Supplementation of Microbial and Fungal Phytases to Low Protein and Energy Diets: Effects on Productive Performance, Nutrient Digestibility, and Blood Profiles of Broilers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Chickens Design and Diets
2.2. Digestibility Trial
2.3. Slaughter Test
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Effect of Protein and Energy Level in the Diet
4.2. Effect of Phytase Supplementation and Type
4.3. Effect of the Interaction Diet × Type of Phytase
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Attia, Y.A.; Abd El-Rahman, S.A.; Qota, E.M.A. Effects of microbial phytase with or without cell-wall splitting enzymes on the performance of broilers fed suboptimum levels of dietary protein and metaboilzable energy. Egypt. Poult. Sci. 2001, 21, 521–547. [Google Scholar]
- Macelline, S.P.; Wickramasuriya, S.S.; Cho, H.M.; Kim, E.; Shin, T.K.; Hong, J.S.; Kim, J.C.; Pluske, J.R.; Choi, H.J.; Hong, Y.G.; et al. Broilers fed a low protein diet supplemented with synthetic amino acids maintained growth performance and retained intestinal integrity while reducing nitrogen excretion when raised under poor sanitary conditions. Poult. Sci. 2020, 99, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Macelline, S.P.; Chrystal, P.V. Progress towards reduced-crude protein diets for broiler chickens and sustainable chicken-meat production. J. Anim. Sci. Biotechnol. 2021, 12. [Google Scholar] [CrossRef]
- Dayyani, N.; Abadi, M.B.B.; Farhani, A.A.A. Phytate and phytase in poultry nutrition. Int. J. Adv. Biol. Biomed. Res. 2013, 1, 1403–1408. [Google Scholar]
- Lu, H.; Shin, S.; Kuehn, I.; Bedford, M.; Rodehutscord, M.; Adeola, O.; Ajuwon, K.M. Effect of phytase on nutrient digestibility and expression of intestinal tight junction and nutrient transporter genes in pigs. J. Anim. Sci. 2020, 98, 206. [Google Scholar] [CrossRef]
- Ren, P.; Blavi, L.; González-Vega, C.; Liu, Y.; Hancock, D.; Vazquez-Añón, M.; Almeida, F.A.; Stein, H.H. Effects of a novel E. coli phytase expressed in Pseudomonas fluorescens on growth, bone mineralization, and nutrient digestibility in pigs fed corn–soybean meal diets. Transl. Anim. Sci. 2020, 4. [Google Scholar] [CrossRef]
- Babatunde, O.O.; Jendza, J.A.; Ader, P.; Xue, P.; Adedokun, S.A.; Adeola, O. Response of Broiler Chickens in the Starter and Finisher Phases to 3 Sources of Microbial Phytase. Poult. Sci. 2020, 99, 3997–4008. [Google Scholar] [CrossRef]
- Ennis, C.E.; Jackson, M.; Gutierrez, O.; Cantley, S.; Wamsley, K.G.S. Phytase and carbohydrase inclusion strategies to explore synergy within low-energy diets to optimize 56-day male broiler performance and processing. J. Appl. Poult. Res. 2020, 29, 1045–1067. [Google Scholar] [CrossRef]
- Żyła, K.; Mika, M.; Stodolak, B.; Wikiera, A.; Koreleski, J.; Świątkiewicz, S. Towards complete dephosphorylation and total conversion of phytases in poultry feeds. Poult. Sci. 2004, 83, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Bedford, M.R.; Cowieson, A.J. Phytase and phytate interactions. In Proceedings of the 17th European Symposium on Poultry Nutrition, Edinburgh, Scotland, 23–27 August 2009. [Google Scholar]
- NRC. National Research Council, Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Association of Official Analytical Chemists, AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 18th ed.; AOAC: Washington, DC, USA, 2004. [Google Scholar]
- Attia, Y.A.; El-Tahawy, W.S.; Abd El-Hamid, A.E.; Hassan, S.S.; Nizza, A.; El-Kelaway, M.I. Effect of phytase with or without multienzyme supplementation on performance and nutrient digestibility of young broiler chicks fed mash or crumble diets. It. J. Anim. Sci. 2012, 11, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Jakobsen, P.E.; Gertov, K.; Nilsen, S.H. Frdjelighed frogmed fierbrae. Digestibility trails with poultry. Bereting fra for sogslabortoriet. Kabenhaven 1960, 56, 1–34. [Google Scholar]
- Attia, Y.A.; Qota, M.A.; Bovera, F.; Tag El-Din, A.E.; Mansour, S.A. Effect of amount and source of manganese and/or phytase supplementation on productive and reproductive performance and some physiological traits of dual purpose cross-bred hens in the tropics. Br. Poult. Sci. 2010, 51, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Attia, Y.A.; Al-Hanoun, A.; Tag El-Din, A.E.; Bovera, F.; Shewika, E. Effect of bee pollen levels on productive, reproductive and blood traits of NZW rabbits. J. Anim. Physiol. Anim. Nutr. 2011, 95, 294–303. [Google Scholar] [CrossRef]
- SAS Institute. SAS® User’s Guide: Statistics; SAS Institute Inc.: Cary, NC, USA, 2002. [Google Scholar]
- Khalifah, M.M. Effect of Protein, Energy and Feeding System on the Performance of Two Local Chicken Strains. Ph.D. Thesis, Faculty of Agriculture Tanta University, Gharbia, Egypt, 2001. [Google Scholar]
- Attia, Y.A.; Bovera, F.; Al-Harthi, M.A.; Wang, J.; Kim, W.K. Multiple amino acid supplementations to low dietary protein diets: Effect on performance, carcass yield, meat quality and nitrogen excretion of finishing broilers under hot climate conditions. Animals 2020, 10, 973. [Google Scholar] [CrossRef]
- Attia, Y.A.; Hassan, S.S. Broiler tolerance to heat stress at various dietary protein/energy levels. Europ. Poult. Sci. 2017, 81. [Google Scholar] [CrossRef]
- Shaldam, M.D.A. Studies of some Factors Affecting Meat Production any Improved Local Strains. Master’s Thesis, Al-Azhar University, Cairo, Egypt, 2003; pp. 3–17. [Google Scholar]
- Abd-Elsamee, M.O. Effect of different levels of crude protein, sulphur amino acids, microbial phytase and their interaction on broiler chicks performance. Egypt. Poult. Sci. 2002, 22, 999–1021. [Google Scholar]
- Attia, Y.A.; Al-Hamid, A.E.A.; Ibrahim, M.S.; Al-Harthi, M.A.; Bovera, F.; Elnaggar, A.S. Productive performance, biochemical and hematological traits of broiler chickens supplemented with propolis, bee pollen, and mannan oligosaccharides continuously or intermittently. Livest. Sci. 2014, 164, 87–95. [Google Scholar] [CrossRef]
- Al-Harthi, M.A.; Attia, Y.A.; El-Shafey, A.S.; Elgandy, M.F. Impact of phytase on improving the utilisation of pelleted broiler dietscontaining olive by-products. It. J. Anim. Sci. 2020, 19, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Farrell, D.J.; Martin, E.D.; Paeez, J.J.; Bongarts, M.; Betts, M.; Sideman, A.; Thomson, E. The beneficial effects of a microbial feed phytase in diets of broiler chickens and ducklings. J. Anim. Physiol. Anim. Nutr. 1993, 69, 278–283. [Google Scholar] [CrossRef]
- Rutherfurd, S.M.; Chung, T.K.; Morel, P.C.; Moughan, P.J. Effect of microbial phytase on ileal digestibility of phytate phosphorus. Poult. Sci. 2004, 83, 61–68. [Google Scholar] [CrossRef] [PubMed]
- El-Ghamry, A.A.; Al-Harthi, M.A.; Attia, Y.A. Possibility to improve rice polishing utilization in broiler diets by enzyme or dietary formulation based on digestible amino acid. Archiv. Geflügelk. 2005, 69, 1–8. [Google Scholar]
- Johnson, L.A.; Deep, A.; Classen, H. Digestibility and performance responses of broiler chickens fed a pea-based diet with different levels of dietary microbial phytase. Univ. Sask. Undergrad. Res. J. 2014, 1, 39–44. [Google Scholar] [CrossRef]
- Yu, B.; Jana, Y.C.; Chungb, T.K.; Leea, T.T.; Chioua, P.W.S. Exogenous phytase activity in the gastrointestinal tract of broiler chickens. Anim. Feed Sci. Technol. 2004, 117, 295–303. [Google Scholar] [CrossRef]
- Qota, E.M.A.; El-Ghamry, A.A.; El-Mallah, G.M. Nutritive value of soaked linseed cake as affected by phytase, Biogen supplementation or formulating diets based on available amino acid on broiler performance. Egypt. Poult. Sci. 2002, 22, 461–475. [Google Scholar]
- Ismail, F.S.A.; Attia, Y.A.; Aggoor, F.A.M.; Qota, E.M.A.; Shakmak, E.A. Effect of energy level, rice by products and enzyme additions on carcass yield, meat quality and plasma constituents of Japanese quail. In Proceedings of the XII European Poultry Conference, Verona, Italy, 10–14 September 2006. [Google Scholar]
- Augspurger, N.P.; Baker, D.H. High dietary phytase levels maximize phytate–phosphorus utilization but do not affect protein utilization in chicks fed phosphorus or amino acid-deficient diets. J. Anim. Sci. 2004, 82, 1100–1107. [Google Scholar] [CrossRef]
- Jendza, J.A.; Dilger, R.N.; Sands, J.S.; Adeola, O. Efficacy and equivalency of an Escherichia coli-derived phytase for replacing inorganic phosphorus in the diets of broiler chickens and young pigs. J. Anim. Sci. 2006, 84, 3364–3374. [Google Scholar] [CrossRef]
- Pillai, P.B.; Connor-Dennie, T.O.; Owens, C.M.; Emmert, J.L. Efficacy of an Escherichia coli phytase in broilers fed an adequate or reduced phosphorus diets and its effect on carcass characteristics. Poult. Sci. 2006, 85, 1737–1745. [Google Scholar] [CrossRef] [PubMed]
- Payne, R.L.; Lavergne, T.K.; Southerm, L.L. A comparison of two sources of phytase in liquid and dry forms in broilers. Poult. Sci. 2005, 84, 265–272. [Google Scholar] [CrossRef]
- Veum, T.L.; Bllinger, D.W.; Buff, C.E.; Bedford, M.E. A genetically engineered Escherichia coli phytase improves nutrient utilization, growth performance, and bone strength of young swine fed diets deficient in available phosphorus. J. Anim. Sci. 2006, 84, 1147–1158. [Google Scholar] [CrossRef] [Green Version]
- El-Deeb, M.A.; Sharara, H.H.; Makled, M.N. Enhance calcium and phosphorus utilization by enzyme phytase supplemented to broiler diet contained rice bran. Egypt. Poult. Sci. 2000, 20, 545–566. [Google Scholar]
- Perney, K.M.; Cantor, A.H.; Straw, M.L.; Herkelman, K.L. The effect of dietary phytase on growth performance and phosphorus utilisation of broiler chicks. Poult. Sci. 1993, 72, 2106–2114. [Google Scholar] [CrossRef] [PubMed]
- Rodehutscord, M.; Pfeffer, E. Phytase effects on the efficiency of utilization and blood concentrations of phosphorus and calcium in Pekin ducks. Br. Poult. Sci. 2006, 47, 311–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mireles-Arriaga, A.I.; Espinosa-Ayala, E.; Hernández-García, P.A.; Márquez-Molina, O. Use of Exogenous Enzyme in Animal. Feed Life Sci. J. 2015, 12, 23–32. [Google Scholar]
- Ptak, A.; Damian, J.; Bartosz, K.; Mateusz, R.; Krzysztof, Ż.; Sylwester, Ś. Effect of different phytases on the performance, nutrient retention and tibia composition in broiler chickens. Archiv. Anim. Breed. 2013, 56, 104–112. [Google Scholar] [CrossRef]
Starter Diets | Grower Diets | Finisher Diets | |||||||
---|---|---|---|---|---|---|---|---|---|
Control | Low-CP | Low-CPME | Control | Low-CP | Low-CPME | Control | Low-CP | Low-CPME | |
Ingredients g/kg | |||||||||
Yellow corn | 583.5 | 585.0 | 585.0 | 626.5 | 626.5 | 626.5 | 630.0 | 630.0 | 630.0 |
Soybean meal | 320.0 | 300.0 | 300.0 | 275.0 | 255.0 | 255.0 | 282.5 | 260.0 | 260.0 |
Fish meal | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | - | - | - |
Limestone | 10.0 | 10.0 | 10.0 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 |
Dicalcium phosphate | 18.0 | 18.0 | 18.0 | 16.0 | 16.5 | 16.5 | 17.00 | 17.0 | 17.0 |
Vit + Min Premix 1 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
NaCl | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
DL-Methionine | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
L-Lysine (HCl) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Vegetable oils | 30.0 | 37.0 | 22.0 | 35.0 | 42.0 | 26.5 | 53.0 | 61.0 | 46.00 |
Washed building sand | - | 11.5 | 26.5 | - | 12.5 | 28.0 | - | 14.5 | 29.50 |
Chemical-Nutritional Characteristics | |||||||||
Dry matter 2 | 89.61 | 89.70 | 89.53 | 89.87 | 89.63 | 89.76 | 89.57 | 89.69 | 89.84 |
ME, MJ/Kg 3 | 12.34 | 12.36 | 11.95 | 12.66 | 12.66 | 12.24 | 12.94 | 12.95 | 12.54 |
CP % 2 | 21.03 | 20.01 | 20.02 | 19.49 | 18.51 | 18.84 | 17.80 | 16.79 | 16.81 |
Methionine % 3 | 0.51 | 0.50 | 0.50 | 0.49 | 0.48 | 0.48 | 0.44 | 0.42 | 0.42 |
SAA % 3 | 0.85 | 0.82 | 0.82 | 0.80 | 0.78 | 0.78 | 0.74 | 0.71 | 0.70 |
Lysine % 3 | 1.24 | 1.19 | 1.19 | 1.13 | 1.08 | 1.08 | 1.00 | 0.94 | 0.94 |
Calcium % 3 | 0.99 | 0.99 | 0.99 | 0.90 | 0.90 | 0.90 | 0.81 | 0.80 | 0.80 |
Av. P % 3 | 0.49 | 0.49 | 0.49 | 0.45 | 0.45 | 0.45 | 0.40 | 0.39 | 0.39 |
Crude fat % 2 | 5.47 | 5.98 | 4.70 | 6.21 | 6.74 | 5.26 | 7.63 | 7.98 | 6.97 |
Crude fiber % 2 | 3.47 | 3.34 | 3.39 | 3.31 | 3.24 | 3.20 | 3.33 | 3.24 | 3.26 |
Ash % 2 | 9.24 | 10.02 | 11.21 | 9.30 | 10.28 | 10.19 | 9.18 | 10.19 | 11.63 |
NFE % 2 | 60.79 | 60.65 | 60.68 | 61.69 | 61.23 | 62.87 | 62.06 | 61.80 | 61.33 |
BWG g | Final BW g | Feed Intake g | Protein Intake g | Energy Intake Kcal | FCR g/g | PCR g/g | ECR Kcal/g | Mortality n | |
---|---|---|---|---|---|---|---|---|---|
Effect of Diet | |||||||||
Control | 1757 | 1802 | 4024 a | 788 a | 12130 a | 2.29 | 0.621 a | 7.85 a | 0 |
Low-CP | 1661 | 1694 | 3824 b | 711 b | 11531 b | 2.32 | 0.518 b | 7.15 b | 2 |
Low-CPME | 1649 | 1706 | 3813 b | 709 b | 11125 c | 2.31 | 0.511 b | 6.86 b | 2 |
Effect of Type of Phytase | |||||||||
FP | 1653 | 1698 | 3825 a | 710 a | 11,335 a | 2.33 | 0.517 | 7.06 | 1 |
BP | 1623 | 1667 | 3727 b | 693 b | 11,056 b | 2.30 | 0.521 | 6.99 | 3 |
Interaction Diet × Phytase | |||||||||
Control | 1758 | 1802 | 4024 a | 788 a | 12,130 a | 2.29 | 0.621 | 7.85 | 0 |
Low-CP × Uns | 1702 | 1748 | 3959 b | 736 b | 11,194 c | 2.33 | 0.510 | 7.11 | 0 |
Low-CP × FP | 1632 | 1675 | 3804 c, d | 708 c, d | 11,472 b | 2.33 | 0.512 | 7.20 | 1 |
Low-CP × BP | 1614 | 1659 | 3707 d | 690 d | 11,178 c | 2.30 | 0.532 | 7.14 | 1 |
Low-CPME × Uns | 1674 | 1720 | 3853 c | 716 c | 11,244 c | 2.30 | 0.503 | 6.81 | 0 |
Low-CPME × FP | 1677 | 1722 | 3837 c | 713 c | 11,197 c | 2.32 | 0.521 | 6.93 | 2 |
Low-CPME × BP | 1632 | 1676 | 3748 d | 697 d | 10,933 d | 2.31 | 0.509 | 6.85 | 0 |
SEM | 82.8 | 84.5 | 18.5 | 3.41 | 55.0 | 0.037 | 0.012 | 0.146 | --- |
p Values | |||||||||
Diet | NS | NS | 0.0001 | 0.0001 | 0.0001 | NS | 0.001 | 0.008 | --- |
Phytase type | NS | NS | 0.0001 | 0.0001 | 0.0001 | NS | NS | NS | --- |
Interaction | NS | NS | 0.005 | 0.005 | 0.004 | NS | NS | NS | --- |
Digestibility % | Nitrogen % | ||||||
---|---|---|---|---|---|---|---|
DM | CP | CF | EE | Ash retention % | Excreta | Feces | |
Effect of Diet | |||||||
Control | 80.4 | 75.5 | 29.0 | 79.6 | 31.4 | 5.41 a | 2.52 |
Low-CP | 81.3 | 77.5 | 31.4 | 79.9 | 32.6 | 5.05 a | 2.37 |
Low-CPME | 80.5 | 77.1 | 31.2 | 80.5 | 32.6 | 5.09 b | 2.39 |
Effect of Type of Phytase | |||||||
FP | 82.3 | 78.0 | 33.1 | 80.7 | 33.0 | 5.08 | 2.26 |
BP | 82.0 | 78.2 | 32.3 | 80.7 | 33.3 | 5.04 | 2.27 |
Interaction Diet × Phytase | |||||||
Control | 80.4 | 75.5 | 29.0 | 79.6 | 31.4 | 5.41 | 2.52 |
Low-CP × Uns | 79.1 | 76.0 | 29.0 | 78.8 | 31.4 | 5.14 | 2.55 |
Low-CP × FP | 82.4 | 78.1 | 33.1 | 80.4 | 33.0 | 5.02 | 2.26 |
Low-CP × BP | 82.4 | 78.6 | 32.1 | 80.5 | 33.4 | 5.01 | 2.28 |
Low-CPME × Uns | 77.9 | 75.5 | 28.0 | 79.7 | 31.5 | 5.06 | 2.61 |
Low-CPME × FP | 82.1 | 78.0 | 33.1 | 81.0 | 33.0 | 5.14 | 2.26 |
Low-CPME × BP | 81.5 | 77.9 | 32.5 | 81.0 | 33.2 | 5.07 | 2.27 |
SEM | 0.59 | 0.45 | 0.90 | 0.91 | 0.44 | 0.09 | 0.04 |
p Values | |||||||
Diet | NS | NS | NS | NS | NS | 0.01 | NS |
Phytase type | NS | NS | NS | NS | NS | NS | NS |
Interaction | NS | NS | NS | NS | NS | NS | NS |
Dressing | AF | Liver | Pancreas | Spleen | Intestinal Lenght | Caecal Lenght | EPI | |
---|---|---|---|---|---|---|---|---|
Effect of Diet | ||||||||
Control | 70.9 | 1.93 | 2.40 | 0.220 | 0.165 | 9.48 a | 0.876 | 169 |
Low-CP | 68.4 | 2.18 | 2.10 | 0.200 | 0.171 | 8.18 b | 0.938 | 158 |
Low-CPME | 69.7 | 2.28 | 2.17 | 0.230 | 0.162 | 8.73 a,b | 0.939 | 157 |
Effect of Type of Phytase | ||||||||
FP | 67.9 | 2.47 | 2.07 | 0.220 | 0.165 | 8.65 | 0.963 | 155 |
BP | 69.6 | 2.66 | 2.17 | 0.200 | 0.165 | 8.99 | 0.924 | 156 |
Interaction Diet × Phytase | ||||||||
Control | 70.9 | 1.93 b | 2.40 | 0.220 | 0.165 | 9.48 | 0.875 | 169 |
Low-CP × Uns | 68.6 | 1.68 b | 1.92 | 0.212 | 0.169 | 7.55 | 0.989 | 162 |
Low-CP × FP | 67.1 | 2.02 b | 2.29 | 0.206 | 0.147 | 7.96 | 0.938 | 154 |
Low-CP × BP | 69.4 | 2.84 a,b | 2.08 | 0.179 | 0.197 | 9.02 | 0.885 | 155 |
Low-CPME × Uns | 70.6 | 1.44 b | 2.05 | 0.249 | 0.154 | 7.91 | 0.868 | 161 |
Low-CPME × FP | 68.6 | 3.30 a | 2.06 | 0.245 | 0.182 | 9.32 | 0.987 | 157 |
Low-CPME × BP | 69.9 | 2.10 a,b | 2.05 | 0.194 | 0.150 | 8.92 | 0.962 | 157 |
SEM | 1.20 | 0.379 | 0.147 | 0.020 | 0.018 | 0.489 | 0.056 | 5.71 |
p Values | ||||||||
Diet | NS | NS | NS | NS | NS | 0.01 | NS | NS |
Phytase type | NS | NS | NS | NS | NS | NS | NS | NS |
Interaction | NS | 0.05 | NS | NS | NS | NS | NS | NS |
Tibia Characterstics | Plasma | ||||||
---|---|---|---|---|---|---|---|
Lenght mm | Weight g | Diameter mm | Ash % | Calcium % | Phosphorus % | Calcium mg/dL | |
Effect of Diet | |||||||
Control | 110 | 7.59 | 11.7 | 44.7 | 20.3 | 10.2 | 10.6 |
Low-CP | 110 | 8.01 | 11.4 | 44.7 | 20.6 | 10.2 | 11.2 |
Low-CPME | 109 | 8.06 | 11.5 | 44.9 | 20.8 | 10.4 | 11.3 |
Effect of Type of Phytase | |||||||
FP | 110 | 8.32 | 11.5 | 44.9 | 20.8 | 10.3 | 11.6 |
BP | 111 | 7.98 | 11.8 | 45.2 | 20.9 | 10.4 | 11.9 |
Interaction Diet × Phytase | |||||||
Control | 110 | 7.59 | 11.7 | 44.8 | 20.3 | 10.2 | 10.6 |
Low-CP × Uns | 108 | 7.52 | 10.6 | 44.5 | 20.4 | 10.1 | 10.3 |
Low-CP × FP | 112 | 8.65 | 11.9 | 44.7 | 20.5 | 10.1 | 11.5 |
Low-CP × BP | 111 | 7.87 | 11.7 | 45.0 | 20.8 | 10.3 | 11.8 |
Low-CPME × Uns | 109 | 7.92 | 11.4 | 44.1 | 20.2 | 10.1 | 10.0 |
Low-CPME × FP | 108 | 7.99 | 11.2 | 45.2 | 21.2 | 10.5 | 11.8 |
Low-CPME × BP | 111 | 8.10 | 11.2 | 45.4 | 20.9 | 10.5 | 12.1 |
SEM | 2.20 | 0.66 | 0.50 | 0.41 | 0.31 | 0.16 | 0.346 |
p Values | |||||||
Diet | NS | NS | NS | NS | NS | NS | NS |
Phytase type | NS | NS | NS | NS | NS | NS | NS |
Interaction | NS | NS | NS | NS | NS | NS | NS |
TP g/dL | Alb g/dL | Glob g/dL | TL mg/dL | Chol mg/dL | AP U/L | AST U/L | |
---|---|---|---|---|---|---|---|
Effect of Diet | |||||||
Control | 4.15 | 1.11 b | 3.00 | 691 | 112 | 51.5 | 11.0 |
Low-CP | 3.91 | 1.53 a | 2.39 | 700 | 115 | 52.2 | 10.9 |
Low-CPME | 4.00 | 1.47 a | 2.63 | 687 | 106 | 51.2 | 10.8 |
Effect of Type of Phytase | |||||||
FP | 3.85 | 1.45 | 2.45 | 696 | 100 | 51.3 | 10.7 |
BP | 3.87 | 1.42 | 2.46 | 690 | 102 | 51.1 | 10.6 |
Interaction Diet × Phytase | |||||||
Control | 4.15 | 1.10 | 3.00 | 691 | 112 | 51.5 | 11.0 |
Low-CP × Uns | 4.04 | 1.51 | 2.54 | 712 | 141 | 52.6 | 11.0 |
Low-CP × FP | 4.08 | 1.59 | 2.49 | 698 | 106 | 53.0 | 10.9 |
Low-CP × BP | 3.61 | 1.47 | 2.14 | 690 | 99.5 | 51.0 | 10.7 |
Low-CPME × Uns | 4.24 | 1.53 | 2.71 | 677 | 120 | 52.7 | 11.3 |
Low-CPME × FP | 3.63 | 1.47 | 2.43 | 693 | 94.4 | 49.6 | 10.7 |
Low-CPME × BP | 4.14 | 1.38 | 2.76 | 689 | 104 | 51.2 | 10.4 |
SEM | 38.7 | 0.059 | 0.212 | 8.101 | 6.70 | 8.20 | 0.270 |
p Values | |||||||
Diet | NS | 0.0001 | NS | NS | NS | NS | NS |
Phytase type | NS | NS | NS | NS | 0.0001 | NS | NS |
Interaction | NS | NS | NS | NS | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attia, Y.A.; Bovera, F.; Al-Harthi, M.A.; El-Din, A.E.-R.E.T.; Said Selim, W. Supplementation of Microbial and Fungal Phytases to Low Protein and Energy Diets: Effects on Productive Performance, Nutrient Digestibility, and Blood Profiles of Broilers. Agriculture 2021, 11, 414. https://doi.org/10.3390/agriculture11050414
Attia YA, Bovera F, Al-Harthi MA, El-Din AE-RET, Said Selim W. Supplementation of Microbial and Fungal Phytases to Low Protein and Energy Diets: Effects on Productive Performance, Nutrient Digestibility, and Blood Profiles of Broilers. Agriculture. 2021; 11(5):414. https://doi.org/10.3390/agriculture11050414
Chicago/Turabian StyleAttia, Youssef A., Fulvia Bovera, Mohammed A. Al-Harthi, Abd El-Razek E. Tag El-Din, and Walaa Said Selim. 2021. "Supplementation of Microbial and Fungal Phytases to Low Protein and Energy Diets: Effects on Productive Performance, Nutrient Digestibility, and Blood Profiles of Broilers" Agriculture 11, no. 5: 414. https://doi.org/10.3390/agriculture11050414
APA StyleAttia, Y. A., Bovera, F., Al-Harthi, M. A., El-Din, A. E. -R. E. T., & Said Selim, W. (2021). Supplementation of Microbial and Fungal Phytases to Low Protein and Energy Diets: Effects on Productive Performance, Nutrient Digestibility, and Blood Profiles of Broilers. Agriculture, 11(5), 414. https://doi.org/10.3390/agriculture11050414