The Role of the Start-Up Aid for Young Farmers in the Adoption of Innovative Agricultural Activities: The Case of Aloe Vera
Abstract
:1. Introduction
1.1. Young Farmer Problem
1.2. Young Farmer Policy Support
1.3. Alternative Crops
Aloe Vera Crop
2. Materials and Methods
2.1. Simulation Model
2.2. Stochastic Dominance Analysis
2.3. Data Description
2.3.1. Establishment Costs
2.3.2. Revenues
2.3.3. Costs of Production
3. Result and Discussion
Stochastic Investment Analysis
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tzouramani, I.; Liontakis, A.; Sintori, A.; Alexopoulos, G. Assessing Organic Cherry Farmers’ Strategies under Different Policy Options. Mod. Econ. 2014, 5, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Liontakis, A.; Tzouramani, I. Economic sustainability of organic aloe vera farming in Greece under risk and uncertainty. Sustainability 2016, 8, 338. [Google Scholar] [CrossRef] [Green Version]
- Chatzitheodoridis, F.; Kontogeorgos, A. New entrants policy into agriculture: Researching new farmers’ satisfaction. Rev. Econ. Sociol. Rural 2020, 58. [Google Scholar] [CrossRef]
- Kontogeorgos, A.; Tselempis, D.; Karipidis, P. Young farmers’ perceived service quality of the Greek Ministry of Agriculture: A SERVQUAL approach. Agric. Econ. Rev. 2014, 15, 60–71. [Google Scholar] [CrossRef]
- Hardaker, J.B.; Huirne, R.B.M.; Anderson, J.R.; Lien, G. Coping with Risk in Agriculture; CABI Publishing: Wallingford, UK, 2004. [Google Scholar]
- Regidor, J.G. EU Measures to Encourage and Support New Entrants. Policy Department B: Structural and Cohesion Policies. Agriculture and Rural Development; EU: Brussels, Belgium, 2012; pp. 1–68. [Google Scholar]
- Zagata, L.; Sutherland, L.A. Deconstructing the “young farmer problem in Europe”: Towards a research agenda. J. Rural Stud. 2015, 38, 39–51. [Google Scholar] [CrossRef]
- Pechrová, M.Š.; Šimpach, O.; Medonos, T.; Spěšná, D.; Delín, M. What are the motivation and barriers of young farmers to enter the sector? Agris Online Pap. Econ. Inform. 2018, 10, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Coppola, A.; Scardera, A.; Amato, M.; Verneau, F. Income levels and farm economic viability in Italian farms: An analysis of FADN data. Sustainability 2020, 12, 4898. [Google Scholar] [CrossRef]
- Eistrup, M.; Sanches, A.R.; Muñoz-Rojas, J.; Correia, T.P. A “young farmer problem”? Opportunities and constraints for generational renewal in farm management: An example from southern Europe. Land 2019, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Leonard, B.; Kinsella, A.; O’Donoghue, C.; Farrell, M.; Mahon, M. Policy drivers of farm succession and inheritance. Land Use Policy 2017. [Google Scholar] [CrossRef] [Green Version]
- Howley, P.; Donoghue, C.O.; Heanue, K. Factors Affecting Farmers’ Adoption of Agricultural Innovations: A Panel Data Analysis of the Use of Artificial Insemination among Dairy Farmers in Ireland. J. Agric. Sci. 2012. [Google Scholar] [CrossRef]
- McDonald, R.; Macken-Walsh, Á.; Pierce, K.; Horan, B. Farmers in a deregulated dairy regime: Insights from Ireland’s New Entrants Scheme. Land Use Policy 2014. [Google Scholar] [CrossRef]
- Stenholm, P.; Hytti, U. In search of legitimacy under institutional pressures: A case study of producer and entrepreneur farmer identities. J. Rural Stud. 2014. [Google Scholar] [CrossRef]
- Vesala, H.T.; Vesala, K.M. Entrepreneurs and producers: Identities of Finnish farmers in 2001 and 2006. J. Rural Stud. 2010. [Google Scholar] [CrossRef]
- Papadavid, G.; Kountios, G.; Ragkos, A.; Hadjimitsis, D. Measuring the Environmental Awareness of Young Farmers. In Proceedings of the Fifth International Conference on Remote Sensing and Geoinformation of the Environment, Paphos, Cyprus, 20–23 March 2017; p. 71. [Google Scholar]
- Sponte, M. The role of young farmers in the sustainable development of the agricutural sector. Qual. Access Success 2014, 15, 410–413. [Google Scholar]
- Läpple, D.; Rensburg, T. Van Adoption of organic farming: Are there differences between early and late adoption? Ecol. Econ. 2011, 70, 1406–1414. [Google Scholar] [CrossRef]
- Dolton-Thornton, N. Viewpoint: How should policy respond to land abandonment in Europe? Land Use Policy 2021, 102. [Google Scholar] [CrossRef]
- Rac, I.; Erjavec, K.; Erjavec, E. Does the proposed cap reform allow for a paradigm shift towards a greener policy? Span. J. Agric. Res. 2020, 18, 1–14. [Google Scholar] [CrossRef]
- Mckee, A.; Sutherland, L.-A.; Hopkins, J.; Flanigan, S.; The, J. Increasing the Availability of Farmland for New Entrants to Agriculture in Scotland Final Report to the Scottish Land Commission; Scottish Land Commission: Inverness, UK, 2018; Volume 2. [Google Scholar]
- Ingram, J.; Kirwan, J. Matching new entrants and retiring farmers through farm joint ventures: Insights from the Fresh Start Initiative in Cornwall, UK. Land Use Policy 2011, 28, 917–927. [Google Scholar] [CrossRef]
- Conway, S.F.; McDonagh, J.; Farrell, M.; Kinsella, A. Human dynamics and the intergenerational farm transfer process in later life: A roadmap for future generational renewal in agriculture policy. Int. J. Agric. Manag. 2019, 8, 22–30. [Google Scholar] [CrossRef]
- Moragues-Faus, A. How is agriculture reproduced? Unfolding farmers’ interdependencies in small-scale Mediterranean olive oil production. J. Rural Stud. 2014, 34, 139–151. [Google Scholar] [CrossRef]
- Brinia, V.; Papavasileiou, P. Training of Farmers in Island Agricultural Areas: The Case of Cyclades Prefecture. J. Agric. Educ. Ext. 2015. [Google Scholar] [CrossRef]
- Eurostat CAP Context Indicators. Available online: https://ec.europa.eu/info/food-farming-fisheries/farming/facts-and-figures/performance-agricultural-policy/cap-indicators/context-indicators_en#relatedlinks (accessed on 31 March 2021).
- European Commission. CAP CONTEXT INDICATORS—2019 Update. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/documents/cap-context-indicators-table_2019_en.pdf (accessed on 1 April 2021).
- Kontogeorgos, A.; Michailidis, A.; Chatzitheodoridis, F.; Loizou, E. “New Farmers” a Crucial Parameter for the Greek Primary Sector: Assessments and Perceptions. Procedia Econ. Financ. 2014, 14, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Mazorra, A.P. Analysis of the evolution of farmers’ early retirement policy in Spain. The case of Castille and Leon. Land Use Policy 2000, 17, 113–120. [Google Scholar] [CrossRef]
- Nordin, M.; Lovén, I. Is the setting up aid mitigating the generational renewal problem in farming? Eur. Rev. Agric. Econ. 2020, 47, 1697–1715. [Google Scholar] [CrossRef]
- Davis, J.; Caskie, P.; Wallace, M. Promoting structural adjustment in agriculture: The economics of New Entrant Schemes for farmers. Food Policy 2013, 40, 90–96. [Google Scholar] [CrossRef]
- Ray, C. Towards a theory of the dialectic of local rural development within the European Union. Sociol. Ruralis 1997, 37, 345–362. [Google Scholar] [CrossRef]
- Davis, U.C.; Metz, D.; Wooten-swanson, P. Evaluation Roadmap of the Impact of the CAP on Generational Renewal, Local Development and Jobs in Rural Areas; Publications Office of the European Union: Luxembourg, 2018; Volume 39, ISBN 9789276092612. [Google Scholar]
- Hellenic Ministry of Rural Development and Food (HMRDF). Annual Report for the Implementation of RDP 2020 (Years 2014–2019); HMRDF: Athens, Greece, 2020.
- Rahi, T.S.; Singh, K.; Singh, B. Screening of sodicity tolerance in Aloe vera: An industrial crop for utilization of sodic lands. Ind. Crops Prod. 2013, 44, 528–533. [Google Scholar] [CrossRef]
- Singh, K.; Singh, B.; Singh, R.R. Changes in physico-chemical, microbial and enzymatic activities during restoration of degraded sodic land: Ecological suitability of mixed forest over monoculture plantation. Catena 2012, 96, 57–67. [Google Scholar] [CrossRef]
- Georgakopoulos, P.; Travlos, I.S.; Kakabouki, I.; Kontopoulou, C.K.; Pantelia, A.; Bilalis, D.J. Climate Change and Chances for the Cultivation of New Crops. Not. Bot. Horti Agrobot. 2016, 44, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Tsantopoulos, G.; Tsoulakaki, D.; Tampakis, S.; Karelakis, C.; Mamalis, S. Alternative Crops—Problems and Prospects: A Comparative Research of Landowners’ Views in the Prefectures of Rodopi and Evros. Procedia Technol. 2013, 8, 300–305. [Google Scholar] [CrossRef] [Green Version]
- Karelakis, C.; Tsantopoulos, G. Changing land use to alternative crops: A rural landholder’s perspective. Land Use Policy 2017, 63, 30–37. [Google Scholar] [CrossRef]
- Tsantopoulos, G.; Karelakis, C.; Zafeiriou, E.; Tsoulakaki, D. Mapping the Rural Problem and Development: What do Greek Landowners Think? Procedia Econ. Financ. 2014, 9, 208–218. [Google Scholar] [CrossRef] [Green Version]
- Bonnieux, F.; Rainelli, P.; Vermersch, D. Estimating the supply of environmental benefits by agriculture: A French case study. Environ. Resour. Econ. 1998. [Google Scholar] [CrossRef]
- Wynn, G.; Crabtree, B.; Potts, J. Modelling farmer entry into the Environmentally Sensitive Area schemes in Scotland. J. Agric. Econ. 2001. [Google Scholar] [CrossRef]
- Mailfert, K. New farmers and networks: How beginning farmers build social connections in France. Tijdschr. Econ. Soc. Geogr. 2007, 98, 21–31. [Google Scholar] [CrossRef]
- Haller, J.S. A drug for all seasons: Medical and pharmacological history of aloe. Bull. N. Y. Acad. Med. J. Urban Health 1990, 66, 647–659. [Google Scholar]
- Lewis, W.H.; Elvin-Lewis, M.P.F. Medical Botany, Plants Affecting Man’s Health; John Wiley & Sons: Hoboken, NJ, USA, 1977; ISBN 0-471-53320-3. [Google Scholar]
- Morton, J.F. Folk uses and commercial exploitation of Aloe leaf pulp. Econ. Bot. 1961, 15, 311–319. [Google Scholar] [CrossRef]
- Choi, S.; Chung, M.-H. A review on the relationship between aloe vera components and their biologic effects. Semin. Integr. Med. 2003, 1, 53–62. [Google Scholar] [CrossRef]
- Christaki, E.V.; Florou-Paneri, P.C. Aloe vera: A plant for many uses. J. Food Agric. Environ. 2010, 8, 245–249. [Google Scholar]
- Grindlay, D.; Reynolds, T. The Aloe vera phenomenon: A review of the properties and modern uses of the leaf parenchyma gel. J. Ethnopharmacol. 1986, 16, 117–151. [Google Scholar] [CrossRef]
- Hamman, J.H. Composition and Applications of Aloe vera Leaf Gel. Molecules 2008, 13, 1599–1616. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Xu, J.; Hu, Q. Evaluation of Antioxidant Potential of Aloe vera (Aloe barbadensis Miller) Extracts. J. Agric. Food Chem. 2003, 51, 7788–7791. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, T.; Dweck, A.C. Aloe vera leaf gel: A review update. J. Ethnopharmacol. 1999, 68, 3–37. [Google Scholar] [CrossRef]
- Yagi, A. Therapeutic efficacy of Aloe Vera high molecular fractions for treatment of hepatic fibrosis, type 2 diabetes, Bed sores and Lichen planus. J. Gastroenterol. Hepatol. Res. 2013, 2, 672–679. [Google Scholar]
- Martínez-Sánchez, A.; López-Cañavate, M.E.; Guirao-Martínez, J.; Roca, M.J.; Aguayo, E. Aloe vera flowers, a byproduct with great potential and wide application, depending on maturity stage. Foods 2020, 9, 1542. [Google Scholar] [CrossRef]
- Mohammadiyan, M.; Kaveh, H. Investigating the Effect of Magnetic Field, Fennel (Foeniculum vulgare) Essential Oil and Aloe vera Gel on the Browning of Fresh-cut Apples. J. Hortic. Sci. 2021, 34, 679–691. [Google Scholar]
- Passafiume, R.; Gaglio, R.; Sortino, G.; Farina, V. Effect of three different aloe vera gel-based edible coatings on the quality of fresh-cut “hayward” kiwifruits. Foods 2020, 9, 939. [Google Scholar] [CrossRef]
- Ghoora, M.D.; Srividya, N. Effect of packaging and coating technique on postharvest quality and shelf life of Raphanus sativus L. and Hibiscus sabdariffa L. microgreens. Foods 2020, 9, 653. [Google Scholar] [CrossRef]
- Hasan, M.U.; Riaz, R.; Malik, A.U.; Khan, A.S.; Anwar, R.; Rehman, R.N.U.; Ali, S. Potential of Aloe vera gel coating for storage life extension and quality conservation of fruits and vegetables: An overview. J. Food Biochem. 2021, e13640. [Google Scholar] [CrossRef]
- Rodríguez-García, R.; de Rodríguez, D.J.; Gil-Marín, J.A.; Angulo-Sánchez, J.L.; Lira-Saldivar, R.H. Growth, stomatal resistance, and transpiration of Aloe vera under different soil water potentials. Ind. Crops Prod. 2007, 25, 123–128. [Google Scholar] [CrossRef]
- Jiang, C.-Q.; Quan, L.-T.; Shi, F.; Yang, N.; Wang, C.-H.; Yin, X.-M.; Zheng, Q.-S. Distribution of Mineral Nutrients and Active Ingredients in Aloe vera Irrigated with Diluted Seawater. Pedosphere 2014, 24, 722–730. [Google Scholar] [CrossRef]
- Murillo-Amador, B.; Córdoba-Matson, M.V.; Villegas-Espinoza, J.A.; Hernández-Montiel, L.G.; Troyo-Diéguez, E.; García-Hernández, J.L. Mineral Content and Biochemical Variables of Aloe vera L. under Salt Stress. PLoS ONE 2014, 9, e94870. [Google Scholar] [CrossRef] [Green Version]
- Murillo-Amador, B.; Nieto-Garibay, A.; Troyo-Diéguez, E.; García-Hernández, J.L.; Hernández-Montiel, L.; Valdez-Cepeda, R.D. Moderate salt stress on the physiological and morphological traits of Aloe vera L. Bot. Sci. 2015, 93, 639–648. [Google Scholar] [CrossRef] [Green Version]
- Ray, A.; Ghosh, S.; Ray, A.; Aswatha, S.M. An analysis of the influence of growth periods on potential functional and biochemical properties and thermal analysis of freeze-dried Aloe vera L. gel. Ind. Crops Prod. 2015, 76, 298–305. [Google Scholar] [CrossRef]
- Vakalounakis, D.J.; Kavroulakis, N.; Lamprou, K. First Report of Fusarium oxysporum Causing Root and Crown Rot on Barbados Aloe in Greece. Plant Dis. 2015. [Google Scholar] [CrossRef]
- Khajeeyan, R.; Salehi, A.; Dehnavi, M.M.; Farajee, H.; Kohanmoo, M.A. Physiological and yield responses of Aloe vera plant to biofertilizers under different irrigation regimes. Agric. Water Manag. 2019, 225. [Google Scholar] [CrossRef]
- Ray, A.; Aswatha, S.M. An analysis of the influence of growth periods on physical appearance, and acemannan and elemental distribution of Aloe vera L. gel. Ind. Crops Prod. 2013, 48, 36–42. [Google Scholar] [CrossRef]
- Ray, A.; Gupta, S.D.; Ghosh, S. Evaluation of anti-oxidative activity and UV absorption potential of the extracts of Aloe vera L. gel from different growth periods of plants. Ind. Crops Prod. 2013, 49, 712–719. [Google Scholar] [CrossRef]
- Ray, A.; Dutta Gupta, S.; Ghosh, S.; Aswatha, S.M.; Kabi, B. Chemometric studies on mineral distribution and microstructure analysis of freeze-dried Aloe vera L. gel at different harvesting regimens. Ind. Crops Prod. 2013, 51, 194–201. [Google Scholar] [CrossRef]
- Ray, A.; Dutta Gupta, S. A panoptic study of antioxidant potential of foliar gel at different harvesting regimens of Aloe vera L. Ind. Crops Prod. 2013, 51, 130–137. [Google Scholar] [CrossRef]
- Saha, R.; Palit, S.; Ghosh, B.C.; Mittra, B.N. Performance of Aloe vera as influenced by organic and inorganic sources of fertilizer supplied through fertigation. Acta Hortic. 2005, 676, 171–175. [Google Scholar] [CrossRef]
- Sultana, T.; Chowdhury, A.H.; Saha, B.K.; Rahman, A.; Chowdhury, T.; Sultana, R. Response of Aloe vera to potassium fertilization in relation to leaf biomass yield, its uptake and requirement, critical concentration and use efficiency. J. Plant Nutr. 2021. [Google Scholar] [CrossRef]
- Chowdhury, T.; Chowdhury, M.A.H.; Rahman, M.A.; Nahar, K.; Chowdhury, M.T.I.; Khan, M.S.I. Response of aloe vera to inorganic and organic fertilization in relation to leaf biomass yield and post harvest fertility of soil. Bulg. J. Agric. Sci. 2020, 26, 346–354. [Google Scholar]
- Chowdhury, M.A.H.; Sultana, T.; Rahman, M.A.; Saha, B.K.; Chowdhury, T.; Tarafder, S. Sulphur fertilization enhanced yield, its uptake, use efficiency and economic returns of Aloe vera L. Heliyon 2020. [Google Scholar] [CrossRef] [PubMed]
- Ahlawat, K.S.; Khatkar, B.S. Processing, food applications and safety of aloe vera products: A review. J. Food Sci. Technol. 2011, 48, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Tzouramani, I.; Sintori, A.; Liontakis, A.; Karanikolas, P.; Alexopoulos, G. An assessment of the economic performance of organic dairy sheep farming in Greece. Livest. Sci. 2011, 141. [Google Scholar] [CrossRef]
- Kam, L.E.; Leung, P. Financial risk analysis in aquaculture. In FAO Fisheries and Aquaculture Technical Paper; FAO: Rome, Iraly, 2008; pp. 153–207. [Google Scholar]
- Keske, C.M.H.; Hoag, D.L.; Brandess, A.; Johnson, J.J. Is it economically feasible for farmers to grow their own fuel? A study of Camelina sativa produced in the western United States as an on-farm biofuel. Biomass Bioenergy 2013, 54, 89–99. [Google Scholar] [CrossRef]
- Clancy, D.; Breen, J.P.; Thorne, F.; Wallace, M. A stochastic analysis of the decision to produce biomass crops in Ireland. Biomass Bioenergy 2012, 46, 353–365. [Google Scholar] [CrossRef]
- Duzy, L.M.; Kornecki, T.S.; Balkcom, K.S.; Arriaga, F.J. Net returns and risk for cover crop use in Alabama tomato production. Renew. Agric. Food Syst. 2014, 29, 334–344. [Google Scholar] [CrossRef]
- Prato, T.; Zeyuan, Q.; Pederson, G.; Fagre, D.; Bengtson, L.E.; Williams, J.R. Potential economic benefits of adapting agricultural production systems to future climate change. Environ. Manag. 2010, 45, 577–589. [Google Scholar] [CrossRef]
- Monge, J.J.; Daigneault, A.J.; Dowling, L.J.; Harrison, D.R.; Awatere, S.; Ausseil, A.G. Implications of future climatic uncertainty on payments for forest ecosystem services: The case of the East Coast of New Zealand. Ecosyst. Serv. 2018, 33, 199–212. [Google Scholar] [CrossRef]
- Glickman, T.S.; Xu, F. The distribution of the product of two triangular random variables. Stat. Probab. Lett. 2008, 78, 2821–2826. [Google Scholar] [CrossRef]
- Johnson, D. Triangular approximations for continuous random variables in risk analysis. J. Oper. Res. Soc. 2002, 53, 457–467. [Google Scholar] [CrossRef]
- Richardson, J.W. Simulation for Applied Risk Management; Department of Agricultural Economics, Agricultural and Food Policy Center, Texas A&M University: College Station, TX, USA, 2008. [Google Scholar]
- Liontakis, A. How does a policymaker rank regional income distributions across years? A study on the evolution of greek regional per capita income. Economies 2020, 8, 40. [Google Scholar] [CrossRef]
- Hardaker, J.B.; Huirne, R.B.M.; Anderson, J.R.; Lien, G. Coping with Risk in Agriculture: Applied Decision Analysis; CABI Publishing: Wallingford, UK, 2015. [Google Scholar]
- Hardaker, J.B.; Richardson, J.W.; Lien, G.; Schumann, K.D. Stochastic efficiency analysis with risk aversion bounds: A simplified approach. Aust. J. Agric. Resour. Econ. 2004, 48, 253–270. [Google Scholar] [CrossRef] [Green Version]
- Lavik, M.S.; Lien, G.; Korsaeth, A.; Brian Hardaker, J. Comparison of Conventional and IPM Cropping Systems: A Risk Efficiency Analysis. J. Agric. Appl. Econ. 2020, 52, 385–397. [Google Scholar] [CrossRef] [Green Version]
- Lien, G.; Størdal, S.; Hardaker, J.B.; Asheim, L.J. Risk aversion and optimal forest replanting: A stochastic efficiency study. Eur. J. Oper. Res. 2007, 181, 1584–1592. [Google Scholar] [CrossRef]
- Kidane, S.M.; Lambert, D.M.; Eash, N.S.; Roberts, R.K.; Thierfelder, C. Conservation agriculture and maize production risk: The case of Mozambique smallholders. Agron. J. 2019, 111, 2636–2646. [Google Scholar] [CrossRef]
- Adusumilli, N.; Wang, H.; Dodla, S.; Deliberto, M. Estimating risk premiums for adopting no-till and cover crops management practices in soybean production system using stochastic efficiency approach. Agric. Syst. 2020, 178. [Google Scholar] [CrossRef]
- Wang, H.; Adusumilli, N.; Gentry, D.; Fultz, L. Economic and stochastic efficiency analysis of alternative cover crop systems in Louisiana. Exp. Agric. 2020, 56, 651–661. [Google Scholar] [CrossRef]
- Pendell, D.L.; Williams, J.R.; Boyles, S.B.; Rice, C.W.; Nelson, R.G. Soil Carbon Sequestration Strategies with Alternative Tillage and Nitrogen Sources under Risk. Rev. Agric. Econ. 2007, 29, 247–268. [Google Scholar] [CrossRef]
- Babcock, B.A.; Choi, E.K.; Feinerman, E. Risk and Probability Premiums for CARA Utility Functions. J. Agric. Resour. Econ. 1993, 18, 17–24. [Google Scholar]
- Anderson, J.R.; Dillon, J.L. Risk Analysis in Dryland Farming Systems; Food & Agriculture Organization: Rome, Italy, 1992; ISBN 9251032041. [Google Scholar]
- Fathelrahman, E.M.; Ascough, J.C., II; Hoag, D.L.; Malone, R.W.; Heilman, P.; Wiles, L.J.; Kanwar, R.S. Continuum of Risk Analysis Methods to Assess Tillage System Sustainability at the Experimental Plot Level. Sustainability 2011, 3, 1035–1063. [Google Scholar] [CrossRef] [Green Version]
- Richardson, J.W.; Schumann, K.D.; Feldman, P.A. Simetar: Simulation and Econometrics to Analyze Risk; Simetar, Inc.: College Station, TX, USA, 2008. [Google Scholar]
- Richardson, J.W.; Outlaw, J.L. Training commercial farmers how to analyse and rank risky alternatives. In Proceedings of the A Vibrant Rural Economy—The Challenge for Balance, Cork, Ireland, 15–20 July 2007. [Google Scholar]
- Andrew, R.; Makindara, J.; Mbaga, S.H.; Alphonce, R. Economic viability of newly introduced chicken strains at village level in Tanzania: FARMSIM model simulation approach. Agric. Syst. 2019, 176. [Google Scholar] [CrossRef]
- Heller, Y.; Schreiber, A. Short-Term Investments and Indices of Risk. arXiv 2020, arXiv:2005.06576. [Google Scholar] [CrossRef]
- May, D.; Arancibia, S.; Behrendt, K.; Adams, J. Preventing young farmers from leaving the farm: Investigating the effectiveness of the young farmer payment using a behavioural approach. Land Use Policy 2019. [Google Scholar] [CrossRef]
- Asci, S.; VanSickle, J.J.; Cantliffe, D.J. Risk in investment decision making and greenhouse tomato production expansion in Florida. Int. Food Agribus. Manag. Rev. 2014, 17, 1–26. [Google Scholar]
- Boyer, C.N.; Lambert, D.M.; Larson, J.A.; Tyler, D.D. Investment analysis of cover crop and no-tillage systems on Tennessee cotton. Agron. J. 2018, 110, 331–338. [Google Scholar] [CrossRef]
- Zawadzka, D.; Kurdys-Kujawska, A. Diversification of the development level of multifunctional farms from the central Pomerania region in Poland. In Proceedings of the 19th International Scientific Conference “Economic Science for Rural Development 2018”, Jelgava, Latvia, 9–11 May 2018; No. 47. pp. 394–401. [Google Scholar]
- Henke, R.; Vanni, F. Drivers of on-farm diversification in the Italian peri-urban agriculture. Riv. Econ. Agrar. Rev. Agric. Econ. 2017, 72, 79–100. [Google Scholar]
- Gasson, R. Farm Diversification and Rural Development. J. Agric. Econ. 1988, 39, 175–182. [Google Scholar] [CrossRef]
- Joao, A.R.B.; Luzardo, F.; Vanderson, T.X. An interdisciplinary framework to study farmers decisions on adoption of innovation: Insights from Expected Utility Theory and Theory of Planned Behavior. Afr. J. Agric. Res. 2015, 10, 2814–2825. [Google Scholar] [CrossRef] [Green Version]
- Bocquého, G.; Jacquet, F.; Reynaud, A. Expected utility or prospect theory maximisers? Assessing farmers’ risk behaviour from field-experiment data. Eur. Rev. Agric. Econ. 2014, 41, 135–172. [Google Scholar] [CrossRef]
<35 Years | >65 Years | ||||
---|---|---|---|---|---|
Number | Share (%) | Number | Share (%) | ||
EU-27 | 527,690 | 5.1 | 3,372,920 | 32.8 | 15.6% |
Greece | 25,120 | 3.7 | 229,230 | 33.5 | 11.0% |
Attiki | 600 | 3.0 | 7550 | 38.2 | 7.9% |
Voreio Aigaio | 1190 | 4.2 | 8530 | 30.1 | 14.0% |
Notio Aigaio | 570 | 2.8 | 7600 | 37.3 | 7.5% |
Kriti | 3520 | 4.0 | 28,810 | 32.7 | 12.2% |
Eastern Macedonia & Thrace | 2670 | 5 | 13,250 | 25.6 | 20.2% |
Central Macedonia | 4400 | 4.6 | 24,000 | 24.9 | 18.3% |
Western Macedonia | 1290 | 5.6 | 5120 | 22.1 | 25.2% |
Epirus | 690 | 2.3 | 12,850 | 43.5 | 5.4% |
Thessaly | 2610 | 4.3 | 18,490 | 30.6 | 14.1% |
Ionian Islands | 570 | 2.0 | 12,990 | 46.4 | 4.4% |
Western Greece | 2810 | 3.5 | 28,360 | 35.0 | 9.9% |
Central Greece | 1490 | 2.2 | 26,510 | 39.4 | 5.6% |
Peloponnese | 2710 | 3.0 | 35,180 | 38.8 | 7.7% |
Call of Measure 6.1 | Age of Shoots Used | Utilisation of Measure 6.1 | Land Size in Year 1 (ha) | Level of Support (Si,s) (€) | Level of Initial Investment (€) | Land Size in Year 10 (ha) | |
---|---|---|---|---|---|---|---|
1 | Old | 1 | No | 0.9 | 0 | 69,475 | 1 |
2 | Yes | 19,500 (S1,2 + S4,2) | |||||
3 | 2 | No | 0 | 59,307 | |||
4 | Yes | 19,500 (S1,4 + S4,4) | |||||
5 | New | 1 | No | 1.4 | 0 | 108,072 | 1.9 |
6 | Yes | 37,500 (S1,6 + S4,6) | |||||
7 | 2 | No | 0 | 92,256 | |||
8 | Yes | 37,500 (S1,8+ S4,8) |
Cost Elements | Age of the Shoots Used for the Aloe Vera Crop Establishment | ||
---|---|---|---|
One-Year Old | Two-Years Old | Own-Produced Two Years Old | |
Soil preparation | 696 | 696 | 696 |
Purchase of aloe vera shoots | 15,000 | 20,000 | 4000 * |
Irrigation system | 6872 | 6872 | 6872 |
Mechanical equipment | 1560 | 1560 | 1560 |
Non-mechanical permanent capital (mainly fetch and anti-frozen tunnels **) | 20,984 | 20,984 | 20,984 |
Labour | 11,589 | 5515 | 5515 |
Land | 3262 | 1631 | 1631 |
Variable cost | 8378 | 4213 | 4213 |
Annual Capital cost | 8853 | 4426 | 4426 |
Total cost | 77,194 | 65,897 | 49,897 |
Market Channel | Quantity (Tones) | % of Total | Price (€/kg) | Revenues |
---|---|---|---|---|
Processing Unit | 46.5 | 90% | 0.2 | 9300 |
Retail Markets | 4.7 | 9% | 3.0 | 13,950 |
Direct sales | 0.5 | 1% | 6.0 | 3100 |
TOTAL | 51.7 | 26,350 |
Assumptions | Outcomes | |||||||
---|---|---|---|---|---|---|---|---|
Scenario | Call of Meas. 6.1 | Age of Shoots | Utilisation of Meas. 6.1 | Mean | CV | Min | Max | Prob < 0 |
1 | Old | 1 | No | 1016 | 3510 | −76,304 | 131,699 | 51% |
2 | Yes | 19,509 | 183 | −57,811 | 150,192 | 32% | ||
3 | 2 | No | 19,110 | 212 | −69,152 | 166,512 | 35% | |
4 | Yes | 37,603 | 108 | −50,659 | 185,005 | 19% | ||
5 | New | 1 | No | −23,834 | −270 | −162,810 | 209,175 | 65% |
6 | Yes | 11,729 | 549 | −127,247 | 244,738 | 46% | ||
7 | 2 | No | 1611 | 4468 | −154,461 | 264,152 | 51% | |
8 | Yes | 37,174 | 194 | −118,898 | 299,715 | 33% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liontakis, A.; Sintori, A.; Tzouramani, I. The Role of the Start-Up Aid for Young Farmers in the Adoption of Innovative Agricultural Activities: The Case of Aloe Vera. Agriculture 2021, 11, 349. https://doi.org/10.3390/agriculture11040349
Liontakis A, Sintori A, Tzouramani I. The Role of the Start-Up Aid for Young Farmers in the Adoption of Innovative Agricultural Activities: The Case of Aloe Vera. Agriculture. 2021; 11(4):349. https://doi.org/10.3390/agriculture11040349
Chicago/Turabian StyleLiontakis, Angelos, Alexandra Sintori, and Irene Tzouramani. 2021. "The Role of the Start-Up Aid for Young Farmers in the Adoption of Innovative Agricultural Activities: The Case of Aloe Vera" Agriculture 11, no. 4: 349. https://doi.org/10.3390/agriculture11040349
APA StyleLiontakis, A., Sintori, A., & Tzouramani, I. (2021). The Role of the Start-Up Aid for Young Farmers in the Adoption of Innovative Agricultural Activities: The Case of Aloe Vera. Agriculture, 11(4), 349. https://doi.org/10.3390/agriculture11040349