China’s Tea Industry: Net Greenhouse Gas Emissions and Mitigation Potential
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Sources
2.2. Research Boundary and Method
2.3. Calculation of GHG Emission Sources
2.4. Calculation of C Sinks
2.5. Reduction Potential of Tea Industry
3. Results
3.1. GHG Emissions of the Tea Industry
3.2. C sink of Tea Plantation Ecosystems
3.3. Life Cycle GHG Emissions and Mitigation Potential
4. Discussion
4.1. GHG Emissions of the Tea Industry in China
4.2. Carbon Sink of the Tea Plantation Ecosystem
4.3. The Potential for GHG Emissions Mitigation
4.4. Critical Factor Analysis of the Tea Industry
4.5. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021. [Google Scholar] [CrossRef]
- Searchinger, T.D.; Wirsenius, S.; Beringer, T. Assessing the efficiency of changes in land use for mitigating climate change. Nature 2018, 7735, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef]
- Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 12052–12057. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.C. Crop Production and Greenhouse Gas Mitigation through Optimized Farming Practice in Northern China Plain. Ph.D. Thesis, China Agricultural University, Beijing, China, 2017. [Google Scholar]
- Tang, X.; Zhao, X.; Bai, Y. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [Green Version]
- Canadell, J.G.; Schulze, E.D. Global potential of biospheric carbon management for climate mitigation. Nat. Commun. 2014, 5, 5282. [Google Scholar] [CrossRef] [Green Version]
- Borowski, P.F. Nexus between water, energy, food and climate change as challenges facing the modern global, European and polish economy. AIMS Geosci. 2020, 6, 397–421. [Google Scholar] [CrossRef]
- Biggs, E.M.; Bruce, E.; Boruff, B.; Duncan, J.M.A.; Horsley, J.; Pauli, N.; McNeill, K.; Neef, A.; Ogtrop, F.V.; Curnow, J.; et al. Sustainable development and the water–energy–food nexus: A perspective on livelihoods. Environ. Sci. Policy 2015, 54, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Sureda, A.; Silva, A.S.; Khanf, F.; Xu, S.W. Trends of tea in cardiovascular health and disease: A critical review. Trends Food Sci. Tech. 2019, 88, 385–396. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, R.; Mine, Y. The impact of oolong and black tea polyphenols on human health. Food Biosci. 2019, 29, 55–61. [Google Scholar] [CrossRef]
- Liang, L.; Xie, B.; Li, M.H.; Yu, H.; Yu, X.J. Current situation, problem and countermeasure of tea industry based on ecological niches perspective in Guizhou province. Guizhou Agric. Sci. 2020, 48, 147–152. [Google Scholar]
- Cichorowski, G.; Joa, B.; Hottenroth, H. Scenario analysis of life cycle greenhouse gas emissions of Darjeeling tea. Int. J. Life Cycle Assess. 2015, 20, 426–439. [Google Scholar] [CrossRef]
- Doublet, G.; Jungbluth, N. Life cycle assessment of drink in Darjeeling tea. In Conventional and Organic Darjeeling Tea; ESU Services Ltd.: Uster, Switzerland, 2020. [Google Scholar]
- Khanali, M.; Mobli, H.; Hosseinzadeh-Bandbafha, H. Modeling of yield and environmental impact categories in tea processing units based on artificial neural networks. Environ. Sci. Pollut. Res. 2017, 24, 26324–26340. [Google Scholar] [CrossRef]
- Kouchaki-Penchah, H.; Nabavi-Pelesaraei, A.; O’Dwyer, J. Environmental management of tea production using joint of life cycle assessment and data envelopment analysis approaches. Environ. Prog. Sustain. Energy 2017, 36, 1116–1121. [Google Scholar] [CrossRef]
- Soheili-Fard, F.; Kouchaki-Penchah, H.; Raini, M.G.N. Cradle to grave environmental-economic analysis of tea life cycle in Iran. J. Clean. Prod. 2018, 196, 953–960. [Google Scholar] [CrossRef]
- Munasinghe, M.; Deraniyagala, Y.; Dassanayake, N. Economic, social and environmental impacts and overall sustainability of the tea sector in Sri Lanka. Sustain. Prod. Consump. 2017, 12, 155–169. [Google Scholar] [CrossRef]
- Vidanagama, J.; Lokupitiya, E. Energy usage and greenhouse gas emissions associated with tea and rubber manufacturing processes in Sri Lanka. Environ. Dev. 2018, 26, 43–54. [Google Scholar]
- Taulo, J.L.; Sebitosi, A.B. Material and energy flow analysis of the Malawian tea industry. Renew. Sust. Energy Rev. 2016, 56, 1337–1350. [Google Scholar] [CrossRef] [Green Version]
- Pelvan, E.; Özilgen, M. Assessment of energy and exergy efficiencies and renewability of black tea, instant tea and ice tea production and waste valorization processes. Sustain. Prod. Consump. 2017, 12, 59–77. [Google Scholar] [CrossRef]
- Azapagic, A.; Bore, J.; Cheserek, B. The global warming potential of production and consumption of Kenyan tea. J. Clean. Prod. 2016, 112, 4031–4040. [Google Scholar] [CrossRef]
- Li, S.; Wu, X.; Xue, H.; Gu, B.J.; Chang, J. Quantifying carbon storage for tea plantations in China. Agric. Ecosyst. Environ. 2011, 141, 390–398. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Y.G.; Fan, D.M.; Zhu, Q.; Pan, Z.Q.; Fan, K.; Wang, X.C. Temporal evolution of carbon storage in Chinese tea plantations from 1950 to 2010. Pedosphere 2017, 27, 121–128. [Google Scholar] [CrossRef]
- Pramanik, P.; Phukan, M. Assimilating atmospheric carbon dioxide in tea gardens of Northeast India. J. Environ. Manag. 2020, 256, 109912. [Google Scholar] [CrossRef]
- Kamau, D.M.; Spiertz, J.H.J.; Oenema, O. Carbon and nutrient stocks of tea plantations differing in age, genotype and plant population density. Plant Soil 2008, 307, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Mishra, G.; Sarkar, A. Studying the relationship between total organic carbon and soil carbon pools under different land management systems of Garo hills, Meghalaya. J. Environ. Manag. 2020, 257, 110002. [Google Scholar] [CrossRef]
- Zeng, X.; Lu, H.; Campbell, D.E.; Ren, H. Integrated emergy and economic evaluation of tea production chains in Anxi, China. Ecolo. Engin. 2013, 60, 354–362. [Google Scholar] [CrossRef]
- Ma, L.F.; Chen, H.J.; Shan, Y.J. Status and suggestions of tea garden fertilization on main green tea-producing counties in Zhejiang province. J. Tea Sci. 2013, 74–84. [Google Scholar]
- Qian, X.H.; Liao, W.Y.; Hu, R.G. Status and suggestion of tea guard fertilization in Anhui province. J. Tea Busin. 2015, 108–113. [Google Scholar]
- Ni, J.J. Status of Guizhou Meitan Tea Production and Suggestions on Optimizing Fertilization Management—A Case Study of Zhonghua Village. Master’s Thesis, China Agricultural University, Beijing, China, 2018. [Google Scholar]
- He, D. Status and suggestions of fertilization and chemical use on main tea-producing regions in Chongqing Municipality. South China Agric. 2018, 12, 108–111. [Google Scholar]
- Ni, K.; Liao, W.; Yi, X. Fertilization status and reduction potential in tea gardens of China. J. Plant Nutr. Fert. 2019, 25, 421–432. [Google Scholar]
- Wang, R.; Shi, X.G.; Wei, Y.Z. Yield and quality responses of citrus (Citrus reticulate) and tea (Podocarpus fleuryi Hickel.) to compound fertilizers. J. Zhejiang Univ. Sci. B 2006, 7, 696–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.C.; Wu, L.R.; Wu, J.Y. Relations between tea yields & quality and applied ratio of NPK fertilizers in the initial production tea garden. J. Tea Sci. 2011, 31, 11–16. [Google Scholar]
- Tian, R.Q.; Lv, R.Q. Effect of formulated fertilization on nutrient in soil, quality and yield of tea shoots. Acta. Tea Sinica. 2016, 57, 149–152. [Google Scholar]
- Ji, L.F.; Wu, Z.D.; You, Z.M. Effects of organic substitution for synthetic N fertilizer on soil bacterial diversity and community composition: A 10-year field trial in a tea plantation. Agric. Ecosyst. Environ. 2018, 268, 124–132. [Google Scholar] [CrossRef]
- Yang, X.D.; Ni, K.; Shi, Y.Z. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agric. Ecosyst. Environ. 2018, 252, 74–82. [Google Scholar] [CrossRef]
- Gu, S.S.; Hu, Q.L.; Cheng, Y.Q. Application of organic fertilizer improves microbial community diversity and alters microbial network structure in tea (Camellia sinensis) plantation soils. Soil Till. Res. 2019, 195, 104356. [Google Scholar] [CrossRef]
- Wang, F.; Chen, Y.Z.; You, Z.M. Nitrogen content, response to nitrogen fertilization and N2O emission of soil at tea plantations. Fujian J. Agric. Sci. 2014, 29, 1045–1050. [Google Scholar]
- Wang, F.; Chen, Y.Z.; You, Z.M. Greenhouse gas emission potential from difference tea garden soil types. Fujian J. Agric. Sci. 2013, 28, 1291–1297. [Google Scholar]
- Dai, G.J. Research of Greenhouse Gases of the Tea Garden. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2011. [Google Scholar]
- Zhu, T.; Zhang, J.; Meng, T. Tea plantation destroys soil retention of NO3− and increases N2O emissions in subtropical China. Soil Biol. Biochem. 2014, 73, 106–114. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W.; Zhang, J. N2O production pathways relate to land use type in acidic soils in subtropical China. J. Soils Sediments 2016, 17, 1–9. [Google Scholar] [CrossRef]
- Di, Y.J. Energy use in tea processing of China. Tea Sci. Tech. 2008, 3, 4–9. [Google Scholar]
- Cheng, Z.; Liao, Q. Analysis on carbon emissions of green tea production according to PAS 2050. Hubei Agric. Sci. 2016, 3, 608–611. [Google Scholar]
- Zhang, Q.; Cui, Q.M.; Wang, Y.J. Energy consumption and alternative strategy in tea processing on Enshi, Hubei province. China Tea 2018, 3, 48–52. [Google Scholar]
- Xu, Q.; Hu, K.L.; Wang, X.L.; Wang, D.; Knudsen, M.T. Carbon footprint and primary energy demand of organic tea in China using a life cycle assessment approach. J. Clean. Prod. 2019, 233, 782–792. [Google Scholar] [CrossRef]
- Liang, L.; Ridoutt, B.G.; Wu, W.; Lal, R.; Wang, L.Y.; Wang, Y.C.; Li, C.L.; Zhao, G.S. A multi-indicator assessment of peri-urban agricultural production in Beijing, China. Ecol. Indic. 2019, 97, 350–362. [Google Scholar] [CrossRef]
- Liang, L. Environmental Impact Assessment of Circular Agriculture Based on Life Cycle Assessment: Methods and Case Studies. Ph.D. Thesis, China Agricultural University, Beijing, China, 2009. [Google Scholar]
- Li, S.Y. Carbon Balance of Tea Plantation Ecosystem in China. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2010. [Google Scholar]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J. Producing more grain with lower environmental costs. Nature 2014, 13609, 486–489. [Google Scholar] [CrossRef]
- Chen, Z.D.; Wu, Y.; Ti, J.S.; Chen, F.; Li, S. Carbon efficiency of double-rice production system in Hunan province, China. Chin. J. Appl. Ecol. 2015, 26, 87–92. [Google Scholar]
- Cheng, K.; Yan, M.; Nayak, D.; Pan, G.; Smith, P.; Zheng, J.; Zheng, J. Carbon footprint of crop production in China: An analysis of national statistics data. J. Agric. Sci. 2015, 153, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Guo, L.P.; Li, Y.C.; Su, M.; Lin, Y.B.; Perthuis, C.D.; Moran, D. Greenhouse gas intensity of three main crops and implications for low-carbon agriculture in China. Clim. Chang. 2015, 128, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.Y.; Hu, Y.C.; Cui, S.H.; Kang, J.F.; Xu, L.L. Carbon footprints of food production in China (1979–2009). J. Clean. Prod. 2015, 90, 97–103. [Google Scholar]
- Xu, X.; Lan, Y. A comparative study on carbon footprints between plant- and animal-based foods in China. J. Clean. Prod. 2016, 112, 2581–2592. [Google Scholar] [CrossRef]
- Ruan, J.Y. Tea cultivation for forty years in China. China Tea 2019, 7, 1–7. [Google Scholar]
- Yao, Z.; Zheng, X.; Liu, C.; Wang, R.; Xie, B.H. Stand age amplifies greenhouse gas and NO releases following conversion of rice paddy to tea plantations in subtropical China. Agric. Forest Meteorol. 2018, 248, 386–396. [Google Scholar] [CrossRef]
- Chen, D.; Li, Y.; Wang, C.; Lu, X.L.; Wang, Y.; Shen, J.; Qin, J.; Wu, J. Dynamics and underlying mechanisms of N2O and NO emissions in response to a transient land-use conversion of Masson pine forest to tea field. Sci. Total Environ. 2019, 693, 133549. [Google Scholar] [CrossRef]
- Wijeratne, T.; de Costa, J.; Wijeratne, M.A. Carbon Sequestration Potential of Tea Plantations in Sri Lanka as An Option for Mitigating Climate Change; A Step Towards A Greener Economy. In Proceedings of the Fifth Symposium on Plantation Crop Research, Colombo, Sri Lanka, 15–17 October 2014. [Google Scholar]
- Phukan, M.; Savapondit, D.; Hazra, A.; Das, S.; Pramanik, P. Algorithmic derivation of CO2 assimilation based on some physiological parameters of tea bushes in North-East India. Ecol. Indic. 2018, 91, 77–83. [Google Scholar] [CrossRef]
- Shen, X.R.; Wang, Q.H.; Wu, X.; Fu, S.W. Increasing tea garden carbon sink capacity, promoting the development of low carbon tea production. Chin. Agric. Sci. Bullet. 2012, 28, 254–260. [Google Scholar]
- Chen, J.; Huang, H.Z.; Wang, J.; Xiang, Y.P. Study on carbon storage of traditional arbor tea ecosystem of the Bulang Nationality in Jingmai Mountain. J. West China Forest. Sci. 2013, 42, 76–80. [Google Scholar]
- Xiao, Z.; Wang, L.; Mao, J.; Zhu, X.; Wang, X.; Zheng, L.; Tang, J. Carbon storage of different tree-tea agroforestry systems in Xishuangbanna, Yunnan province of Southwest China. Chin. J. Ecol. 2012, 31, 1617–1625. [Google Scholar]
- Sun, X.X.; Yang, G.S.; Xu, X.B. Characteristics of carbon fluxes for tea garden ecosystems in the hills of western Lake Taihu Basin, China. Chin. J. Ecol. 2014, 33, 2072–2077. [Google Scholar]
- Mehmet, E.; Piotr, B. An optimization study on corn silage mechanization in Ege University Agricultural Research Farm. Tarım Makinaları Bilimi Dergisi 2014, 10, 87–92. [Google Scholar]
- Yao, Z.; Huo, H.; Zhang, Q.; Streets, D.G.; He, K. Gaseous and particulate emissions from rural vehicles in China. Atmos. Environ. 2011, 45, 3055–3061. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef]
- Meng, F.Q.; Qiao, Y.H.; Wu, W.L.; Smith, P.; Scott, S. Environmental impacts and production performances of organic agriculture in China: A monetary valuation. J. Environ. Manag. 2017, 188, 49–57. [Google Scholar] [CrossRef] [Green Version]
- China Tea Science Society (CTSS). China Tea Yearbook; China Agricultural Press: Beijing, China, 2018. [Google Scholar]
- Chen, C.F.; Lin, J.Y. Estimating the gross budget of applied nitrogen and phosphorus in tea plantations. Sustain. Environ. Res. 2016, 26, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Maghanga, J.K.; Kituyi, J.L.; Kisinyo, P.O. Impact of nitrogen fertilizer applications on surface water nitrate levels within a Kenyan tea plantation. J. Chem. 2013, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Qiao, C.L.; Xu, B.; Han, Y.T. Synthetic nitrogen fertilizers alter the soil chemistry, production and quality of tea. A meta-analysis. Agron. Sustain. Dev. 2018, 38, 10. [Google Scholar] [CrossRef] [Green Version]
- Venkatesan, S.; Ganapathy, M. Impact of nitrogen and potassium fertilizer application on quality of CTC teas. Food Chem. 2004, 84, 325–328. [Google Scholar] [CrossRef]
- Ruan, J.Y.; Ma, L.; Shi, Y. Potassium management in tea plantations: Its uptake by field plants, status in soils, and efficacy on yields and quality of teas in China. J. Plant Nutr. Soil Sci. 2013, 176, 450–459. [Google Scholar] [CrossRef]
Province | Planting Area (104 ha) | Picking Area (104 ha) | Production (104 t) | Value (108 USD) | Yield (kg ha−1) |
---|---|---|---|---|---|
Guizhou | 47.8 | 35.2 | 32.7 | 53.6 | 928 |
Yunnan | 41.3 | 38.1 | 38.7 | 20.9 | 1016 |
Hubei | 35.3 | 25.7 | 26.7 | 26.9 | 1039 |
Sichuan | 33.3 | 24.4 | 28.0 | 31.1 | 1148 |
Fujian | 25.3 | 24.1 | 44.0 | 34.8 | 1826 |
Zhejiang | 20.0 | 17.9 | 17.9 | 28.7 | 1000 |
Anhui | 18.0 | 14.7 | 13.4 | 16.5 | 912 |
Shanxi | 16.7 | 10.1 | 8.9 | 18.9 | 881 |
Henan | 16.0 | 11.7 | 6.7 | 17.9 | 573 |
Hunan | 14.6 | 11.2 | 19.7 | 12.9 | 1759 |
Jiangxi | 10.0 | 7.2 | 6.4 | 8.2 | 889 |
Guangxi | 7.3 | 6.1 | 6.8 | 6.7 | 1147 |
Guangdong | 5.7 | 4.3 | 9.5 | 5.9 | 2029 |
Chongqing | 5.2 | 3.5 | 3.7 | 3.5 | 1057 |
Shandong | 4.1 | 2.1 | 2.7 | 8.7 | 1286 |
Jiangshu | 3.4 | 3.1 | 1.4 | 3.7 | 452 |
Total | 304 | 239 | 267 | 298.8 | 1117 |
Province | Chemical Fertilizer (kg ha−1) | Organic Fertilizer (kg ha−1) | Total Nutrient (kg ha−1) | Nutrient Ratio(N:P:K) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | N | P2O5 | K2O | N | P2O5 | K2O | ||
Guizhou | 383 | 163 | 159 | 37 | 21 | 26 | 420 | 184 | 185 | 0.53:0.23:0.24 |
Yunnan | 368 | 76 | 68 | 13 | 10 | 12 | 381 | 86 | 80 | 0.70:0.16:0.14 |
Hubei | 708 | 112 | 112 | 37 | 21 | 24 | 745 | 133 | 136 | 0.73:0.13:0.13 |
Sichuan | 573 | 107 | 105 | 54 | 40 | 49 | 627 | 147 | 154 | 0.67:0.16:0.17 |
Fujian | 266 | 186 | 193 | 25 | 20 | 21 | 291 | 206 | 214 | 0.41:0.29:0.30 |
Zhejiang | 410 | 93 | 110 | 57 | 27 | 27 | 467 | 120 | 137 | 0.65:0.17:0.18 |
Anhui | 362 | 73 | 75 | 43 | 28 | 29 | 405 | 101 | 104 | 0.66:0.17:0.17 |
Shanxi | 247 | 23 | 43 | 105 | 71 | 82 | 352 | 94 | 125 | 0.62:0.16:0.22 |
Henan | 269 | 47 | 98 | 56 | 25 | 21 | 325 | 72 | 119 | 0.63:0.14:0.23 |
Hunan | 606 | 164 | 135 | 68 | 40 | 45 | 674 | 204 | 180 | 0.64:0.19:0.17 |
Jiangxi | 604 | 176 | 198 | 13 | 9 | 11 | 617 | 185 | 209 | 0.61:0.18:0.21 |
Guangxi | 330 | 143 | 66 | 104 | 56 | 32 | 434 | 199 | 98 | 0.59:0.27:0.14 |
Guangdong | 353 | 105 | 105 | 255 | 58 | 59 | 608 | 163 | 164 | 0.65:0.17:0.18 |
Chongqing | 235 | 59 | 51 | 46 | 33 | 25 | 281 | 92 | 76 | 0.63:0.20:0.17 |
Shandong | 536 | 203 | 233 | 190 | 282 | 729 | 726 | 485 | 962 | 0.34:0.22:0.44 |
Jiangshu | 393 | 185 | 192 | 96 | 57 | 50 | 489 | 242 | 242 | 0.50:0.24:0.25 |
Mean | 415 | 120 | 121 | 75 | 50 | 78 | 490 | 170 | 199 | 0.57:0.20:0.23 |
Province | Conventional Model | Reduction Potential | ||||
---|---|---|---|---|---|---|
Kg CO2 eq kg−1 | T CO2 eq ha−1 | 104 t CO2 eq Prov−1 | Kg CO2 eq kg−1 | T CO2 eq ha−1 | 104 t CO2 eq Prov−1 | |
Guizhou | 3.82 | 3.54 | 124.6 | 1.45 | 1.34 | 47.3 |
Yunnan | 3.15 | 3.20 | 121.9 | 1.05 | 1.07 | 40.6 |
Hubei | 5.86 | 6.08 | 156.3 | 3.76 | 3.91 | 100.4 |
Sichuan | 4.32 | 4.96 | 121.1 | 2.43 | 2.80 | 68.2 |
Fujian | 1.45 | 2.65 | 63.8 | 0.25 | 0.45 | 10.9 |
Zhejiang | 3.61 | 3.61 | 64.6 | 1.44 | 1.44 | 25.7 |
Anhui | 3.46 | 3.15 | 46.3 | 1.11 | 1.01 | 14.9 |
Shanxi | 2.39 | 2.10 | 21.2 | 0.07 | 0.06 | 0.6 |
Henan | 4.14 | 2.37 | 27.8 | 0.42 | 0.24 | 2.8 |
Hunan | 3.04 | 5.35 | 59.9 | 1.79 | 3.15 | 35.3 |
Jiangxi | 6.08 | 5.41 | 39.0 | 3.61 | 3.21 | 23.1 |
Guangxi | 2.60 | 2.99 | 18.2 | 0.74 | 0.85 | 5.2 |
Guangdong | 1.55 | 3.16 | 13.6 | 0.48 | 0.98 | 4.2 |
Chongqing | 1.95 | 2.07 | 7.2 | 0.00 | 0.00 | 0.0 |
Shandong | 3.83 | 4.93 | 10.3 | 2.11 | 2.71 | 5.7 |
Jiangshu | 8.16 | 3.69 | 11.4 | 3.28 | 1.48 | 4.6 |
Mean | 3.31 | 3.70 | 1.46 | 1.63 | ||
Total | 907 | 390 |
Province | Conventional Model | Reduction Potential | ||||
---|---|---|---|---|---|---|
kg CO2 eq kg−1 | T CO2 eq ha−1 | 104 t CO2 eq prov−1 | kg CO2 eq kg−1 | T CO2 eq ha−1 | 104 t CO2 eq prov−1 | |
Guizhou | 2.54 | 2.75 | 96.8 | 0.49 | 0.46 | 16.1 |
Yunnan | 2.11 | 2.50 | 95.1 | 0.20 | 0.20 | 7.7 |
Hubei | 4.03 | 4.88 | 125.4 | 2.49 | 2.59 | 66.5 |
Sichuan | 3.07 | 4.11 | 100.2 | 1.58 | 1.81 | 44.3 |
Fujian | 0.89 | 1.91 | 45.9 | 0.00 | 0.00 | 0.0 |
Zhejiang | 2.62 | 3.06 | 54.8 | 0.77 | 0.77 | 13.7 |
Anhui | 2.49 | 2.65 | 39.0 | 0.40 | 0.36 | 5.3 |
Shanxi | 2.24 | 2.31 | 23.3 | 0.01 | 0.01 | 0.1 |
Henan | 3.18 | 2.13 | 24.9 | 0.00 | 0.00 | 0.0 |
Hunan | 2.15 | 4.41 | 49.4 | 1.21 | 2.12 | 23.8 |
Jiangxi | 3.90 | 4.04 | 29.1 | 1.97 | 1.75 | 12.6 |
Guangxi | 2.12 | 2.84 | 17.3 | 0.48 | 0.55 | 3.4 |
Guangdong | 1.68 | 3.98 | 17.1 | 0.83 | 1.69 | 7.3 |
Chongqing | 1.49 | 1.84 | 6.4 | 0.00 | 0.00 | 0.0 |
Shandong | 3.17 | 4.76 | 10.0 | 1.92 | 2.46 | 5.2 |
Jiangshu | 6.07 | 3.20 | 9.9 | 2.01 | 0.91 | 2.8 |
Mean | 2.46 | 3.21 | 0.78 | 0.87 | ||
Total | 769 | 209 |
Province | Agricultural Materials Input | GHG Emissions | |||
---|---|---|---|---|---|
Diesel (104 t) | Pesticide (104 kg) | Diesel (104 t CO2 eq) | Pesticide (104 t CO2 eq) | Subtotal (104 t CO2 eq) | |
Guizhou | 0.76 | 26.40 | 2.51 | 0.48 | 2.99 |
Yunnan | 0.82 | 28.58 | 2.72 | 0.51 | 3.23 |
Hubei | 0.55 | 19.28 | 1.83 | 0.35 | 2.18 |
Sichuan | 0.52 | 18.30 | 1.74 | 0.33 | 2.07 |
Fujian | 0.52 | 18.08 | 1.72 | 0.33 | 2.05 |
Zhejiang | 0.38 | 13.43 | 1.28 | 0.24 | 1.52 |
Anhui | 0.32 | 11.03 | 1.05 | 0.20 | 1.25 |
Shanxi | 0.22 | 7.58 | 0.72 | 0.14 | 0.86 |
Henan | 0.25 | 8.78 | 0.84 | 0.16 | 0.99 |
Hunan | 0.24 | 8.40 | 0.80 | 0.15 | 0.95 |
Jiangxi | 0.15 | 5.40 | 0.51 | 0.10 | 0.61 |
Guangxi | 0.13 | 4.58 | 0.44 | 0.08 | 0.52 |
Guangdong | 0.09 | 3.23 | 0.31 | 0.06 | 0.36 |
Chongqing | 0.08 | 2.63 | 0.25 | 0.05 | 0.30 |
Shandong | 0.05 | 1.58 | 0.15 | 0.03 | 0.18 |
Jiangshu | 0.07 | 2.33 | 0.22 | 0.04 | 0.26 |
Total | 5.15 | 179.6 | 17.09 | 3.23 | 20.3 |
Province | Coal 104 t CO2 eq | Electricity 104 t CO2 eq | Natural Gas 104 t CO2 eq | Biomass 104 t CO2 eq | Coal-to-biomass 104 t CO2 eq | Electricity-to-biomass 104 t CO2 eq | Natural gas-to-biomass 104 t CO2 eq |
---|---|---|---|---|---|---|---|
Guizhou | 144.2 | 184.4 | 81.8 | 13.6 | 130.6 | 170.8 | 68.1 |
Yunnan | 170.7 | 218.3 | 96.8 | 16.1 | 154.6 | 202.2 | 80.7 |
Hubei | 117.7 | 150.6 | 66.8 | 11.1 | 106.6 | 139.5 | 55.6 |
Sichuan | 123.5 | 157.9 | 70.0 | 11.6 | 111.8 | 146.3 | 58.4 |
Fujian | 194.0 | 248.2 | 110.0 | 18.3 | 175.7 | 229.9 | 91.7 |
Zhejiang | 78.9 | 101.0 | 44.8 | 7.4 | 71.5 | 93.5 | 37.3 |
Anhui | 59.1 | 75.6 | 33.5 | 5.6 | 53.5 | 70.0 | 27.9 |
Shanxi | 39.2 | 50.2 | 22.3 | 3.7 | 35.5 | 46.5 | 18.5 |
Henan | 29.5 | 37.8 | 16.8 | 2.8 | 26.8 | 35.0 | 14.0 |
Hunan | 86.9 | 111.1 | 49.3 | 8.2 | 78.7 | 102.9 | 41.1 |
Jiangxi | 28.2 | 36.1 | 16.0 | 2.7 | 25.6 | 33.4 | 13.3 |
Guangxi | 30.0 | 38.4 | 17.0 | 2.8 | 27.2 | 35.5 | 14.2 |
Guangdong | 41.9 | 53.6 | 23.8 | 4.0 | 37.9 | 49.6 | 19.8 |
Chongqing | 16.3 | 20.9 | 9.3 | 1.5 | 14.8 | 19.3 | 7.7 |
Shandong | 11.9 | 15.2 | 6.8 | 1.1 | 10.8 | 14.1 | 5.6 |
Jiangshu | 6.2 | 7.9 | 3.5 | 0.6 | 5.6 | 7.3 | 2.9 |
Total | 1178 | 1507 | 668 | 111 | 1067 | 1396 | 557 |
Functional Unit | GHG Emissions of Different Energy Sources | Reduction Potential Based on Different Energy Transformations | |||||
---|---|---|---|---|---|---|---|
Coal | Electricity | Natural Gas | Biomass | Coal-to-Biomass | Electricity-to-Biomass | Natural Gas-to-Biomass | |
Per product (kgCO2eq kg−1) | 4.41 | 5.64 | 2.51 | 0.42 | 3.99 | 5.22 | 2.09 |
Per area (ton CO2eq ha−1) | 4.92 | 6.30 | 2.80 | 0.47 | 4.46 | 5.83 | 2.33 |
Province | Annual Biomass Increment 104 t CO2 | C Change in Soil 104 t CO2 | Harvested Tea 104 t CO2 | Total |
---|---|---|---|---|
Guizhou | 158.9 | 74.9 | 54.0 | 287.8 |
Yunnan | 172.0 | 81.1 | 63.9 | 317.0 |
Hubei | 109.4 | 64.1 | 44.1 | 217.6 |
Sichuan | 110.1 | 51.9 | 46.2 | 208.3 |
Fujian | 108.8 | 116.8 | 72.7 | 298.2 |
Zhejiang | 76.2 | 44.7 | 29.6 | 150.4 |
Anhui | 62.6 | 36.7 | 22.1 | 121.4 |
Shanxi | 43.0 | 25.2 | 14.7 | 82.9 |
Henan | 49.8 | 29.2 | 11.1 | 90.1 |
Hunan | 47.7 | 28.0 | 32.5 | 108.2 |
Jiangxi | 30.7 | 18.0 | 10.6 | 59.2 |
Guangxi | 27.5 | 29.6 | 11.2 | 68.3 |
Guangdong | 19.4 | 20.8 | 15.7 | 55.9 |
Chongqing | 15.8 | 7.5 | 6.1 | 29.4 |
Shandong | 8.9 | 5.2 | 4.5 | 18.6 |
Jiangshu | 13.2 | 7.7 | 2.3 | 23.2 |
Total | 1054.0 | 641.3 | 441.3 | 2136.7 |
Province | GHG Emission Sources (104 t CO2 eq) | Subtotal | Reduction Potential (104 t CO2 eq) | Subtotal | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Fertilizer | Pesticide | Diesel | Soil | Energy | Fertilizer | Soil | Energy | |||
Guizhou | 124.6 | 0.48 | 2.51 | 96.8 | 144.2 | 368.6 | 47.3 | 16.1 | 130.6 | 194.0 |
Yunnan | 121.9 | 0.51 | 2.72 | 95.1 | 170.7 | 390.9 | 40.6 | 7.7 | 154.6 | 202.9 |
Hubei | 156.3 | 0.35 | 1.83 | 125.4 | 117.7 | 401.6 | 100.4 | 66.5 | 106.6 | 273.5 |
Sichuan | 121.1 | 0.33 | 1.74 | 100.2 | 123.5 | 346.9 | 68.2 | 44.3 | 111.8 | 224.3 |
Fujian | 63.8 | 0.33 | 1.72 | 45.9 | 194.0 | 305.8 | 10.9 | 0.0 | 175.7 | 186.6 |
Zhejiang | 64.6 | 0.24 | 1.28 | 54.8 | 78.9 | 199.8 | 25.7 | 13.7 | 71.5 | 110.9 |
Anhui | 46.3 | 0.20 | 1.05 | 39.0 | 59.1 | 145.6 | 14.9 | 5.3 | 53.5 | 73.7 |
Shanxi | 21.2 | 0.14 | 0.72 | 23.3 | 39.2 | 84.6 | 0.6 | 0.1 | 35.5 | 36.3 |
Henan | 27.8 | 0.16 | 0.84 | 24.9 | 29.5 | 83.2 | 2.8 | 0.0 | 26.8 | 29.6 |
Hunan | 59.9 | 0.15 | 0.80 | 49.4 | 86.9 | 197.2 | 35.3 | 23.8 | 78.7 | 137.8 |
Jiangxi | 39.0 | 0.10 | 0.51 | 29.1 | 28.2 | 96.9 | 23.1 | 12.6 | 25.6 | 61.3 |
Guangxi | 18.2 | 0.08 | 0.44 | 17.3 | 30.0 | 66.0 | 5.2 | 3.4 | 27.2 | 35.7 |
Guangdong | 13.6 | 0.06 | 0.31 | 17.1 | 41.9 | 73.0 | 4.2 | 7.3 | 37.9 | 49.4 |
Chongqing | 7.2 | 0.05 | 0.25 | 6.4 | 16.3 | 30.3 | 0 | 0.0 | 14.8 | 14.8 |
Shandong | 10.3 | 0.03 | 0.15 | 10.0 | 11.9 | 32.4 | 5.7 | 5.2 | 10.8 | 21.7 |
Jiangshu | 11.4 | 0.04 | 0.22 | 9.9 | 6.2 | 27.8 | 4.6 | 2.8 | 5.6 | 13.0 |
Total | 907 | 3.2 | 17.1 | 769 | 1178 | 2875 | 390 | 209 | 1067 | 1666 |
Region | Boundary | Functional Unit | Carbon Emission | Reference |
---|---|---|---|---|
India | Cradle-to-grave | 1.75g tea + 250 mL water | 19–170 g CO2 eq | [15] |
India | Cradle-to-factory gate | 1kg Darjeeling tea | 7.1–25.3 kg CO2eq | [14] |
India | Cradle-to-grave | 8 g organic tea + 1L water | 0.15 kgCO2eq | [14] |
Iran | Cradle-to-tea garden gate | 1 t fresh tea | 442 kg CO2 eq | [17] |
Iran | Cradle-to-grave | 1 kg Guilan tea | 2.35–5.91 CO2 eq | [18] |
Iran | Factory gate-to-factory gate | 1 t dry tea | 1319–1339 kg CO2 eq | [16] |
Sri Lanka | Harvesting-to-factory gate | 1 t tea | 514–603 kg CO2 eq | [20] |
Sri Lanka | Cradle-to-grave | 1 kg tea | 32 kg CO2 eq | [19] |
Malawi | Factory gate-to-factory gate | 1 kg tea | 4.32 kg CO2 eq | [21] |
Turkey | Cradle-to-supermarket gate | 1 t tea | 1730 kg CO2 eq | [22] |
Turkey | Cradle-to-supermarket gate | 1 t organic tea | 1500 kg CO2 eq | [22] |
Kenyan | Cradle-to-grave | 1 kg tea | 12 kg CO2 eq | [23] |
China | Cradle-to-supermarket gate | 1kg organic tea | 4.5–19.9 kgCO2 eq | [49] |
China | Cradle-to-factory gate | 1 kg tea | 10.76 CO2 eq | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, L.; Ridoutt, B.G.; Wang, L.; Xie, B.; Li, M.; Li, Z. China’s Tea Industry: Net Greenhouse Gas Emissions and Mitigation Potential. Agriculture 2021, 11, 363. https://doi.org/10.3390/agriculture11040363
Liang L, Ridoutt BG, Wang L, Xie B, Li M, Li Z. China’s Tea Industry: Net Greenhouse Gas Emissions and Mitigation Potential. Agriculture. 2021; 11(4):363. https://doi.org/10.3390/agriculture11040363
Chicago/Turabian StyleLiang, Long, Bradley G. Ridoutt, Liyuan Wang, Bin Xie, Minghong Li, and Zhongbai Li. 2021. "China’s Tea Industry: Net Greenhouse Gas Emissions and Mitigation Potential" Agriculture 11, no. 4: 363. https://doi.org/10.3390/agriculture11040363
APA StyleLiang, L., Ridoutt, B. G., Wang, L., Xie, B., Li, M., & Li, Z. (2021). China’s Tea Industry: Net Greenhouse Gas Emissions and Mitigation Potential. Agriculture, 11(4), 363. https://doi.org/10.3390/agriculture11040363