An Attempt to Enrich Pig Meat with Omega-3 Fatty Acids Using Linseed Oil Ethyl Ester Diet Supplement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Supplement Used in the Study
2.2. Animals
2.3. Samples Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hoz, L.; Lopez-Bote, C.J.; Cambero, M.I.; D’Arrigoa, M.; Pina, C.; Santosa, C.; Ordonez, J.A. Effect of dietary linseed oil and a-tocopherol on pork tenderloin (Psoas major) muscle. Meat Sci. 2003, 65, 1039–1044. [Google Scholar] [CrossRef]
- Patkowska-Sokoła, B.; Czyż, K.; Sokoła-Wysoczańska, E.; Wysoczański, T.; Bodkowski, R.; Vogt, A. Use of omega-3 polyunsaturated fatty acid ethyl esters as raw material for fodder industry. Przem. Chem. 2014, 9, 799–802. [Google Scholar]
- Wysoczański, T.; Sokoła-Wysoczańska, E.; Pękala, J.; Lochyński, S.; Czyż, K.; Bodkowski, R.; Herbinger, G.; Patkowska-Sokoła, B.; Librowski, T. Omega-3 fatty acids and their role in Central Nervous System—A review. Curr. Med. Chem. 2016, 23, 816–831. [Google Scholar] [CrossRef]
- Bertol, T.M.; de Campos, R.M.L.; Ludke, J.V.; Terra, N.N.; de Figueiredo, E.A.P.; Coldebella, A.; dos Santos Filho, J.I.; Kawski, V.L.; Lehr, N.M. Effects of genotype and dietary oil supplementation on performance, carcass traits, pork quality and fatty acid composition of backfat and intramuscular fat. Meat Sci. 2013, 93, 507–516. [Google Scholar] [CrossRef]
- Janiszewski, P.; Grześkowiak, E.; Lisiak, D.; Borys, B.; Borzuta, K.; Pospiech, E.; Poławska, E. The influence of thermal processing on the fatty acid profile of pork and lamb meat fed diet with increased levels of unsaturated fatty acids. Meat Sci. 2016, 111, 161–167. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Gai, F.; Brugiapaglia, A.; Mussa, P.P.; Meineri, G. Fresh meat quality of pigs fed diets with different fatty acid profiles and supplemented with red wine solids. Food Sci. Technol. 2015, 35, 633–642. [Google Scholar] [CrossRef] [Green Version]
- Musella, M.; Cannata, S.; Rossi, R.; Mourot, J.; Baldini, P.; Corino, C. Omega-3 polyunsaturated fatty acid from extruded linseed influences the fatty acid composition and sensory characteristics of dry-cured ham from heavy pigs. J. Anim. Sci. 2009, 87, 3578–3588. [Google Scholar] [CrossRef] [PubMed]
- Apple, J.K.; Maxwell, C.V.; Galloway, D.L.; Hutchison, S.; Hamilton, C.R. Interactive effects of dietary fat source and slaughter weight in growing-finishing swine: I. Growth performance and longissimus muscle fatty acid composition. J. Anim. Sci. 2009, 87, 1407–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benz, J.M.; Tokach, M.D.; Dritz, S.S.; Nelssen, J.L.; DeRouchey, J.M.; Sulabo, R.C.; Goodband, R.D. Effects of choice white grease and soybean oil on growth performance, carcass characteristics, and carcass fat quality of growing-finishing pigs. J. Anim. Sci. 2011, 89, 404–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juárez, M.; Dugan, M.E.R.; Aldai, N.; Aalhus, J.L.; Patience, J.F.; Zijlstra, R.T.; Beaulieu, A.D. Feeding co-extruded flaxseed to pigs: Effects of duration and feeding level on growth performance and backfat fatty acid composition of grower-finisher pigs. Meat Sci. 2010, 84, 578–584. [Google Scholar] [CrossRef]
- Kim, J.S.; Ingale, S.L.; Lee, S.H.; Choi, Y.H.; Kim, E.H.; Lee, D.C.; Kim, Y.H.; Chae, B.J. Impact of dietary fat sources and feeding level on adipose tissue fatty acids composition and lipid metabolism related gene expression in finisher pigs. Anim. Feed Sci. Technol. 2014, 196, 60–67. [Google Scholar] [CrossRef]
- Liu, P.; Kerr, B.J.; Chen, C.; Weber, T.E.; Johnston, L.J.; Shurson, G.C. Influence of thermally oxidized vegetable oils and animal fats on energy and nutrient digestibility in young pigs. J. Anim. Sci. 2014, 92, 2980–2986. [Google Scholar] [CrossRef]
- Hanczakowski, P.; Szymczyk, B.; Hanczakowska, E. Fatty acid profile and cholesterol content of meat from pigs fed different fats. Ann. Anim. Sci. 2009, 9, 157–163. [Google Scholar]
- Raj, S.; Skiba, G.; Sobol, M.; Pastuszewska, B. Effects of dietary fat on the saturated and monounsaturated fatty acid metabolism in growing pigs. Arch. Anim. Nutr. 2017, 71, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Jiang, Z.; Lai, C. Significance of increasing n-3 PUFA content in pork on human health. Crit. Rev. Food Sci. Nutr. 2015, 56, 858–870. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Li, T.S.; Kim, I.H. Effects of protected omega-3 fatty acid derived from linseed oil and vitamin E on growth performance, apparent digestibility, blood characteristics and meat quality of finishing pigs. Anim. Prod. Sci. 2016, 57, 1085–1090. [Google Scholar] [CrossRef]
- Heller, K.; Andruszewska, A.; Wielgusz, K. The cultivation of linseed by ecological methods. J. Res. Appl. Agric. Eng. 2010, 55, 112–116. [Google Scholar]
- Shabbir, M.A.; Khan, M.R.; Shehzad, A.; Din, A.; Khan, M.I.; Hussain, B. Flaxseed segregations as a n imperative tool for its neutraceutical implication. Pak. J. Food Sci. 2014, 24, 64–74. [Google Scholar]
- Nuernberg, K.; Fischer, K.; Nuernberg, G.; Kuechenmeister, U.; Klosowska, D.; Eliminowska-Wenda, G.; Fiedler, I.; Ender, K. Effects of dietary olive and linseed oil on lipid composition, meat quality, sensory characteristics and muscle structure in pigs. Meat Sci. 2005, 70, 63–74. [Google Scholar] [CrossRef]
- Campos, J.R.; Severino, P.; Ferreira, C.S.; Zielinska, A.; Santini, A.; Souto, S.B.; Souto, E.B. Linseed essential oil–source of lipids as active ingredients for pharmaceuticals and nutraceuticals. Curr. Med. Chem. 2019, 26, 1–22. [Google Scholar] [CrossRef]
- Tang, Y.; Jiang, Y.; Meng, J.; Tao, J. A brief review of physiological roles, plant resources, synthesis, purification and oxidative stability of Alpha-linolenic Acid. Emir. J. Food Agric. 2018, 30, 341–356. [Google Scholar] [CrossRef]
- Sokoła-Wysoczańska, E.; Wysoczański, T.; Czyż, K.; Vogt, A.; Patkowska-Sokoła, B.; Sokoła, K.; Bodkowski, R.; Wyrostek, A.; Roman, K. Characteristics of polyunsaturated fatty acids ethyl esters with high alpha-linolenic acid content as a component of biologically active health-promoting supplements. Przem. Chem. 2014, 93, 1923–1927. [Google Scholar]
- Wiesenfeld, P.W.; Babu, U.S.; Collins, T.F.X.; Sprando, R.; O’Donnel, M.W.; Flynn, T.J.; Black, T.; Olejnik, N. Flaxseed increased α-linolenic and eicosapentaenoic acid and decreased arachidonic acid in serum and tissues of rat dams and offspring. Food Chem. Toxicol. 2003, 41, 841–855. [Google Scholar] [CrossRef]
- Kajla, P.; Sharma, A.; Sood, D.R. Flaxseed-a potential functional food source. J. Food Sci. Technol. 2015, 52, 1857–1871. [Google Scholar] [CrossRef]
- AbuMweis, S.; Jew, S.; Tayyem, R.; Agraib, L. Eicosapentaenoic acid and docosahexaenoic acid containing supplements modulate risk factors for cardiovascular disease: A meta-analysis of randomised placebo-control human clinical trials. J. Hum. Nutr. Diet. 2018, 31, 67–84. [Google Scholar] [CrossRef]
- Chang, C.H.; Tseng, P.T.; Chen, N.Y.; Lin, P.C.; Lin, P.Y.; Chang, J.P.C.; Kuo, F.Y.; Lin, J.; Wu, M.C.; Su, K.P. Safety and tolerability of prescription omega-3 fatty acids: A systematic review and meta-analysis of randomized controlled trials. Prostagland. Leukotri. Essent. Fatty Acids 2018, 129, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czyż, K.; Sokoła-Wysoczańska, E.; Bodkowski, R.; Cholewińska, P.; Wyrostek, A. Dietary Omega-3 Source Effect on the Fatty Acid Profile of Intramuscular and Perimuscular Fat—Preliminary Study on a Rat Model. Nutrients 2020, 12, 3382. [Google Scholar] [CrossRef]
- Method of Manufacturing the Ethyl or Methyl Esters of Higher Fatty Acids and the Installation to Execute this Method. Polish Patent PL211325, 31 May 2012.
- Ordinance of the Minister of Agriculture and Rural Development of 28 June 2010 on minimum conditions for maintaining farm animal species other than those for which the standards of protection are laid down in the European Union regulations. J. Laws 2020, 116, 778.
- Grela, E.; Skomiał, J. Nutritional Recommendations and Nutritional Value of Feedingstuffs for Pigs. Standards of Pigs Nutrition; Jan Kielanowski Institute of Physiology and Animal Nutrition, Polish Academy of Sciences: Jabłonna, Poland, 2014. [Google Scholar]
- Moreau, R.A.; Nyström, L.; Whitaker, B.D.; Winkler-Moser, J.K.; Baer, D.J.; Gebauer, S.K.; Hicks, K.B. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog. Lipid Res. 2018, 70, 35–61. [Google Scholar] [CrossRef]
- PN-EN ISO 12966-2:2017-05. Animal and Vegetable Fats and Oils-Gas Chromatography of Fatty Acid Methyl esters-Part 1: Guidelines on Modern Gas Chromatography of Fatty Acid Methyl Esters; Polish Committee for Standardization: Warsaw, Poland, 2014. [Google Scholar]
- Yurchenko, S.; Sats, A.; Tatar, V.; Kaart, T.; Mootse, H.; Jõudu, I. Fatty acid profile of milk from Saanen and Swedish Landrace goats. Food Chem. 2018, 254, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Campo, M.M.; Sierra, I. Fatty acid composition of selected varieties of Spanish dry-cured ham. Surveys from 1995 and 2007. Span. J. Agric. Res. 2011, 9, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Guzek, D.; Głąbska, D.; Głąbski, K.; Wierzbicka, A. Influence of Duroc breed inclusion into Polish Landrace maternal line on pork meat quality traits. An. Acad. Bras. Ciênc. 2016, 88, 1079–1088. [Google Scholar] [CrossRef] [Green Version]
- Maiorano, G.; Kapelański, W.; Bocian, M.; Pizzuto, R.; Kapelańska, J. Influence of rearing system, diet and gender on performance, carcass traits and meat quality of Polish Landrace pigs. Animals 2012, 7, 341–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomovic, V.M.; Zlender, B.A.; Jokanović, M.R.; Tomovic, M.S.; Sojic, B.V.; Skaljac, S.B.; Tasic, T.A.; Ikonic, P.M.; Soso, M.M.; Hromis, N.M. Technological quality and composition of the M. semimembranosus and M. longissimus dorsi from Large White and Landrace Pigs. Agric. Food Sci. 2014, 23, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Seong, P.N.; Cho, S.H.; Park, B.Y.; Hah, K.H.; Yu, L.H.; Lim, D.G.; Hwang, I.H.; Kim, D.H.; Lee, J.M.; et al. Characterization of Nutritional Value for Twenty-one Pork Muscles. Asian Australas. J. Anim. Sci. 2008, 21, 138–143. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Lu, P.; Zhang, L.Y.; Yin, J.D.; Everts, A.K.R.; Li, D.F. Effects of soybean oil and linseed oil on fatty acid compositions of muscle lipids and cooked pork flavor. Meat Sci. 2008, 80, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Dugan, M.E.R.; Vahmani, P.; Turner, T.D.; Mapiye, C.; Juárez, M.; Prieto, N.; Beaulieu, A.D.; Zijlstra, R.T.; Patience, J.F.; Aalhus, J.L. Pork as a source of Omega-3 (n-3) fatty acids. J. Clin. Med. 2015, 4, 1999–2011. [Google Scholar] [CrossRef] [PubMed]
- Malau-Aduli, E.O.; Holman, B.W.B.; Kashani, A.; Nichols, P.D. Sire breed and sex effects on the fatty acid composition and content of heart, kidney, liver, adipose and muscle tissues of purebred and first-cross prime lambs. Anim. Prod. Sci. 2015, 56, 2122–2132. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, X.; Xia, M.; Liu, Z.; Wei, H.; Deng, Z.; Wang, C.; Jiang, S.; Peng, J. Effect of oregano essential oil and benzoic acid supplementation to a low-protein diet on meat quality, fatty acid composition, and lipid stability of longissimus thoracis muscle in pigs. Lipids Health Dis. 2017, 16, 164. [Google Scholar] [CrossRef] [Green Version]
- Nantapo, C.W.T.; Muchenje, V.; Nkukwana, T.T.; Hugo, A.; Descalzo, A.; Grigioni, G.; Hoffman, L.C. Socio-economic dynamics and innovative technologies affecting health-related lipid content in diets: Implications on global food and nutrition security. Food Res. Internat. 2015, 76, 896–905. [Google Scholar] [CrossRef]
- Averette Gatlin, L.; See, M.T.; Hansen, J.A.; Sutton, D.; Odle, J. The effects of dietary fat sources, levels, and feeding intervals on pork fatty acid composition. J. Anim. Sci. 2002, 80, 1606–1615. [Google Scholar] [CrossRef] [PubMed]
Item | Loin | Ham | ||||||
---|---|---|---|---|---|---|---|---|
Group L-C (n = 8) | Group L-EE (n = 8) | Group H-C (n = 8) | Group H-EE (n = 8) | |||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Fat | 5.9 A | 0.2 | 5.3 B,a | 0.3 | 4.8 B,b | 0.4 | 5.1 B | 0.3 |
Protein | 21.5 | 2.2 | 21.6 | 2.1 | 20.1 | 2.0 | 21.0 | 2.3 |
Ash | 1.1 | 0.2 | 1.1 | 0.2 | 1.0 | 0.2 | 1.1 | 0.3 |
Dry matter | 26.2 | 3.5 | 28.4 | 4.9 | 26.5 | 5.0 | 27.9 | 3.7 |
Fatty Acid | Loin | Ham | ||||||
---|---|---|---|---|---|---|---|---|
Group L-C (n = 8) | Group L-EE (n = 8) | Group H-C (n = 8) | Group H-EE (n = 8) | |||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Saturated Fatty Acids | ||||||||
C8:0 | 0.05 | 0.02 | 0.04 | 0.02 | 0.04 | 0.01 | 0.03 | 0.01 |
C10:0 | 0.08 | 0.03 | 0.07 | 0.02 | 0.10 a | 0.02 | 0.07 b | 0.02 |
C12:0 | 0.06 | 0.02 | 0.08 | 0.02 | 0.07 | 0.03 | 0.07 | 0.03 |
C14:0 | 1.31 | 0.26 | 1.36 | 0.31 | 1.34 | 0.27 | 1.31 | 0.26 |
C16:0 | 25.08 | 1.39 | 24.20 | 1.06 | 24.13 | 2.13 | 24.88 | 2.08 |
C17:0 | 0.18 a | 0.02 | 0.21 A,a,b,c | 0.02 | 0.14 B,b | 0.04 | 0.17 a,b,d | 0.02 |
C18:0 | 13.12 | 1.94 | 12.87 | 2.02 | 12.84 | 2.19 | 12.63 | 1.98 |
C20:0 | 0.15 | 0.02 | 0.13 | 0.04 | 0.16 | 0.03 | 0.14 | 0.02 |
Unsaturated Fatty Acids | ||||||||
C16:1 | 3.08 A | 0.10 | 3.79 B | 0.43 | 3.46 | 0.27 | 3.74 B | 0.53 |
C17:1 | 0.16 A | 0.04 | 0.25 B,a | 0.03 | 0.19 A,B,C | 0.03 | 0.29 B,D | 0.05 |
C18:1n9c | 39.77 A | 1.41 | 40.39 | 1.31 | 40.31 a | 1.76 | 42.41 B,b | 1.60 |
C18:1n8c | 4.13 a | 0.38 | 4.95 b,c | 0.41 | 4.08 a,d | 0.80 | 4.89 b,c | 0.53 |
C18:1n9t | 0.18 | 0.03 | 0.23 | 0.03 | 0.19 | 0.08 | 0.21 | 0.04 |
C18:2n6c | 6.28 | 0.78 | 6.44 a | 0.58 | 5.59 b | 0.60 | 5.74 | 0.51 |
CLA | 0.11 | 0.03 | 0.12 | 0.02 | 0.11 | 0.03 | 0.13 | 0.03 |
C18:3n3 | 1.32 A | 0.17 | 2.17 B | 0.20 | 1.26 A | 0.14 | 1.97 B | 0.22 |
C18:3n6 | 0.06 | 0.03 | 0.07 | 0.02 | 0.06 | 0.02 | 0.07 | 0.02 |
C20:4n6 | 0.68 A | 0.11 | 0.30 B,a | 0.07 | 0.42 B,b | 0.07 | 0.30 B,C,a | 0.05 |
C20:5n3 | 0.07 A | 0.02 | 0.12 B | 0.02 | 0.05 A,a | 0.02 | 0.09 b | 0.03 |
C22:6n3 | 0.04 a | 0.02 | 0.08 b | 0.03 | 0.05 | 0.02 | 0.06 | 0.02 |
other | 4.11 A | 1.33 | 2.15 A,B,C | 1.37 | 5.43 A,D | 2.29 | 0.82 B | 0.59 |
Item | Loin | Ham | ||||||
---|---|---|---|---|---|---|---|---|
Group L-C (n = 8) | Group L-EE (n = 8) | Group H-C (n = 8) | Group H-EE (n = 8) | |||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Total SFA | 40.02 | 1.19 | 38.96 | 1.74 | 38.81 | 2.75 | 39.28 | 2.65 |
Total UFA | 55.87 A | 1.31 | 58.89 B,C | 0.77 | 55.76 A,D | 1.62 | 59.91 B | 2.37 |
Total MUFA | 47.32 A | 1.21 | 49.60 | 0.90 | 48.23 A | 2.03 | 51.54 B | 2.47 |
Total PUFA | 8.55 A | 0.77 | 9.29 A,a | 0.52 | 7.53 B,a | 0.49 | 8.37 A,b | 0.44 |
PUFA/MUFA | 0.18 a | 0.02 | 0.19 A,a,b,c | 0.01 | 0.16 B,b | 0.02 | 0.16 a,b,d | 0.01 |
PUFA/UFA | 0.15 a | 0.01 | 0.16 A,a,b,c | 0.01 | 0.14 B,b | 0.01 | 0.14 a,b,d | 0.01 |
UFA/SFA | 1.40 | 0.06 | 1.52 | 0.09 | 1.44 | 0.12 | 1.54 | 0.17 |
PUFA/SFA | 0.21 | 0.02 | 0.24 A | 0.02 | 0.19 B | 0.02 | 0.21 | 0.02 |
Total n-3 | 1.54 A | 0.19 | 2.48 B | 0.23 | 1.46 A,C | 0.18 | 2.25 B | 0.23 |
Total n-6 | 7.01 a | 0.86 | 6.82 | 0.60 | 6.07 b | 0.60 | 6.13 | 0.53 |
Total n-9 | 39.94 A | 1.40 | 40.61 | 1.29 | 40.50 a | 1.75 | 42.62 B,b | 1.60 |
n-6/n-3 ratio | 4.68 A | 1.17 | 2.78 B | 0.44 | 4.25 A,C | 0.86 | 2.76 B | 0.45 |
AI | 0.54 | 0.02 | 0.51 | 0.03 | 0.53 | 0.06 | 0.51 | 0.05 |
TI | 4.74 A | 0.23 | 3.43 B | 0.21 | 5.03 A,C | 0.58 | 3.83 B | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czyż, K.; Sokoła-Wysoczańska, E.; Wyrostek, A.; Cholewińska, P. An Attempt to Enrich Pig Meat with Omega-3 Fatty Acids Using Linseed Oil Ethyl Ester Diet Supplement. Agriculture 2021, 11, 365. https://doi.org/10.3390/agriculture11040365
Czyż K, Sokoła-Wysoczańska E, Wyrostek A, Cholewińska P. An Attempt to Enrich Pig Meat with Omega-3 Fatty Acids Using Linseed Oil Ethyl Ester Diet Supplement. Agriculture. 2021; 11(4):365. https://doi.org/10.3390/agriculture11040365
Chicago/Turabian StyleCzyż, Katarzyna, Ewa Sokoła-Wysoczańska, Anna Wyrostek, and Paulina Cholewińska. 2021. "An Attempt to Enrich Pig Meat with Omega-3 Fatty Acids Using Linseed Oil Ethyl Ester Diet Supplement" Agriculture 11, no. 4: 365. https://doi.org/10.3390/agriculture11040365
APA StyleCzyż, K., Sokoła-Wysoczańska, E., Wyrostek, A., & Cholewińska, P. (2021). An Attempt to Enrich Pig Meat with Omega-3 Fatty Acids Using Linseed Oil Ethyl Ester Diet Supplement. Agriculture, 11(4), 365. https://doi.org/10.3390/agriculture11040365