Effect of Increasing Supplementation Levels of Coffee Pulp on Milk Yield and Food Intake in Dual-Purpose Cows: An Alternative Feed Byproduct for Smallholder Dairy Systems of Tropical Climate Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedures
2.2. Treatments
2.3. Sward Measurements
2.4. Grass Dry Matter Intake Estimation
2.5. Chemical Analysis of African Star Grass, Concentrate, and Coffee Pulp
2.6. Analyses of Results
3. Results
3.1. Chemical Composition of the Experimental Concentrate, African Star Grass, and CoP
3.2. Animal Response Variables
3.3. Sward Response Variables
4. Discussion
4.1. Effect of Coffee Pulp Supplementation on Milk Yield and Milk Composition of Dual-Purpose Cows
4.2. African Star Grass Herbage Intake and Concentrate Supplementation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- San Martin, D.; Orive, M.; Iñarra, B.; García, A.; Goiri, I.; Atxaerandio, R.; Urkiza, J.; Zufía, J. Spent Coffee Ground as Second-Generation Feedstuff for Dairy Cattle. Biomass Conv. Bioref. 2020. [Google Scholar] [CrossRef]
- International Coffee Organization. Historical Data on the Global Coffee Trade. 2016. Available online: http://www.ico.new_historical.asp (accessed on 5 February 2021).
- Esquivel, P.; Jiménez, V. Functional Properties of Coffee and Coffee By-Products. Food Res. Int. 2012, 46, 488–495. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: http://www.fao.faostat/es/#data (accessed on 26 January 2021).
- Vanderhaegen, K.; Akoyi, K.T.; Dekoninck, W.; Jocqué, R.; Muys, B.; Verbist, B.; Maertens, M. Do Private Coffee Standards ‘Walk the Talk’ in Improving Socio-Economic and Environmental Sustainability? Glob. Environ. Chang. 2018, 51, 1–9. [Google Scholar] [CrossRef]
- Murthy, P.; Naidu, M. Sustainable Management of Coffee Industry By-Products and Value Addition—A Review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Roussos, S.; Aquiáhuatl, M.; Trejo-Hernández, M.R.; Gaime, I.; Favela-Torres, E.; Ramakrishna, M.; Raimbault, M.; Viniegra-González, G. Biotechnological Management of Coffee Pulp-Isolation, Screening, Characterization, Selection of Caffeine-Degrading Fungi and Natural Microflora Present in Coffee Pulp and Husk. Appl. Microbiol. Biotechnol. 1995, 42, 756–762. [Google Scholar] [CrossRef]
- Blinová, L.; Sirotiak, M.; Pastierova, A.; Soldán, M. Review: Utilization of Waste From Coffee Production. Res. Pap. Fac Mater. Sci. Technol. Slovak Univ. Technol. 2017, 25. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Pandey, A.; Soccol, A.; Soccol, C. Cultivation of Pleurotus Mushrooms on Brazilian Coffee Husk and Effects of Caffeine and Tannic Acid. Micol. Apl. Int. 2003, 15, 15–21. [Google Scholar]
- Widjaja, T.; Iswanto, T.; Altway, A.; Shovitri, M.; Juliastuti, S.R. Methane Production from Coffee Pulp by Microorganism of Rumen Fluid and Cow Dung in Co-Digestion. Chem. Eng. Trans. 2017, 56, 1465–1470. [Google Scholar] [CrossRef]
- Mazzafera, P. Degradation of Caffeine by Microorganisms and Potential Use of Decaffeinated Coffee Husk and Pulp in Animal Feeding. Sci. Agric. 2002, 59, 815–821. [Google Scholar] [CrossRef] [Green Version]
- Nurfeta, A. Feed Intake, Digestibility, Nitrogen Utilization, and Body Weight Change of Sheep Consuming Wheat Straw Supplemented with Local Agricultural and Agro-Industrial by-Products. Trop. Anim. Health Prod. 2009, 42, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.; Garcia, R.; Valadares Filho, S.; Rocha, F.; Campos, J.; Silva Cabral, L.; Gobbi, K. Effects of Feeding Coffee Hulls on Intake, Digestibility and Milk Yield and Composition of Lactating Dairy Cows. Rev. Bras. Zootec. 2005, 34, 2496–2504. [Google Scholar] [CrossRef] [Green Version]
- Clifford, M.N.; Ramirez-Martinez, J.R. Phenols and Caffeine in Wet-Processed Coffee Beans and Coffee Pulp. Food Chem. 1991, 40, 35–42. [Google Scholar] [CrossRef]
- Negesse, T.; Makkar, H.P.S.; Becker, K. Nutritive Value of Some Non-Conventional Feed Resources of Ethiopia Determined by Chemical Analyses and an in Vitro Gas Method. Anim. Feed Sci. Technol. 2009, 154, 204–217. [Google Scholar] [CrossRef]
- Naumann, H.D.; Tedeschi, L.O.; Zeller, W.E.; Huntley, N.F.; Naumann, H.D.; Tedeschi, L.O.; Zeller, W.E.; Huntley, N.F. The Role of Condensed Tannins in Ruminant Animal Production: Advances, Limitations and Future Directions. Rev. Bras. Zootec. 2017, 46, 929–949. [Google Scholar] [CrossRef] [Green Version]
- Dowden, H.C. Note on the Quantity of Theobromine in the Milk of Cows Fed on a Diet Including This Alkaloid. Biochem. J. 1938, 32, 71–73. [Google Scholar] [CrossRef] [Green Version]
- Trana, A.D.; Bonanno, A.; Cecchini, S.; Giorgio, D.; Grigoli, A.D.; Claps, S. Effects of Sulla Forage (Sulla Coronarium, L.) on the Oxidative Status and Milk Polyphenol Content in Goats. J. Dairy Sci. 2015, 98, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Bonanno, A.; Di Grigoli, A.; Todaro, M.; Alabiso, M.; Vitale, F.; Di Trana, A.; Giorgio, D.; Settanni, L.; Gaglio, R.; Laddomada, B.; et al. Improvement of Oxidative Status, Milk and Cheese Production, and Food Sustainability Indexes by Addition of Durum Wheat Bran to Dairy Cows’ Diet. Animals 2019, 9, 698. [Google Scholar] [CrossRef] [Green Version]
- Alqaisi, O.; Moraes, L.E.; Ndambi, O.A.; Williams, R.B. Optimal Dairy Feed Input Selection under Alternative Feeds Availability and Relative Prices. Inf. Process. Agric. 2019, 6, 438–453. [Google Scholar] [CrossRef]
- Annual Variation in Economics of Small-Scale Dairy Production and it’s Effect on Poverty Indexes. Available online: http://www.lrrd.lrrd20/2/lope20032.htm (accessed on 10 February 2021).
- Hernández Morales, P.; Estrada-Flores, J.G.; Avilés-Nova, F.; Yong-Angel, G.; López-González, F.; Solís-Méndez, A.D.; Castelán-Ortega, O.A. Tipificación de los sistemas campesinos de producción de leche del sur del estado de México. Univ. Cienc. 2013, 29, 19–31. [Google Scholar]
- González Razo, F.D.J.; Sangerman-Jarquín, D.M.; Rebollar Rebollar, S.; Omaña Silvestre, J.M.; Hernández Martínez, J.; Morales Hernández, J.L. El proceso de comercialización del café en el sur del Estado de México. Rev. Mex. Cienc. Agrícolas 2019, 10, 1195–1206. [Google Scholar] [CrossRef] [Green Version]
- Condition Scoring of Dairy Cows. Available online: https://www.gov.uk/government/publications/condition-scoring-of-dairy-cows (accessed on 31 January 2021).
- Avilés-Nova, F.; Espinoza-Ortega, A.; Castelán-Ortega, O.A.; Arriaga-Jordán, C.M. Sheep Performance under Intensive Continuous Grazing of Native Grasslands of Paspalum Notatum and Axonopus Compressus in the Subtropical Region of the Highlands of Central Mexico. Trop. Anim. Health Prod. 2008, 40, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Dove, H.; Mayes, R. Using N-Alkanes and Other Plant Wax Components to Estimate Intake, Digestibility and Diet Composition of Grazing/Browsing Sheep and Goats. Small Rumin. Res. 2005, 59, 123–139. [Google Scholar] [CrossRef]
- Estrada, I.; Nova, F.; Estrada-Flores, J.; Pedraza-Beltrán, P.; Yong, G.; Castelan-Ortega, O. Dry Matter Intake Estimation of Star Grass (Cynodon Plectostachyus, K. Schum.) by Grazing Dairy Cows through of n-Alkanes, Forage Cutting and Grazing Behaviour. Trop. Subtrop. Agroecosyst. 2014, 17, 463–477. [Google Scholar]
- Mayes, R.W.; Lamb, C.S.; Colgrove, P.M. The Use of Dosed and Herbage N-Alkanes as Markers for the Determination of Herbage Intake. J. Agric. Sci. 1986, 107, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Mousa, R.M.A. Official Methods of Analysis of, 16th ed.; AOAC International: Washington, DC, USA, 1995. [Google Scholar]
- Makkar, H.P.S.; Blümmel, M.; Borowy, N.K.; Becker, K. Gravimetric Determination of Tannins and Their Correlations with Chemical and Protein Precipitation Methods. J. Sci. Food Agric. 1993, 61, 161–165. [Google Scholar] [CrossRef]
- Wass, J.A. MINITAB Release 14 Statistical Software for Windows; Minitab Inc.: State College, PA, USA, 2004. [Google Scholar]
- Pandey, A.; Soccol, C. Economic Utilization of Crop Residues for Value Addition: A Futuristic Approach. J. Sci. Ind. Res. 2000, 59, 12–22. [Google Scholar]
- Ameca, G.M.; Cerrilla, M.E.O.; Córdoba, P.Z.; Cruz, A.D.; Hernández, M.S.; Haro, J.H.; Ameca, G.M.; Cerrilla, M.E.O.; Córdoba, P.Z.; Cruz, A.D.; et al. Chemical Composition and Antioxidant Capacity of Coffee Pulp. Ciência Agrotecnol. 2018, 42, 307–313. [Google Scholar] [CrossRef]
- Asfew, Z.; Dekebo, A. Quantification of Caffeine Content in Coffee Bean, Pulp and Leaves from Wollega Zones of Ethiopia by High Performance Liquid Chromatography. Trends Phytochem. Res. 2019, 3, 261–274. [Google Scholar]
- González, F.L.; Flores, J.G.E.; Nova, F.A.; Angel, G.Y.; Morales, P.H.; Loperena, R.M.; Beltrán, P.E.P.; Ortega, O.A.C. Agronomic Evaluation and Chemical Composition of African Star Grass (Cynodon Plectostachyus) in the South of the State of Mexico. Trop. Subtrop. Agroecosyst. 2009, 12, 151–159. [Google Scholar]
- Lee, M.A. A Global Comparison of the Nutritive Values of Forage Plants Grown in Contrasting Environments. J. Plant Res. 2018, 131, 641–654. [Google Scholar] [CrossRef]
- Angel, G.Y.; Silveira, V.C.P.; Nova, F.A.; Ortega, O.A.C.; Angel, G.Y.; Silveira, V.C.P.; Nova, F.A.; Ortega, O.A.C. Simulating the Effect of Climate on Star Grass Growth and Quality and Its Capacity to Support Milk Production in the Tropical Regions of Mexico. Ciência Rural 2014, 44, 1486–1493. [Google Scholar] [CrossRef] [Green Version]
- Salazar, A.; Silva_Acuña, R.; Salcedo, M. Revisión: Utilización de La Pulpa de Café En La Alimentación Animal. Zootec. Trop. 2008, 26, 411–419. [Google Scholar]
- Klingel, T.; Kremer, J.I.; Gottstein, V.; Rajcic de Rezende, T.; Schwarz, S.; Lachenmeier, D.W. A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union. Foods 2020, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.A.P.; Santos, J.E.P.; Theurer, C.B.; Huber, J.T. Effects of Rumen-Undegradable Protein on Dairy Cow Performance: A 12-Year Literature Review. J. Dairy Sci. 1998, 81, 3182–3213. [Google Scholar] [CrossRef]
- Santos, F.A.; Huber, J.T.; Theurer, C.B.; Swingle, R.S.; Simas, J.M.; Chen, K.H.; Yu, P. Milk Yield and Composition of Lactating Cows Fed Steam-Flaked Sorghum and Graded Concentrations of Ruminally Degradable Protein. J. Dairy Sci. 1998, 81, 215–220. [Google Scholar] [CrossRef]
- Ibarra, D.; Latrille, L. Increasing of Rumen Undegradable Protein in Dairy Cows. 1. Effects on Milk Production, Milk Composition and Nutrients Utilization. Arch. Med. Vet. 2006, 38, 115–121. [Google Scholar]
- Chaves Barcellos Grazziotin, R.; Halfen, J.; Rosa, F.; Schmitt, E.; Anderson, J.; Ballard, V.; Osorio, J. Altered Rumen Fermentation Patterns in Lactating Dairy Cows Supplemented with Phytochemicals Improve Milk Production and Efficiency. J. Dairy Sci. 2019, 103. [Google Scholar] [CrossRef]
- Capstaff, N.M.; Miller, A.J. Improving the Yield and Nutritional Quality of Forage Crops. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Allison, C.D. Factors Affecting Forage Intake by Range Ruminants: A Review. J. Range Manag. 1985, 38, 305–311. [Google Scholar] [CrossRef]
- Pérez-Ramírez, E.; Delagarde, R.; Delaby, L. Herbage Intake and Behavioural Adaptation of Grazing Dairy Cows by Restricting Time at Pasture under Two Feeding Regimes. Animal 2008, 2, 1384–1392. [Google Scholar] [CrossRef] [Green Version]
- Pedraza-Beltrán, P.; Estrada-Flores, J.G.; Martínez-Campos, A.R.; Estrada-López, I.; Rayas-Amor, A.A.; Yong-Angel, G.; Figueroa-Medina, M.; Nova, F.A.; Castelán-Ortega, O.A. On-Farm Evaluation of the Effect of Coffee Pulp Supplementation on Milk Yield and Dry Matter Intake of Dairy Cows Grazing Tropical Grasses in Central Mexico. Trop. Anim. Health Prod. 2012, 44, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Mlay, P.; Pereka, A.; Balthazary, S.; Phiri, E.; Madsen, J.; Hvelplund, T.; Weisbjerg, M. In Situ Degradation Of Poor Quality Hay In The Rumens of Mature Heifers As Influenced by Sugar, Starch And Nitrogen Supplements And An Ionic Feed Additive. Tanzan. Vet. J. 2008, 24. [Google Scholar] [CrossRef]
- Mouriño, F.; Akkarawongsa, R.; Weimer, P.J. Initial PH as a Determinant of Cellulose Digestion Rate by Mixed Ruminal Microorganisms In Vitro. J. Dairy Sci. 2001, 84, 848–859. [Google Scholar] [CrossRef]
Variable | DM g/kg DM | NDF g/kg DM | ADF g/kg DM | CP g/kg DM | Total Phenols g/kg DM | Total Tannins g/kg DM | Caffeine g/kg DM | |
---|---|---|---|---|---|---|---|---|
Concentrate | 890 | 141 | 52 | 296 | - | - | ||
Coffee pulp | 860 | 353 | 279 | 85 | 35 | 22 | 0.1 | |
African Star grass | Experimental Period | |||||||
Period 1 | 50 | 721 | 357 | 82 | ||||
Period 2 | 55 | 657 | 334 | 97 | ||||
Period 3 | 64 | 657 | 318 | 122 | ||||
Period 4 | 72 | 598 | 285 | 155 | ||||
Mean | 60.3 | 658 | 323 | 114 | ||||
SEM | 4.8 | 21.1 | 15.1 | 16 |
Treatment CoP kgDM | Milk Yield kg/d | Milk Composition g/kg | Live Weight kg | BCS | GDMI kg DM/d | Proportion of CoP in Concentrate | Total DMI kg/d | Proportion of CoP in Total DMI | ||
---|---|---|---|---|---|---|---|---|---|---|
Fa | CP | TS | ||||||||
Treat. 1 (0) | 12.3 | 39.4 | 31.2 | 119.5 | 494 | 3.7 | 3.6 | 0.0 | 9.6 a | 0.0 |
Treat. 2 (0.6) | 14.7 | 39.7 | 30.9 | 123.0 | 492 | 3.6 | 3.2 | 0.1 | 9.8 a | 0.062 |
Treat. 3 (0.9) | 14.5 | 34.1 | 30.6 | 118.7 | 480 | 3.6 | 3.6 | 0.15 | 10.5 b | 0.085 |
Treat. 4 (1.2) | 12.3 | 40.9 | 31.4 | 123.6 | 475 | 3.7 | 3.6 | 0.2 | 10.8 b | 0.11 |
D.F. | 15 | 15 | 15 | 15 | 15 | 15 | 15 | - | 15 | - |
SEM | 1.7 | 2.2 | 0.5 | 3.5 | 8.0 | 0.07 | 0.21 | - | 0.21 | - |
P | 0.62 | 0.23 | 0.74 | 0.69 | 0.33 | 0.45 | 0.45 | - | 0.02 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrada-Flores, J.G.; Pedraza-Beltrán, P.E.; Yong-Ángel, G.; Avilés-Nova, F.; Rayas-Amor, A.-A.; Solís-Méndez, A.D.; González-Ronquillo, M.; Vázquez-Carrillo, M.F.; Castelán-Ortega, O.A. Effect of Increasing Supplementation Levels of Coffee Pulp on Milk Yield and Food Intake in Dual-Purpose Cows: An Alternative Feed Byproduct for Smallholder Dairy Systems of Tropical Climate Regions. Agriculture 2021, 11, 416. https://doi.org/10.3390/agriculture11050416
Estrada-Flores JG, Pedraza-Beltrán PE, Yong-Ángel G, Avilés-Nova F, Rayas-Amor A-A, Solís-Méndez AD, González-Ronquillo M, Vázquez-Carrillo MF, Castelán-Ortega OA. Effect of Increasing Supplementation Levels of Coffee Pulp on Milk Yield and Food Intake in Dual-Purpose Cows: An Alternative Feed Byproduct for Smallholder Dairy Systems of Tropical Climate Regions. Agriculture. 2021; 11(5):416. https://doi.org/10.3390/agriculture11050416
Chicago/Turabian StyleEstrada-Flores, Julieta Gertrudis, Paulina Elizabeth Pedraza-Beltrán, Gilberto Yong-Ángel, Francisca Avilés-Nova, Adolfo-Armando Rayas-Amor, Alejandra Donají Solís-Méndez, Manuel González-Ronquillo, María Fernanda Vázquez-Carrillo, and Octavio Alonso Castelán-Ortega. 2021. "Effect of Increasing Supplementation Levels of Coffee Pulp on Milk Yield and Food Intake in Dual-Purpose Cows: An Alternative Feed Byproduct for Smallholder Dairy Systems of Tropical Climate Regions" Agriculture 11, no. 5: 416. https://doi.org/10.3390/agriculture11050416
APA StyleEstrada-Flores, J. G., Pedraza-Beltrán, P. E., Yong-Ángel, G., Avilés-Nova, F., Rayas-Amor, A. -A., Solís-Méndez, A. D., González-Ronquillo, M., Vázquez-Carrillo, M. F., & Castelán-Ortega, O. A. (2021). Effect of Increasing Supplementation Levels of Coffee Pulp on Milk Yield and Food Intake in Dual-Purpose Cows: An Alternative Feed Byproduct for Smallholder Dairy Systems of Tropical Climate Regions. Agriculture, 11(5), 416. https://doi.org/10.3390/agriculture11050416