.T. Classification of German White Wines with Certified Brand of Origin by Multielement Quantitation and Pattern Recognition Techniques. J. Agric. Food Chem. 2004, 52, 2962–2974. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, P.; Francois, P.E.; Steffens, R.; Eiselen, O.; Augustyn, L.B.; Vanhaecke, F. Multi-Element Analysis of South African Wines by ICP−MS and their Classification According to Geographical Origin. J. Agric. Food Chem. 2005, 53, 5060–5066. [Google Scholar] [CrossRef] [PubMed]
- Jos, A.; Moreno, I.; Gonzalez, A.G.; Repetto, G.; Cameán, A. Differentiation of sparkling wines (cava and champagne) according to their mineral content. Talanta 2004, 63, 377–382. [Google Scholar] [CrossRef]
- Capron, X.; Smeyersverbeke, J.; Massart, D. Multivariate determination of the geographical origin of wines from four different countries. Food Chem. 2007, 101, 1585–1597. [Google Scholar] [CrossRef]
- Álvarez, M.; Isabel, M.; Moreno, Á.J.; González, A.G. Differentiation of two Andalusian DO “Fino” Wines According to their Metal Content from ICP-OES by using Supervised Pattern Recognition Methods. Microchem. J. 2007, 87, 72–76. [Google Scholar] [CrossRef]
- Versari, A.; Laurie, V.F.; Ricci, A.; Laghi, L.; Parpinello, G.P. Progress in Authentication, Typification and Traceability of Grapes and Wines by Chemometric Approaches. Food Res. Int. 2014, 60, 2–18. [Google Scholar] [CrossRef]
- Angus, N.S.; O’Keeffe, T.J.; Stuart, K.R.; Miskelly, G.M. Regional Classification of New Zealand Red Wines using Inductively-Coupled Plasma-Mass Spectrometry (ICP-MS). Aust. J. Grape Wine Res. 2006, 12, 170–176. [Google Scholar] [CrossRef]
- Galgano, F.; Favati, F.; Caruso, M.C.; Scarpa, T.; Palma, A. Analysis of trace elements in southern Italian wines and their classification according to provenance. LWT 2008, 41, 1808–1815. [Google Scholar] [CrossRef]
- Forina, M.; Oliveri, P.; Jäger, H.; Römisch, U.; Smeyers-Verbeke, J. Class Modeling Techniques in the Control of the Geographical Origin of Wines. Chemom. Intell. Lab. Syst. 2009, 99, 127–137. [Google Scholar] [CrossRef]
- Gonzálvez, A.; Llorens, A.; Cervera, M.; Armenta, S.; De La Guardia, M. Elemental fingerprint of wines from the protected designation of origin Valencia. Food Chem. 2009, 112, 26–34. [Google Scholar] [CrossRef]
- Kment, P.; Mihaljevic, M.; Ettler, V.; Šebek, O.; Strnad, L.; Rohlova, L. Differentiation of Czech wines using multielemental composition—A comparison with vineyard soil. Food Chem. 2005, 91, 157–165. [Google Scholar] [CrossRef]
- Razic, S.; Onjia, A. Trace Element Analysis and Pattern Recognition Techniques in Classification of Wine from Central Balkan Countries. Am. J. Enol. Vitic. 2010, 61, 506–511. [Google Scholar]
- Rodrigues, S.; Otero, M.; André, M.; Alves, A.; Coimbra, J.; Coimbra, M.A.; Pereira, E. Elemental Analysis for Categorization of Wines and Authentication of their Certified Brand of Origin. J. Food Compos. Anal. 2011, 24, 548–562. [Google Scholar] [CrossRef]
- Zou, J.-F.; Peng, Z.-X.; Du, H.-J.; Duan, C.-Q.; Reeves, M.J.; Pan, Q.-H. Elemental Patterns of Wines, Grapes, and Vineyard Soils from Chinese Wine-Producing Regions and their Association. Am. J. Enol. Vitic. 2012, 63, 232–240. [Google Scholar] [CrossRef]
- Iglesias, M.; Besalú, E.; Anticó, E. Internal Standardization−Atomic Spectrometry and Geographical Pattern Recognition Techniques for the Multielement Analysis and Classification of Catalonian Red Wines. J. Agric. Food Chem. 2007, 55, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Sen, I.; Tokatli, F. Characterization and Classification of Turkish Wines Based on Elemental Composition. Am. J. Enol. Vitic. 2013, 65, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Geana, E.I.; Marinescu, A.; Iordache, A.M.; Sandru, C.; Ionete, R.E.; Bala, C. Differentiation of Romanian Wines on Geographical Origin and Wine Variety by Elemental Composition and Phenolic Components. Food Anal. Methods 2014, 7, 2064–2074. [Google Scholar] [CrossRef]
- Coetzee, P.P.; Van Jaarsveld, F.P.; Vanhaecke, F. Intraregional classification of wine via ICP-MS elemental fingerprinting. Food Chem. 2014, 164, 485–492. [Google Scholar] [CrossRef]
- Azcarate, S.M.; Martínez, L.D.; Savio, M.; Camiña, J.M.; Gil, R.A. Classification of monovarietal Argentinean white wines by their elemental profile. Food Control. 2015, 57, 268–274. [Google Scholar] [CrossRef]
- Tian, Y.; Yan, C.; Zhang, T.; Tang, H.; Li, H.; Yu, J.; Bernard, J.; Chen, L.; Martin, S.; Delepine-Gilon, N.; et al. Classification of wines according to their production regions with the contained trace elements using laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2017, 135, 91–101. [Google Scholar] [CrossRef]
- Bocková, J.; Tian, Y.; Yin, H.; Delepine-Gilon, N.; Chen, Y.; Veis, P.; Yu, J. Determination of Metal Elements in Wine using Laser-Induced Breakdown Spectroscopy (LIBS). Appl. Spectrosc. 2017, 71, 1750–1759. [Google Scholar] [CrossRef]
- Pepi, S.; Vaccaro, C. Geochemical Fingerprints of “Prosecco” Wine Based on Major and Trace Elements. Environ. Geochem. Health 2018, 40, 833–847. [Google Scholar] [CrossRef] [PubMed]
- Țârdea, C. Chimia și Analiza Vinului; Ion Ionescu de la Brad: Iasi, Romania, 2007; pp. 263–425. [Google Scholar]
- Merkytė, V.; Longo, E.; Windisch, G.; Boselli, E. Phenolic Compounds as Markers of Wine Quality and Authenticity. Foods 2020, 9, 1785. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Samanidou, V.F. Liquid chromatographic methods coupled to chemometrics: A short review to present the key workflow for the investigation of wine phenolic composition as it is affected by environmental factors. Environ. Sci. Pollut. Res. 2020, 1–15. [Google Scholar] [CrossRef]
- Arozarena, I.; Casp, A.; Marin, R.; Navarro, M. Differentiation of some Spanish wines according to variety and region based on their anthocyanin composition. Eur. Food Res. Technol. 2000, 212, 108–112. [Google Scholar] [CrossRef]
- Duarte-Mermoud, M.; Nicolás, A.; Beltrán, H.; Bustos, M.A. Chilean Wine Varietal Classification using Quadratic Fisher Transformation. Pattern Anal. Appl. 2010, 13, 181–188. [Google Scholar] [CrossRef]
- Mattivi, F.; Guzzon, R.; Vrhovsek, U.; Stefanini, A.M.; Velasco, R. Metabolite Profiling of Grape: Flavonols and Anthocyanins. J. Agric. Food Chem. 2006, 54, 7692–7702. [Google Scholar] [CrossRef] [PubMed]
- González-Neves, G.; Franco, J.; Barreiro, L.; Gil, G.; Moutounet, M.; Carbonneau, A. Varietal differentiation of Tannat, Cabernet-Sauvignon and Merlot grapes and wines according to their anthocyanic composition. Eur. Food Res. Technol. 2007, 225, 111–117. [Google Scholar] [CrossRef]
- Cheng, G.; Zhou, S.-H.; Wen, R.-D.; Xie, T.-L.; Huang, Y.; Yang, Y.; Guan, J.-X.; Xie, L.-J.; Zhang, J. Anthocyanin characteristics of wines in Vitis germplasms cultivated in southern China. Food Sci. Technol. 2017, 38, 513–521. [Google Scholar] [CrossRef] [Green Version]
- Kallithraka, S.; Mamalos, A.; Makris, D.P. Differentiation of young Red Wines Based on Chemo-metrics of Minor Polyphenolic Constituents. J. Agric. Food Chem. 2007, 55, 3233–3239. [Google Scholar] [CrossRef]
- Jaitz, L.; Siegl, K.; Eder, R.; Rak, G.; Abranko, L.; Koellensperger, G.; Hann, S. LC–MS/MS analysis of phenols for classification of red wine according to geographic origin, grape variety and vintage. Food Chem. 2010, 122, 366–372. [Google Scholar] [CrossRef]
- Vergara, C.; Von Baer, D.; Mardones, C.; Gutiérrez, L.; Hermosín-Gutiérrez, I.; Castillo-Muñoz, N. Flavonol profiles for varietal differentiation between carménère and merlot wines produced in Chile: HPLC and chemometric analysis. J. Chil. Chem. Soc. 2011, 56, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Lourido, D.; Saurina, J.; Hernández-Cassou, S.; Checa, A. Classification and Characterisation of Spanish Red Wines According to their Appellation of Origin Based on Chromatographic Profiles and Chemometric Data Analysis. Food Chem. 2012, 135, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- Pavloušek, P.; Kumšta, M. Authentication of Riesling wines from the Czech Republic on the basis of the nonflavonoid phenolic compounds. Czech J. Food Sci. 2013, 31, 474–482. [Google Scholar] [CrossRef] [Green Version]
- De Andrade, R.H.S.; Nascimento, L.S.D.; Pereira, G.E.; Hallwass, F.; Paim, A.P.S. Anthocyanic composition of Brazilian red wines and use of HPLC-UV–Vis associated to chemometrics to distinguish wines from different regions. Microchem. J. 2013, 110, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Pisano, P.L.; Silva, M.F.; Olivieri, A.C. Anthocyanins as Markers for the Classification of Argentinean Wines According to Botanical and Geographical Origin. Chemometric Modeling of Liquid Chromatography–Mass Spectrometry Data. Food Chem. 2015, 175, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Belmiro, T.M.C.; Pereira, C.F.; Paim, A.P.S. Red wines from South America: Content of phenolic compounds and chemometric distinction by origin. Microchem. J. 2017, 133, 114–120. [Google Scholar] [CrossRef]
- Muccillo, L.; Gambuti, A.; Frusciante, L.; Iorizzo, M.; Moio, L.; Raieta, K.; Rinaldi, A.; Colantuoni, V.; Aversano, R. Biochemical features of native red wines and genetic diversity of the corresponding grape varieties from Campania region. Food Chem. 2014, 143, 506–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, I.; Tokatli, F. Authenticity of wines made with economically important grape varieties grown in Anatolia by their phenolic profiles. Food Control. 2014, 46, 446–454. [Google Scholar] [CrossRef] [Green Version]
- Ragone, R.; Crupi, P.; Piccinonna, S.; Bergamini, C.; Mazzone, F.; Fanizzi, F.P.; Schena, F.P.; Antonacci, D. Classification and chemometric study of Southern Italy monovarietal wines based on NMR and HPLC-DAD-MS. Food Sci. Biotechnol. 2015, 24, 817–826. [Google Scholar] [CrossRef]
- Geana, E.I.; Popescu, R.; Costinel, D.; Dinca, O.R.; Stefanescu, I.; Ionete, R.E. Verifying the Red Wines Adulteration through Isotopic and Chromatographic Investigations Coupled with Multivariate Statistic Interpretation of the Data. Food Control 2016, 62, 1–9. [Google Scholar] [CrossRef]
- Villano, C.; Lisanti, M.T.; Gambuti, A.; Vecchio, R.; Moio, L.; Frusciante, L.; Aversano, R.; Carputo, D. Wine varietal authentication based on phenolics, volatiles and DNA markers: State of the art, perspectives and drawbacks. Food Control. 2017, 80, 1–10. [Google Scholar] [CrossRef]
- Zhi, L.; Wu, H.-L.; Xie, L.-X.; Hu, Y.; Fang, H.; Sun, X.-D. Direct and Interference-Free Determination of Thirteen Phenolic Compounds in Red Wines using a Chemometrics-Assisted HPLC-DAD Strategy for Authentication of Vintage Year. Anal. Methods 2017, 9, 3361–3774. [Google Scholar]
- Galgano, F.; Caruso, M.C.; Perretti, G.; Favati, F. Authentication of Italian red wines on the basis of the polyphenols and biogenic amines. Eur. Food Res. Technol. 2011, 232, 889–897. [Google Scholar] [CrossRef]
- Valentin, L.; Barroso, L.P.; Barbosa, R.M.; De Paulo, G.A.; Castro, I.A. Chemical typicality of South American red wines classified according to their volatile and phenolic compounds using multivariate analysis. Food Chem. 2020, 302, 125340. [Google Scholar] [CrossRef]
- Delcambre, A.; Saucier, C. High-Throughput OEnomics: Shotgun Polyphenomics of Wines. Anal. Chem. 2013, 85, 9736–9741. [Google Scholar] [CrossRef]
- Tzachristas, A.; Pasvanka, K.; Calokerinos, A.; Proestos, C. Polyphenols: Natural Antioxidants to be used as a Quality Tool in Wine Authenticity. Appl. Sci. 2020, 10, 5908. [Google Scholar] [CrossRef]
- Pasvanka, K.; Tzachristas, A.; Proestos, C. Quality Tools in Wine Traceability and Authenticity. In Quality Control in the Beverage Industry; Academic Press: Cambridge, MA, USA, 2019; pp. 289–334. [Google Scholar]
- Soufleros, E.; Bouloumpasi, E.; Tsarchopoulos, C.; Biliaderis, C. Primary amino acid profiles of Greek white wines and their use in classification according to variety, origin and vintage. Food Chem. 2003, 80, 261–273. [Google Scholar] [CrossRef]
- Ribereau-Gayon, P.; Maujean, A.; Dubourdieu, D.; Rychlewski, C. The Chemistry of Wine Stabilization and Treatments Handbook of Enology; Johan Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 104–127. [Google Scholar]
- Dourtoglou, V.; Antonopoulos, A.; Dourtoglou, T.; Lalas, S. Discrimination of Varietal Wines According to their Volatiles. Food Chem. 2014, 159, 181–187. [Google Scholar] [CrossRef] [PubMed]
- García-Jares, C.M.; García-Martin, M.S.; Carro-Mariño, N.; Cela-Torrijos, R. GC-MS identification of volatile components of Galician (Northwestern Spain) white wines. Application to differentiate Rías Baixas wines from wines produced in nearby geographical regions. J. Sci. Food Agric. 1995, 69, 175–184. [Google Scholar] [CrossRef]
- Rosillo, L.; Salinas, M.R.; Garijo, J.; Alonso, G.L. Study of the volatiles in grapes by dynamic headspace analysis, application to the differentiation of some Vitis vinifera varieties. J. Chromatogr. A 1999, 847, 155–159. [Google Scholar] [CrossRef]
- Ferreira, V.; Lopez, R.; Cacho, J.F. Quantitative Determination of the Odorants of young Red Wines from Different Grape Varieties. J. Sci. Food Agric. 2000, 9, 1659–1667. [Google Scholar] [CrossRef]
- Rogerson, F.S.S.; Castro, H.; Fortunato, N.; Azevedo, Z.; Macedo, A.; De Freitas, V.A.P. Chemicals with sweet aroma descriptors found in Portuguese wines from the Douro region: 2,6,6-trimethylcyclohex-2-ene-1,4-dione and diacetyl. J. Agric. Food Chem. 2000, 49, 263–269. [Google Scholar] [CrossRef]
- Nasi, A.; Ferranti, P.; Amato, S.; Chianese, L. Identification of free and bound volatile compounds as typicalness and authenticity markers of non-aromatic grapes and wines through a combined use of mass spectrometric techniques. Food Chem. 2008, 110, 762–768. [Google Scholar] [CrossRef]
- Tao, Y.; Li, H.; Wang, H.; Zhang, L. Volatile compounds of young Cabernet Sauvignon red wine from Changli County (China). J. Food Compos. Anal. 2008, 21, 689–694. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, Z. Volatile Compounds of Young Wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay Varieties Grown in the Loess Plateau Region of China. Molecules 2010, 15, 9184–9196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weldegergis, B.T.; De Villiers, A.; Crouch, A.M. Chemometric investigation of the volatile content of young South African wines. Food Chem. 2011, 128, 1100–1109. [Google Scholar] [CrossRef]
- Welke, J.E.; Manfroi, V.; Zanus, M.; Lazzarotto, M.; Zini, C.A. Differentiation of wines according to grape variety using multivariate analysis of comprehensive two-dimensional gas chromatography with time of flight mass spectrometric detection data. Food Chem. 2013, 141, 3897–3905. [Google Scholar] [CrossRef] [Green Version]
- Robinson, A.L.; Adams, D.O.; Boss, P.K.; Heymann, H.; Solomon, P.S.; Trengove, R.D. Influence of Geographic Origin on the Sensory Characteristics and Wine Composition of Vitis vinifera cv. Cabernet Sauvignon Wines from Australia. Am. J. Enol. Vitic. 2012, 63, 467–476. [Google Scholar] [CrossRef]
- Kružlicová, D.; Mocak, J.; Balla, B.; Petka, J.; Farková, M.; Havel, J. Classification of Slovak white wines using artificial neural networks and discriminant techniques. Food Chem. 2009, 112, 1046–1052. [Google Scholar] [CrossRef]
- Conrad, B. Différenciation analytique des vins élevés en fût de chêne et macérés avec des copeaux de chêne. Rev. Suisse Vitic. Arboric. Hortic. 2007, 39, 367–373. [Google Scholar]
- Perestrelo, R.; Barros, J.; Sílvia, M.R. In Depth Search Focused on Furans, Lactones, Volatile Phenols, and Acetals as Potential Age Markers of Madeira Wines by Comprehensive Two-Dimensional Gas Chromatography with Time of Flight Mass Spectrometry Combined with Solid Phase Microextraction. J. Agric. Food Chem. 2011, 59, 3186–3204. [Google Scholar] [CrossRef] [Green Version]
- Fabani, M.P.; Ravera, M.J.; Wunderlin, D.A. Markers of typical red wine varieties from the Valley of Tulum (San Juan-Argentina) based on VOCs profile and chemometrics. Food Chem. 2013, 141, 1055–1062. [Google Scholar] [CrossRef]
- Ziółkowska, A.; Wąsowicz, E.; Henryk, J.H. Differentiation of Wines According to Grape Variety and Geographical Origin Based on Volatiles Profiling using SPME-MS and SPME-GC/MS Methods. Food Chem. 2016, 213, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Palade, M.L.; Duta, D.; Popescu, C.; Popa, M.E. Differentiation of Three Grape Varieties by using Sensory Analysis and Characterization of the Volatile Compounds Profile of their Musts. Rom. Biotechnol. Lett. 2016, 22, 6. [Google Scholar]
- Langen, J.; Wegmann-Herr, P.; Schmarr, H.-G. Quantitative determination of α-ionone, β-ionone, and β-damascenone and enantiodifferentiation of α-ionone in wine for authenticity control using multidimensional gas chromatography with tandem mass spectrometric detection. Anal. Bioanal. Chem. 2016, 408, 6483–6496. [Google Scholar] [CrossRef]
- Granato, D.; Katayama, F.C.U.; De Castro, I.A. Phenolic composition of South American red wines classified according to their antioxidant activity, retail price and sensory quality. Food Chem. 2011, 129, 366–373. [Google Scholar] [CrossRef]
- Sagandykova, G.N.; Alimzhanova, M.B.; Nurzhanova, Y.T.; Kenessov, B. Determination of semi-volatile additives in wines using SPME and GC–MS. Food Chem. 2017, 220, 162–167. [Google Scholar] [CrossRef]
- Scheidegger, Y.; Saurer, M.; Bahn, M.; Siegwolf, R. Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: A conceptual model. Oecologia 2000, 125, 350–357. [Google Scholar] [CrossRef]
- Costinel, D.; Tudorache, A.; Ionete, R.E.; Vremera, R. The Impact of Grape Varieties to Wine Isotopic Characterization. Anal. Lett. 2011, 44, 2856–2864. [Google Scholar] [CrossRef]
- Giosanu, D.; Vijan, L.E.; Costinel, D.; Deliu, I. The Isotopic Analysis—A Good Tool for Verifying the Geographical Origin of Wines. Rev. Chim 2013, 64, 414–416. [Google Scholar]
- Fortunato, G.; Mumic, K.; Wunderli, S.; Pillonel, L.; Bosset, J.O.; Gremaud, G. Application of strontium isotope abundance ratios measured by MC-ICP-MS for food authentication. J. Anal. At. Spectrom. 2004, 19, 227–234. [Google Scholar] [CrossRef]
- Ogrinc, N.; Košir, I.J.; Kocjančič, M.; Kidrič, J. Determination of Authenticy, Regional Origin, and Vintage of Slovenian Wines using a Combination of IRMS and SNIF-NMR Analyses. J. Agric. Food Chem. 2001, 49, 1432–1440. [Google Scholar] [CrossRef] [PubMed]
- Dordevic, N.; Wehrens, R.; Postma, G.; Buydens, L.; Camin, F. Statistical methods for improving verification of claims of origin for Italian wines based on stable isotope ratios. Anal. Chim. Acta 2012, 757, 19–25. [Google Scholar] [CrossRef]
- Dutra, S.; Adami, L.; Marcon, A.; Carnieli, G.; Roani, C.; Spinelli, F.; Leonardelli, S.; Vanderlinde, R. Characterization of wines according the geographical origin by analysis of isotopes and minerals and the influence of harvest on the isotope values. Food Chem. 2013, 141, 2148–2153. [Google Scholar] [CrossRef] [PubMed]
- Monakhova, Y.B.; Godelmann, R.; Hermann, A.; Kuballa, T.; Cannet, C.; Schäfer, H.; Spraul, M.; Rutledge, D.N. Synergistic effect of the simultaneous chemometric analysis of 1H NMR spectroscopic and stable isotope (SNIF-NMR, 18O, 13C) data: Application to wine analysis. Anal. Chim. Acta 2014, 833, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Geană, E.-I.; Sandru, C.; Stanciu, V.; Ionete, R.E. Elemental Profile and 87Sr/86Sr Isotope Ratio as Fingerprints for Geographical Traceability of Wines: An Approach on Romanian Wines. Food Anal. Methods 2017, 10, 63–73. [Google Scholar] [CrossRef]
- Kokkinofta, R.; Fotakis, C.; Zervou, M.; Zoumpoulakis, P.; Savvidou, C.; Poulli, K.; Louka, C.; Economidou, N.; Tzioni, E.; Damianou, K.; et al. Isotopic and Elemental Authenticity Markers: A Case Study on Cypriot Wines. Food Anal. Methods 2017, 10, 3902–3913. [Google Scholar] [CrossRef]
- Smajlović, I.; Sparks, K.; Sparks, J.; Čukalović, I.L.; Jovic, S. Ethanol isotope method (EIM) for uncovering illegal wine. Nat. Prod. Res. 2013, 27, 513–517. [Google Scholar] [CrossRef]
- Epova, E.N.; Bérail, S.; Séby, F.; Vacchina, V.; Bareille, G.; Médina, B. Strontium Elemental and Isotopic Signatures of Bordeaux Wines for Authenticity and Geographical Origin Assessment. Food Chem. 2019, 294, 35–45. [Google Scholar] [CrossRef]
- Epova, E.N.; Bérail, S.; Séby, F.; Barre, P.G.J.; Vacchina, V.; Médina, B. Potential of Lead Elemental and Isotopic Signatures for Authenticity and Geographical Origin of Bordeaux Wines. Food Chem. 2020, 3, 125277. [Google Scholar] [CrossRef]
- Kaya, A.D.; De Sousa, R.B.; Curvelo-Garcia, A.S.; Ricardo-Da-Silva, J.M.; Catarino, S. Effect of Wood Aging on Wine Mineral Composition and 87Sr/86Sr Isotopic Ratio. J. Agric. Food Chem. 2017, 65, 4766–4776. [Google Scholar] [CrossRef] [Green Version]
- Ivlev, V.; Vasil’Ev, V.; Kalabin, G.; Kolesnov, A.; Zenina, M.; Anikina, N.; Gnilomedova, N.; Gerzhikova, V.; Egorov, E.; Guguchkina, T.; et al. New approach for wine authenticity screening by a cumulative 1H and 2H qNMR. BIO Web Conf. 2019, 15, 02022. [Google Scholar] [CrossRef]
- Gougeon, L.; Da Costa, G.; Richard, T.; Guyon, F. Wine Authenticity by Quantitative 1H NMR Versus Multitechnique Analysis: A Case Study. Food Anal. Methods 2019, 12, 956–965. [Google Scholar] [CrossRef]
- Pauli, G.F.; Gödecke, T.; Jaki, B.U.; Lankin, D.C. Quantitative 1 H NMR. Development and Potential of an Analytical Method: An Update. J. Nat. Prod. 2012, 75, 834–851. [Google Scholar] [PubMed] [Green Version]
- Christoph, N.; Hermann, A.; Wachter, H. 25 Years authentication of wine with stable isotope analysis in the European Union—Review and outlook. BIO Web Conf. 2015, 5, 02020. [Google Scholar] [CrossRef] [Green Version]
- Zava, A.; Sebastião, P.J.; Catarino, S. Wine traceability and authenticity: Approaches for geographical origin, variety and vintage assessment. Ciência Técnica Vitivinícola 2020, 35, 133–147. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Trégoat, O.; Choné, X.; Bois, B.; Pernet, D.; Gaudillère, J.-P. Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? OENO One 2009, 43, 121–134. [Google Scholar] [CrossRef]
- Vieira, M.L.C.; Santini, L.; Diniz, A.L.; Munhoz, C.D.F. Microsatellite markers: What they mean and why they are so useful. Genet. Mol. Biol. 2016, 39, 312–328. [Google Scholar] [CrossRef] [PubMed]
- Alzohairy, A.M.; Lau, J. Plant Genetics Biotechnology and Forestry; St. István University: Gödöllő, Hungary, 2016; pp. 5–53. ISBN 978-963-269-580-8. [Google Scholar]
- Siret, R.; Boursiquot, J.M.; Merle, M.H.; Cabanis, J.C.; This, P. Toward the authentication of varietal wines by the analysis of grape (Vitis vinifera L.) residual DNA in must and wine using microsatellite markers. J. Agric. Food Chem. 2000, 48, 5035–5040. [Google Scholar] [CrossRef] [PubMed]
- An, R.; Jia, Y.; Wan, B.; Zhang, Y.; Dong, P.; Li, J.; Liang, X. Non-Enzymatic Depurination of Nucleic Acids: Factors and Mechanisms. PLoS ONE 2014, 9, e115950. [Google Scholar] [CrossRef] [Green Version]
- Ibáñez, E.; Cifuentes, A. New Analytical Techniques in Food Science. Crit. Rev. Food Sci. Nutr. 2001, 41, 413–450. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Guedes-Pinto, H.; Martins-Lopes, P. An Enhanced Method for Vitis vinifera L. DNA Extraction from Wines. Am. J. Enol. Vitic. 2011, 62, 547–552. [Google Scholar] [CrossRef] [Green Version]
- Bigliazzi, J.; Scali, M.; Paolucci, E.; Cresti, M.; Vignani, R. DNA Extracted with Optimized Protocols Can Be Genotyped to Reconstruct the Varietal Composition of Monovarietal Wines. Am. J. Enol. Vitic. 2012, 63, 568–573. [Google Scholar] [CrossRef]
- Boccacci, P.; Akkak, A.; Marinoni, D.T.; Gerbi, V.; Schneider, A. Genetic traceability of Asti Spumante and Moscato D’Asti musts and wines using nuclear and chloroplast microsatellite markers. Eur. Food Res. Technol. 2012, 235, 439–446. [Google Scholar] [CrossRef]
- Hârţa, M.; Pamfil, D.; Pop, R.; Vicaş, S. DNA Fingerprinting Used for Testing Some Romanian Wine Varieties. Bull. UASVM Hortic. 2011, 68, 1. [Google Scholar]
- Savazzini, F.; Martinelli, L. DNA analysis in wines: Development of methods for enhanced extraction and real-time polymerase chain reaction quantification. Anal. Chim. Acta 2006, 563, 274–282. [Google Scholar] [CrossRef]
- Vignani, R.; Liò, P.; Scali, M. How to Integrate Wet Lab and Bioinformatics Procedures for Wine DNA Ad-mixture Analysis and Compositional Profiling: Case Studies and Perspectives’, ed. by Walter Chitarra. PLoS ONE 2019, 14, e0211962. [Google Scholar] [CrossRef] [Green Version]
- García-Beneytez, E.; Moreno-Arribas, M.V.; Borrego, J.; Polo, M.C.; Ibáñez, J. Application of a DNA Analysis Method for the Cultivar Identification of Grape Musts and Experimental and Commercial Wines of Vitis vinifera L. using Microsatellite Markers. J. Agric. Food Chem. 2002, 50, 6090–6096. [Google Scholar] [CrossRef] [PubMed]
- Catalano, V.; Moreno-Sanz, P.; Lorenzi, S.; Grando, M.S. Experimental Review of DNA-Based Methods for Wine Traceability and Development of a Single-Nucleotide Polymorphism (SNP) Genotyping Assay for Quantitative Varietal Authenticatio. J. Agric. Food Chem. 2016, 64, 6969–6984. [Google Scholar] [CrossRef]
- Kvasnička, F. Capillary electrophoresis in food authenticity. J. Sep. Sci. 2005, 28, 813–825. [Google Scholar] [CrossRef]
- Gu, X.; Chu, Q.; O’Dwyer, M.; Zeece, M. Analysis of Resveratrol in Wine by Capillary Electrophoresis. J. Chromatogr. A 2000, 11, 471–481. [Google Scholar] [CrossRef]
- Scampicchio, M.; Wang, J.; Mannino, S.; Chatrathi, M.P. Microchip capillary electrophoresis with amperometric detection for rapid separation and detection of phenolic acids. J. Chromatogr. A 2004, 1049, 189–194. [Google Scholar] [CrossRef]
- Chabreyrie, D.; Chauvet, S.; Guyon, F.; Salagoïty, M.; Antinelli, J.; Medina, B. Characterization and Quantification of Grape Variety by Means of Shikimic Acid Concentration and Protein Fingerprint in Still White Wines. J. Agric. Food Chem. 2008, 56, 6785–6790. [Google Scholar] [CrossRef]
- Moreno-Arribas, M.V.; Cabello, F.; Polo, M.C.; Martín-Alvarez, P.J.; Pueyo, E. Assessment of the native electrophoretic analysis of total grape must proteins for the characterization of Vitis vinifera L. cultivars. J. Agric. Food Chem. 1998, 47, 114–120. [Google Scholar] [CrossRef]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di Natale, C.; D’Amico, A. Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids (IUPAC Technical Report). Pure Appl. Chem. 2005, 77, 1965–1983. [Google Scholar] [CrossRef]
- Zaukuu, J.-L.; Soós, J.Z.; Bodor, Z.; Felföldi, J.; Magyar, I.; Kovacs, Z. Authentication of Tokaj Wine (Hungaricum) with the Electronic Tongue and Near Infrared Spectroscopy. J. Food Sci. 2019, 84, 3437–3444. [Google Scholar] [CrossRef]
- Santos, J.P.; Lozano, J.; Aleixandre, M.; Arroyo, T.; Cabellos, J.M.; Gil, M.; Horrillo, M.D.C. Threshold detection of aromatic compounds in wine with an electronic nose and a human sensory panel. Talanta 2010, 80, 1899–1906. [Google Scholar] [CrossRef] [PubMed]
- Aleixandre, M.J.; Lozano, J.; Gutiérrez, I.; Sayago, M.J.F.; Horrillo, M.C. Portable E-Nose to Classify Different Kinds of Wine. Sens. Actuators B Chem. 2008, 131, 71–76. [Google Scholar] [CrossRef]
- Antoce, A.O.; Namolosanu, I. Rapid and Precise Discrimination of Wines by Means of an Electronic Nose Based on Gas-Chromatography. Rev. Chim 2011, 6, 593–595. [Google Scholar]
Country | Sample Number | Elements | Methods | References |
---|---|---|---|---|
Italy | 5 | Na, K, Ca, Mg, Cl | Flame emission spectroscopy, AAS | [7] |
France | - | K, Ca, Mg, Mn, Fe, Zn | FAAS | [30] |
Spain | 42 | Li, Na, K, Rb, Ca, Fe, Mn | AAS, AES | [31] |
Spain, UK | 112 | Li, Al, Cr, Mn, Fe, Cu, Zn, As, Cd, Pb | ICP-MS | [32] |
Italy | 68 | Si, Mg, Ti, Mn, Mo | ICP-MS | [33] |
Canary Islands | 83 | K, Na, Li, Rb, Ca, Mg, Sr, Fe, Cu, Zn, Mn | AAS | [26] |
Romania | 60 | Ni, Ag, Cr, Sr, Zn, Cu, Rb, Zn, Pb, Co, V | ICP-MS | [24] |
Germany | 88 | As, B, Be, Cs, Li, Mg, Pb, Si, Sn, Sr, Ti, W, Y | ICP-MS, ICP-OES | [34] |
Germany | 127 | Li, Zn, Mn, B, Fe, Sr, Cs, Pb | SF-ICP-MS | [35] |
South Africa | 40 | Al, Mn, Rb, Ba, W, Se, Cs, Tl, Sr | ICP-MS | [36] |
Spain, France | 35 | Zn, Sr, Pb, Na, Cu, Ni, As, P, Cd | ICP-AES AAS | [37] |
Hungary, Romania, Czech Republic, South Africa | 400 | Na, Mg, Si, P, S, Cl, K, Y, U, Cr | ICP-MS | [38] |
Spain | 150 | K, P, Sr, Al, Na, Mn, Mg, Fe | ICP-OES | [39,40] |
Australia | 126 | Mg, K, Ca, P, S, Na, B, Fe, Mn | ICP-MS, VIS, NIRS | [27] |
New Zeeland | 120 | Sr, Ni, Pb, Rb, Co, Cd, Mn, Ga, Cs | ICP-MS | [41] |
Italy | 120 | Ag, B, Ca, Cd, Eu, Fe, Ga, La, Lu, Mn, Nd, Pr, Sm, Th, Tm, V, Yb, Zr Al, Mg, Ti, Tl, Sc Zn, Ba, K, I, Rb | AAS, ICP-MS | [42] |
Hungary, Czech Republic South Africa, Romania | 1188 | Ni, Mn, Cd, S, As, Pb, Zn, Cs, Rb, U, Na, K, Mg, Ca, Fe, Mn, Cu, V, Ba, Cl | ICP-MS | [43] |
Spain | 67 | Li, Ho, Mn, Sm, Fe | ICP-OES | [44] |
Argentina, Brasil, Chile Uruguai | 28 | Tl, U, Li, Rb, Mg | ICP-MS, ICP-OES | [45] |
Serbia, Montenegro, Macedonia | 41 | Mg, Na, K, Fe, Ca, Cu, Zn, Mn, Pb | FAAS | [46] |
Portugal | 85 | B, Ba, Fe, K, Mg, Mn, Ni, Sr, Al, Ca, Na | ICP-MS | [47] |
Australia | 1397 | Li, Na, Mg, Si, P, K, Ca, Mn, Fe, Ni, Zn, Rb, Sr, Cs, Ba | ICP-AES | [28] |
China | 56 | V, Cr, Sc, Se, Pd, Sr, Sn, Tl, Ga, U | ICP-MS | [48] |
Spain | 34 | Sr, Ba | ICP-AES, ICP-MS | [49] |
Turkey | 111 | Sr, Ni, Ca, Cu, Li, Pb, B, Al | ICP-AES, ICP-MS | [50] |
Romania | 22 | Ba, Be, Cr, Cs, Li, Mg, Na, Ni, Sr, U, Zn | ICP-MS, FAAS | [51] |
South Africa (23 estates) | 120 | B, Ba, Cs, Cu, Mg, Rb, Sr, Tl, Zn | ICP-MS | [52] |
Argentina | 57 | Ba, As, Pb, Mo, Co | ICP-MS | [53] |
France | 29 | Na, Mg, K, Ca, Li, B, Si, P, Ti, Mn, Fe, Cu, Zn, Rb, Sr, Ba, Pb C, H, O, N, Al | LIBS | [54] |
France | 3 | Na, Mg, K, Ca, Li, B, Si, P, Ti, Mn, Fe, Cu, Zn, Rb, Sr, Ba and Pb | LIBS | [55] |
Serbia | 63 | region: Al, Mn, Be, Ba, Cr, Ni, Ca, Na, Mg red/white: Be, Al, Rb, Mg, K, Cu, Mn, Na vintage: Cd, Pb, As, Sb, V, Na, K, Zn | ICP-OES | [29] |
Italy | 24 | B, Ca, Mo, Sb, Sr. | ICP-MS | [56] |
Brazil, Argentina, Spain, France | 111 | K, B, Na | ICP-OES | [25] |
High-Performance Liquid Chromatography (HPLC) | |||||
---|---|---|---|---|---|
Country | Sample Number | Data Analyzed | Methods | Classification | References |
Spain | 23 | Anthocyanins | HPLC | V; G.O. | [60] |
Chile | 172 | Polyphenols | HPLC-DAD | V. | [61] |
Italy | 91 | Flavonols, Anthocyanins | HPLC-DAD-MS | V. | [62] |
Uruguay | 8 | Anthocyanins | HPLC-UV/Vis | V. | [63] |
China | 9 | Anthocyanins | HPLC-MS | V. | [64] |
Greek | 35 | Acids, stilbenes | HPLC-UV/Vis | V, G.O. | [65] |
Austria | 22 | Polyphenols | HPLC-MS | G.O., V., Vt. | [66] |
Chile | 248 | Flavonols | HPLC | V. | [67] |
Spain | 90 | Polyphenols | HPLC-MS | G.O., Vt | [68] |
Czech Republic | 43 | Acids, stilbenes | HPLC | G.O. | [69] |
Brazil, Chile | 38 | Anthocyanins | HPLC | G.O. | [70] |
Romania | 22 | Phenols | HPLC-MS | G.O., V. | [51] |
Argentina | Anthocyanins | HPLC-MS | G.O., V. | [71] | |
Brazil, Argentina | 32 | Phenols | HPLC-UV/Vis | G.O. | [72] |
Italy | 72 | Anthocyanins | HPLC | V. | [73] |
Turkey | 111 | Phenols | HPLC | V, Vt. | [74] |
Italy | 22 | Phenols | HPLC-DAD-MS | V | [75] |
Romania, Bulgaria, Republic of Moldova | 52 | Anthocyanins | HPLC | G.O., Adt. | [76] |
Italy | - | Phenols | HPLC | V | [77] |
China | 19 | Phenols | HPLC-DAD | Vt. | [78] |
Italy | 73 | Polyphenols | HPLC | G.O. | [79] |
Brazil, Argentina, Uruguay, Chile | 83 | Phenols | HPLC-MS | G.O. | [80] |
Canada | 44 | Phenols | UHPLC-QToF-MS | V. | [81] |
Country | Sample Number | Data Analyzed | Methods | Classification | References |
---|---|---|---|---|---|
Spain | 22 | Alcohols, acids, esters, terpenes, aldehydes, acetones | GC (SPI)-MS | G.O., V. | [87] |
Spain | - | Alcohols, acids, esters, aldehydes | Dynamic-headspace GC-MS | V. | [88] |
Spain | 52 | Alcohols, acids, esters, aldehydes | GC-MS | V. | [89] |
Portugal | 19 | Ketones, norisoprenoids | GC | G.O. | [90] |
Italy | 93 | Terpenes, alcohols, Norisoprenoids | GC-MS | V. | [91] |
China | - | Terpenes, norisoprenoids, alcohols, esters, fatty acids, volatile phenols, sulfur compounds | GC-MS | V., G.O. | [92] |
China | 3 | Alcohols, esters, fatty acids, terpenes, aldehydes | GC-MS | G.O. | [93] |
South Africa | 334 | Alcohols, esters, acids, aldehydes | GC-MS | G.O., V., | [94] |
Brazil | 54 | Alcohols, acids, aldehydes, esters, ketones, terpenes, pyrans, lactones, furans, sulfur compounds, norisoprenoids | HS-SPME combined with GCxGC/TOFMS | V. | [95] |
Australia | 30 | Ketones, aldehydes, terpenes, esters | HS-SPME combined with GCxGC/TOFMS | G.O. | [96] |
Slovakia | 26 | Terpenes, esters, alcohols | GC-MS | G.O., V., Vt. | [97] |
France | 38 | Alcohols, ketones, aldehydes, esters | GC-MS | barrels vs. chips | [98] |
Portugal | 23 | Furans, lactones, volatile phenols, acetals | HS-SPME combined with GCxGC/TOFMS | Age markers | [99] |
Argentina | 7 | Alcohols, aldehydes, esters, | HS-SPME–GC–MS | V. | [100] |
Chile, USA, France, Bulgaria, Moldova, Spain, Argentina, Australia, South Africa | 120 | Alcohols, acids, ketones, esters, terpenes | SPME-GC-MS | V., G.O. | [101] |
Romania | 3 | Acids, esters, terpenes, terpenoids, norisoprenoids | GC-MS | V. | [102] |
Germany | 234 | ketones | GC-MS | V. | [103] |
Country | Sample Number | Isotopes/Ratio | Methods | Classification | References |
---|---|---|---|---|---|
Slovenia | 102 | D/H 13C/12C (ethanol); 18O/16O (water) | SNIF-NMR, IRMS | G.O. | [110] |
Italy | 5220 | (D/H)1, (D/H)2, 13C/12C (ethanol); 18O/16O (water) | RMN IRMS | G.O. | [111] |
Brazil | 112 | 13C/12C (ethanol); 18O/16O (water) | IRMS | G.O., Vt. | [112] |
Germany | 718 | (D/H)1, (D/H)2, 13C/12C (ethanol); 18O/16O (water) | SNIF-NMR IRMS | G.O., Vt. | [113] |
Romania | 21 | 87Sr/86Sr | Q-ICP-MS | G.O. | [114] |
Cyprus | 96 | D/H, 13C/12C (ethanol); 18O/16O (water) | SNIF-NMR IRMS | G.O. | [115] |
Romania, Bulgaria, Republic of Moldova | 52 | 13C/12C (ethanol); 18O/16O (water) D/H | CF-IRMS SNIF-NMR | G.O. | [76] |
Macedonia, Montenegro, Chile | D/H 13C/12C (ethanol); 18O/16O (water) | SNIF-NMR IRMS | Adt., G.O. | [116] | |
France | 60 | 87Sr/86Sr | MC-ICP-MS | G.O. | [117] |
France | 60 | 206Pb/207Pb, 208Pb/206Pb, 206Pb/204Pb, 208Pb/204Pb | MC-ICP-MS | G.O. | [118] |
Portugal | 3 | 87Sr/86Sr | Q-ICP-MS | Wood aging | [119] |
Russia | 9 | 1H,2H | qNMR | G.O., Adt. | [120] |
France | 29 | 1H | qNMR | G.O. | [121] |
DNA Based Methods | |||
---|---|---|---|
Country | Varieties | Methods | References |
Portugal | Tinta Roriz, Fernao Pires | Extraction + PCR | [131] |
Italy | Merlot, Pinot noir, Zinfandel, Italian Riesling, Sauvignon blanc, Sangiovese, Alicante | Extraction + real-time PCR | [132] |
Italy | Moscato bianco | Extraction + PCR | [133] |
Romania | Tămâioasă românescă, Galbenă de Odobeşti, Fetească neagră, Busuioacă de Bohotin | Extraction + PCR | [134] |
Italy | Cabernet, Sauvignon, Merlot, Pinot Noir, Syrah, Chardonnay, Pinot Gris | Extraction + PCR | [135] |
Italy | Sangiovese, Alicante, Cabernet sauvignon, Merlot | Extraction + PCR | [136] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popîrdă, A.; Luchian, C.E.; Cotea, V.V.; Colibaba, L.C.; Scutarașu, E.C.; Toader, A.M. A Review of Representative Methods Used in Wine Authentication. Agriculture 2021, 11, 225. https://doi.org/10.3390/agriculture11030225
Popîrdă A, Luchian CE, Cotea VV, Colibaba LC, Scutarașu EC, Toader AM. A Review of Representative Methods Used in Wine Authentication. Agriculture. 2021; 11(3):225. https://doi.org/10.3390/agriculture11030225
Chicago/Turabian StylePopîrdă, Andreea, Camelia Elena Luchian, Valeriu V. Cotea, Lucia Cintia Colibaba, Elena Cristina Scutarașu, and Ana Maria Toader. 2021. "A Review of Representative Methods Used in Wine Authentication" Agriculture 11, no. 3: 225. https://doi.org/10.3390/agriculture11030225
APA StylePopîrdă, A., Luchian, C. E., Cotea, V. V., Colibaba, L. C., Scutarașu, E. C., & Toader, A. M. (2021). A Review of Representative Methods Used in Wine Authentication. Agriculture, 11(3), 225. https://doi.org/10.3390/agriculture11030225