Effect of Sowing Date on Soybean Development in South-Western Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Details of Field Experiment
2.2. Data Collection
2.3. Data Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Food and Agricultural Organization of United Nations. 2021. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 12 March 2021).
- Haegele, J.W.; Below, F.E.; The Six Secrets of Soybean Success. Improving Management Practices for High Yield Soybean Production. 2013. Available online: http://cropphysiology.cropsci.illinois.edu/documents/2012%20Six%20Secrets%20of%20Soybean%20Success%20report.pdf (accessed on 12 March 2021).
- Below, F.E.; Davidson, D.J.; Seebauer, J. Six Secrets Special Report Secrets of Soybean Success. 2019. Available online: http://cropphysiology.cropsci.illinois.edu/documents/SixSecrets_HandOut_2018.pdf (accessed on 10 March 2021).
- Constable, G.A.; Rose, I.A. Variability of soybean phenology response to temperature, daylength and rate of change in daylength. Field Crop. Res. 1988, 18, 57–69. [Google Scholar] [CrossRef]
- Câmara, G.M.S.; Sediyama, T.; Dourado-Neto, D.; Bernardes, M.S. Influence of photoperiod and air temperature on the growth, flowering and maturation of soybean (Glycine max (L.) Merrill). Sci. Agric. 1997, 54, 149–154. [Google Scholar] [CrossRef]
- Wu, T.T.; Li, J.Y.; Wu, C.X.; Sun, S.; Mao, T.T.; Jiang, B.J.; Hou, W.S.; Han, T.F. Analysis of the independent- and interactive-photo-thermal effects on soybean flowering. J. Integr. Agric. 2015. [Google Scholar] [CrossRef] [Green Version]
- Rockenbach, A.P.; Caron, B.O.; De Souza, V.Q.; Elli, E.F.; De Oliveira, D.M.; Monteiro, G.C. Estimated length of soybean phenological stages. Semin. Ciênc. Agrár. 2016, 37, 1871. [Google Scholar] [CrossRef] [Green Version]
- Cober, E.R.; Voldeng, H.D. A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci. 2001, 41, 698–701. [Google Scholar] [CrossRef]
- Heatherly, L.G.; Elmore, R.W. Managing Inputs for Peak Production. In Soybeans: Improvement, Production and Uses, 3rd ed.; Agronomy Monographs; Specht, J.E., Boerma, H.R., Eds.; ASA-CSSA-SSSA: Madison, WI, USA, 2004; Volume 16, pp. 451–536. [Google Scholar]
- Stein, H.H.; Berger, L.L.; Drackley, J.K.; Fahey, G.C., Jr.; Hernot, D.C.; Parsons, C.M. Nutritional properties and feeding values of soybeans and their co-products. In Soybeans, Chemistry, Production, Processing, and Utilization; Johnson, L.A., White, P.J., Galloway, R., Eds.; AOCS Press: Urbana, IL, USA, 2008; pp. 613–660. [Google Scholar]
- Niwińska, B.; Witaszek, K.; Niedbała, G.; Pilarski, K. Seeds of n-GM Soybean Varieties Cultivated in Poland and Their Processing Products as High-Protein Feeds in Cattle Nutrition. Agriculture 2020, 10, 174. [Google Scholar] [CrossRef]
- EUROSTAT. 2018. Available online: https://ec.europa.eu/eurostat/en/web/products-eurostat-news/-/ddn-20190325-1 (accessed on 15 April 2021).
- Dzwonkowski, W.; Rola, K.; Hanczakowska, E.; Niwińska, B.; Światkiewicz, S. Economic Aspects of Replacing GM Soybeans by Protein Feed Crops Grown in Poland; Institute of Agricultural and Food Economics-National Research Institute: Warsaw, Poland, 2016; ISBN 978-83-7658-656-4. (In Polish) [Google Scholar]
- De Visser, C.L.M.; Schreuder, R.; Stoddard, F. The EU’s dependency on soya bean import for the animal feed industry and potential for EU produced alternatives. OCL 2014, 21, D407. [Google Scholar] [CrossRef] [Green Version]
- KZPRiRB 2020, Powierzchnia Upraw 2020 i 2019 Rzepak i Rośliny Bobowate. (In Polish). Available online: https://www.kzprirb.pl (accessed on 14 April 2021).
- Yamaguchi, N.; Kurosaki, H.; Kawasaki, M.; Sende, M.; Mioyshi, T. Early-Maturing and Chilling-Tolerant Soybean Lines Derived from Crosses between Japanese and Polish Cultivars. Plant Prod. Sci. 2015, 18, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Cober, E.R.; Morrison, M.J. Regulation of seed yield and agronomic characters by photoperiod sensitivity and growth habit genes in soybean. Theor. Appl. Genet. 2010, 120, 1005–1012. [Google Scholar] [CrossRef]
- IHAR Instytut Hodowli i Aklimatyzacji Roślin—Państwowy Instytut Badawczy (Plant Breeding and Acclimatization Institute). (In Polish). Available online: http://pw.ihar.edu.pl/obszar-tematyczny-2/zadanie-2-6-wytworzenie-zrodel-genetycznych-do-hodowli-odmian-soi-przydatnych-do-uprawy-w-roznych-warunkach-agro-klimatycznych-polski/ (accessed on 15 April 2021).
- FAO. World Reference Base for Soil Resources 2014 International Soil Classification System; FAO: Rome, Italy, 2015; ISBN 9789251083697. [Google Scholar]
- Kabała, C.; Charzyński, P.; Chodorowski, J.; Drewnik, M.; Glina, B.; Greinert, A.; Hulisz, P.; Jankowski, M.; Jonczak, J.; Łabaz, B.; et al. Polish soil classification, 6th edition—Principles, classification scheme and correlations. Soil Sci. Annu. 2019, 70, 71–97. [Google Scholar] [CrossRef] [Green Version]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants; JKI: Quedlinburg, Germany, 2001. [Google Scholar] [CrossRef]
- Mourtzinis, S.; Specht, J.E.; Conley, S.P. Defining Optimal Soybean Sowing Dates across the US. Sci. Rep. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaspar, A.P.; Conley, S.P. Responses of Canopy Reflectance, Light Interception, and Soybean Seed Yield to Replanting Suboptimal Stands. Crop Sci. 2015, 55, 377–385. [Google Scholar] [CrossRef]
- Chen, G.; Wiatrak, P. Soybean development and yield are influenced by planting date and environmental conditions in the southeastern coastal plain, United States. Agron. J. 2010, 102, 1731–1737. [Google Scholar] [CrossRef]
- Jarecki, W.; Bobrecka-Jamro, D. Effect of sowing date on the yield and seed quality of Soybean [Glycine max (L.) Merr.]. J. Elem. 2021, 26, 7–18. [Google Scholar] [CrossRef]
- Setiyono, T.D.; Weiss, A.; Specht, J.; Bastidas, A.M.; Cassman, K.G.; Dobermann, A. Understanding and modeling the effect of temperature and daylength on soybean phenology under high-yield conditions. Field Crop. Res. 2007, 100, 257–271. [Google Scholar] [CrossRef] [Green Version]
- Nico, M.; Miralles, D.J.; Kantolic, A.G. Natural post-flowering photoperiod and photoperiod sensitivity: Roles in yield-determining processes in soybean. Field Crop. Res. 2019, 231, 141–152. [Google Scholar] [CrossRef]
- Sediyama, T. Tecnologias de Produção e Usos da Soja; Mecenas Publishing: Londrina, Brazil, 2009; ISBN 9788589687089. [Google Scholar]
- Rocha, R.S.; da Silva, J.A.L.; Neves, J.A.; Sediyama, T.; Teixeira, R.D.C. Desempenho agronômico de variedades e linhagens de soja em condições de baixa latitude em Teresina-PI. Rev. Ciênc. Agron. 2012. [Google Scholar] [CrossRef]
- Zhang, L.X.; Kyei-Boahen, S.; Zhang, J.; Zhang, M.H.; Freeland, T.B.; Watson, C.E.; Liu, X. Modifications of Optimum Adaptation Zones for Soybean Maturity Groups in the USA. Crop Manag. 2007, 6. [Google Scholar] [CrossRef]
- Gaynor, L.G.; Lawn, R.J.; James, A.T. Agronomic studies on irrigated soybean in southern New South Wales. I. Phenological adaptation of genotypes to sowing date. Crop Pasture Sci. 2011. [Google Scholar] [CrossRef]
- Kumagahi, E.; Takahasi, T. Soybean (Glycine max (L.) Merr.) Yield Reduction due to Late Sowing as a Function of Radiation Interception and Use in a Cool Region of Northern Japan. Agronomy 2020, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Bateman, N.; Catchot, A.; Gore, F.; Cook, D.; Musser, R.; Irby, T. Effects of Planting Date for Soybean Growth, Development, and Yield in the Southern USA. Agronomy 2020, 10, 596. [Google Scholar] [CrossRef]
- Savoy, B.R.; Cothren, J.T.; Shumway, C.R. Early–season production systems utilizing indeterminate soybean. Agron. J. 1992, 84, 394–398. [Google Scholar] [CrossRef]
- Mourtzinis, S.; Specht, J.E.; Lindsey, L.E.; Wiebold, W.J.; Ross, J.; Nafziger, E.D.; Kandel, H.J.; Mueller, N.; DeVillez, P.L.; Arriaga, F.J.; et al. Climate-induced reduction in US-wide soybean yields underpinned by region-and in-season-specific responses. Nat. Plants 2015, 1, 14026. [Google Scholar] [CrossRef] [PubMed]
- Kundu, P.; Roy, T.S.; Khan, S.H.; Parvin, H.; Mazed, H.E.M.K. Effect of Sowing Date on Yield and Seed Quality of Soybean. J. Agric. Ecol. Res. Int. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Zimmer, S.; Messmer, M.; Haase, T.; Piepho, H.-P.; Mindermann, A.; Schulz, H.; Habekuß, A.; Ordon, F.; Wilbois, K.-P.; Heß, J. Effects of soybean variety and Bradyrhizobium strains on yield, protein content and biological nitrogen fixation under cool growing conditions in Germany. Eur. J. Agron. 2016, 72, 38–46. [Google Scholar] [CrossRef]
- Coskan, A.; Dogan, K. Symbiotic Nitrogen Fixation in Soybean. Soybean Physiology and Biochemistry. IntechOpen. 2011. Available online: https://www.intechopen.com/books/soybean-physiology-and-biochemistry/symbiotic-nitrogen-fixation-in-soybean (accessed on 15 April 2021).
- Wenda-Piesik, A.; Kazek, M. Productivity of early maturing cultivars of soybeans (Glycine max L. Merr) in north-western Poland. In Proceedings of the 14th ESA Congress, Edinburgh, UK, 5–9 September 2016; pp. 25–26. [Google Scholar]
- Salmerón, M.; Gbur, E.E.; Bourland, F.M.; Golden, B.R.; Earnest, L.; Purcell, L.C. Soybean maturity group choices for maximizing light interception across planting dates in the U.S. Midsouth. Agron. J. 2015, 107, 2132–2142. [Google Scholar] [CrossRef]
- Nleya, T.; Schutte, M.; Clay, D.; Reicks, G.; Maulker, N. Planting date, cultivar, seed treatment, and seeding rate effects on soybean growth and yield. Agroecosyst. Geosci. Environ. 2021, 3. [Google Scholar] [CrossRef]
- Vossenkemper, J.P.; Nagziger, E.D.; Wessel, J.R.; Maughan, M.W.; Rupert, M.E.; Schmidt, J.P. Early planting, full-season cultivars, and seed treatments maximize soybean yield potential. Crop Forage Turfgrass Manag. 2016, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mandić, V.; Ðorđević, S.; Ðorđević, N.; Bijelić, Z.; Krnjaja, V.; Petričević, M.; Brankov, M. Genotype and sowing time effects on soybean yield and quality. Agriculture 2020, 10, 502. [Google Scholar] [CrossRef]
- Maury, P.; Andrianasolo, F.N.; Alric, F.; Berger, M.; Beugniet, G.; Chambert, C.; Champolivier, L.; Doumenc, A.; Estragnat, A.; Gras, A.; et al. Le semis très précoce: Une stratégie agronomique pour améliorer les performances du soja en France? OCL 2015, 22, D503. [Google Scholar] [CrossRef]
Month | Temperature (°C) | Precipitation (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | Average 1986–2015 | 2016 | 2017 | 2018 | 2019 | Average 1986–2015 | |
III | 4.3 | 6.8 | 1.3 | 6.8 | 3.8 | 55.9 | 31.1 | 27.6 | 22.5 | 38.2 |
IV | 8.7 | 7.9 | 13.7 | 10.8 | 8.9 | 46.4 | 57.0 | 19.0 | 24.2 | 33.6 |
V | 15.3 | 14.2 | 17.1 | 12.1 | 14.4 | 5.3 | 24.1 | 54.3 | 76.8 | 54.1 |
VI | 18.6 | 18.5 | 18.8 | 22.1 | 17.3 | 44.6 | 52.5 | 36.6 | 27.0 | 67.4 |
VII | 19.5 | 19.0 | 20.1 | 19.3 | 19.6 | 114.3 | 112.2 | 79.1 | 50.1 | 78.9 |
VIII | 17.9 | 19.4 | 21.1 | 20.3 | 18.6 | 27.1 | 43.6 | 20.3 | 59.8 | 65.3 |
IX | 16.4 | 13.3 | 15.8 | 14.4 | 13.7 | 44.7 | 65.7 | 38.4 | 42.0 | 44.9 |
Average temperature and total precipitation of vegetation period | 14.4 | 14.2 | 15.4 | 15.1 | 13.8 | 338.3 | 386.2 | 275.3 | 302.4 | 382.4 |
Sowing dates | ||||||||||
2016 | 2017 | 2018 | 2019 | |||||||
I—19 April | I—21 April | I—17 April | I—16 April | |||||||
II—29 April | II—10 May | II—27 April | II—26 April | |||||||
III—09 May | III—19 May | III—07 May | III—06 May |
Growing Stage in Scale BBCH | Year | Sowing Date | Cultivar | ||||||
---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | I | II | III | Lissabon | Merlin | |
Number of Days from Sowing to: | |||||||||
Emergence 10 | 15 ± 2.2 | 16 ± 6.2 | 11 ± 2.1 | 24 ± 5.3 | 20 ± 7.6 | 15 ± 5.9 | 15 ± 2.1 | 17 ± 6.6 | 16 ± 6.0 |
Flower buds on main stem 51 | 43 ± 5.5 | 48 ± 7.8 | 40 ± 4.4 | 49 ± 5.0 | 52 ± 5.9 | 45 ± 4.5 | 40 ± 3.8 | 46 ± 6.6 | 45 ± 7.2 |
Beginning of flowering 61 | 49 ± 4.1 | 52 ± 7.8 | 44 ± 4.8 | 52 ± 5.9 | 56 ± 5.1 | 48 ± 3.2 | 44 ± 3.1 | 50 ± 6.5 | 49 ± 6.3 |
End of flowering 69 | 85 ± 5.2 | 75 ± 8.8 | 60 ± 5.7 | 80 ± 5.2 | 82 ± 9.8 | 74 ± 10.2 | 69 ± 10.4 | 76 ± 11.3 | 74 ± 11.2 |
Maturity 89 | 128 ± 4.5 | 141 ± 7.7 | 124 ± 12.1 | 125 ± 5.9 | 138 ± 8.2 | 129 ± 6.2 | 124 ± 9.6 | 132 ± 10.5 | 130 ± 10.5 |
Development | Sowing Date | Cultivars | |||
---|---|---|---|---|---|
I | II | III | Lissabon | Merlin | |
Number of Days | |||||
Vegetative from emergence | 32 | 30 | 25 | 29 | 29 |
Generative | 86 | 84 | 84 | 86 | 85 |
Vegetation period from emergence | 118 | 114 | 109 | 115 | 114 |
Relative values [%] | |||||
Vegetative from emergence | 27 | 26 | 23 | 25 | 25 |
Generative | 73 | 74 | 77 | 75 | 75 |
Development | Sowing Date | ||
---|---|---|---|
I | II | III | |
The Sum of Day Length [h] | |||
Vegetative from emergence | 533.13 | 500.05 | 437.45 |
Generative | 1327.82 | 1295.92 | 1274.03 |
Vegetation period from emergence | 1860.95 | 1795.97 | 1711.48 |
Relative values (%) | |||
Vegetative form emergence | 29 | 28 | 26 |
Generative | 71 | 72 | 74 |
The sum of mean daily temperatures (°C) | |||
Vegetative from emergence | 573.30 | 555.58 | 509.90 |
Generative | 1649.85 | 1616.28 | 1602.10 |
Vegetation period from emergence | 2223.15 | 2171.86 | 2112.00 |
Relative values (%) | |||
Vegetative from emergence | 26 | 26 | 24 |
Generative | 74 | 74 | 76 |
Specification | SS | Df | MS | F-Ratio | p-Value |
---|---|---|---|---|---|
For factors and years | |||||
Sowing dates | 1.540 | 2 | 0.770 | 33.36 | <0.05 |
Cultivars | 0.215 | 1 | 0.215 | 6.24 | <0.05 |
Years | 16.52 | 3 | 5.506 | 238.59 | <0.05 |
For interactions | |||||
Sowing dates × Cultivars | 0.061 | 2 | 0.031 | 0.419 | 0.419 |
Sowing date × Years | 1.257 | 6 | 0.209 | 9.07 | <0.05 |
Cultivars × Years | 0.924 | 3 | 0.308 | 8.95 | <0.05 |
Sowing dates × Cultivars × Years | 0.080 | 6 | 0.013 | 0.013 | 0.881 |
Residual | 2.183 | 72 | 0.030 | ||
Total | 22.78 | 95 | 0.240 |
Specification | Mean | SE | ||
---|---|---|---|---|
2016 | I | Lissabon | 3.60 a | ±0.065 |
Merlin | 3.54 a | ±0.089 | ||
II | Lissabon | 3.33 abc | ±0.070 | |
Merlin | 3.49 ab | ±0.102 | ||
III | Lissabon | 2.81 defg | ±0.084 | |
Merlin | 3.04 bcd | ±0.153 | ||
2017 | I | Lissabon | 2.60 defgh | ±0.067 |
Merlin | 2.14 hij | ±0.061 | ||
II | Lissabon | 2.37 ghi | ±0.102 | |
Merlin | 1.95 ij | ±0.132 | ||
III | Lissabon | 2.15 hij | ±0.105 | |
Merlin | 1.85 j | ±0.126 | ||
2018 | I | Lissabon | 2.35 ghi | ±0.067 |
Merlin | 2.40 ghi | ±0.102 | ||
II | Lissabon | 2.57 efgh | ±0.067 | |
Merlin | 2.58 defgh | ±0.041 | ||
III | Lissabon | 2.43 fgh | ±0.102 | |
Merlin | 2.50 efgh | ±0.065 | ||
2019 | I | Lissabon | 2.90 cdef | ±0.050 |
Merlin | 2.79 defg | ±0.093 | ||
II | Lissabon | 2.95 cde | ±0.047 | |
Merlin | 2.72 defg | ±0.069 | ||
III | Lissabon | 2.67 defg | ±0.065 | |
Merlin | 2.56 efgh | ±0.062 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serafin-Andrzejewska, M.; Helios, W.; Jama-Rodzeńska, A.; Kozak, M.; Kotecki, A.; Kuchar, L. Effect of Sowing Date on Soybean Development in South-Western Poland. Agriculture 2021, 11, 413. https://doi.org/10.3390/agriculture11050413
Serafin-Andrzejewska M, Helios W, Jama-Rodzeńska A, Kozak M, Kotecki A, Kuchar L. Effect of Sowing Date on Soybean Development in South-Western Poland. Agriculture. 2021; 11(5):413. https://doi.org/10.3390/agriculture11050413
Chicago/Turabian StyleSerafin-Andrzejewska, Magdalena, Waldemar Helios, Anna Jama-Rodzeńska, Marcin Kozak, Andrzej Kotecki, and Leszek Kuchar. 2021. "Effect of Sowing Date on Soybean Development in South-Western Poland" Agriculture 11, no. 5: 413. https://doi.org/10.3390/agriculture11050413
APA StyleSerafin-Andrzejewska, M., Helios, W., Jama-Rodzeńska, A., Kozak, M., Kotecki, A., & Kuchar, L. (2021). Effect of Sowing Date on Soybean Development in South-Western Poland. Agriculture, 11(5), 413. https://doi.org/10.3390/agriculture11050413