Weed Species Trait Selection as Shaped by Region and Crop Diversity in Organically Managed Spring Cereals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetation Data
2.2. Crop Management and Environmental Data
2.3. Trait Data
2.4. Data Analysis
3. Results
3.1. Region Interactions with Traits in the Weed Community
3.2. Crop Management Interactions with Traits in the Weed Community
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
EPPO | Latin Name | Frequency | EPPO | Latin Name | Frequency |
---|---|---|---|---|---|
STEME | Stellaria media (L.) Cirillo | 0.903 | GNAUL | Gnaphalium uliginosum L. | 0.043 |
VIOAR | Viola arvensis Murray | 0.860 | CMPRA | Campanula rapunculoides L. | 0.039 |
CIRAR | Cirsium arvense (L.) Scop. | 0.850 | GASPA | Galinsoga parviflora Cav. | 0.039 |
MATIN | Tripleurospermum inodorum (L.) Sch. Bip. | 0.841 | GERMO | Geranium molle L. | 0.039 |
CHEAL | Chenopodium album L. | 0.778 | HORVX | Hordeum vulgare L. | 0.039 |
MYOAR | Myosotis arvensis (L.) Hill | 0.734 | AEOPO | Aegopodium podagraria L. | 0.034 |
AGRRE | Elytrigia repens (L.) Nevski | 0.720 | LOLSS | Lolium L. sp. | 0.034 |
POLAV | Polygonum aviculare subsp. aviculare L. | 0.662 | LTHSS | Lathyrus L. sp. | 0.034 |
POLCO | Fallopia convolvulus (L.) Å. Löve | 0.652 | SENVU | Senecio vulgaris L. | 0.034 |
CAPBP | Capsella bursa-pastoris (L.) Medik. | 0.594 | SSYOF | Sisymbrium officinale (L.) Scop. | 0.034 |
SPRAR | Spergula arvensis L. | 0.551 | TRFPR | Trifolium pratense L. | 0.034 |
FUMOF | Fumaria officinalis L. | 0.531 | ANRSY | Anthriscus sylvestris (L.) Hoffm. | 0.029 |
TAROF | Taraxacum sect. Taraxacum F. H. Wigg. | 0.512 | CHYSE | Glebionis segetum (L.) Fourr. | 0.029 |
LAMPU | Lamium purpureum L. | 0.507 | DECCA | Deschampsia cespitosa (L.) P. Beauv. | 0.029 |
EQUAR | Equisetum arvense L. | 0.478 | LOLMU | Lolium multiflorum Lam. | 0.029 |
LAPCO | Lapsana communis L. | 0.454 | MEDLU | Medicago lupulina L. | 0.029 |
THLAR | Thlaspi arvense L. | 0.454 | SCRAN | Scleranthus annuus L. | 0.029 |
SONAR | Sonchus arvensis L. | 0.396 | AGSTE | Agrostis capillaris L. | 0.024 |
LYCAR | Lycopsis arvensis L. | 0.372 | DAUCA | Daucus carota L. | 0.024 |
POLPE | Persicaria maculosa x minor | 0.367 | PLALA | Plantago lanceolata L. | 0.024 |
GAESS | Galeopsis L. | 0.348 | RUMOB | Rumex obtusifolius L. | 0.024 |
VICSS | Vicia L. sp. | 0.314 | ALCVU | Alchemilla xanthochlora Rothm. | 0.019 |
ERYCH | Erysimum cheiranthoides L. | 0.300 | ATXPA | Atriplex patula L. | 0.019 |
TRFRE | Trifolium repens L. | 0.300 | FESSS | Festuca L. sp. | 0.019 |
VICCR | Vicia cracca L. | 0.295 | HYPSS | Hypericum L. sp. | 0.019 |
CENCY | Cyanus segetum Hill | 0.285 | LUPSS | Lupinus L. sp. | 0.019 |
VERAR | Veronica arvensis L. | 0.280 | MEDSS | Medicago L. sp. | 0.019 |
RUMCR | Rumex crispus L. | 0.266 | RUMAC | Rumex acetosa L. | 0.019 |
GALAL | Galium album Mill. | 0.261 | SHRAR | Sherardia arvensis L. | 0.019 |
EROCI | Erodium cicutarium (L.) L’Hér. | 0.256 | ACHPT | Achillea ptarmica L. | 0.014 |
GALSP | Galium spurium L. | 0.256 | ALOMY | Alopecurus myosuroides Huds. | 0.014 |
VERPE | Veronica persica Poir. | 0.256 | ARBTH | Arabidopsis thaliana (L.) Heynh. | 0.014 |
POLLA | Persicaria lapathifolia (L.) Delarbre s. l. | 0.246 | AVEFA | Avena fatua L. | 0.014 |
ACHMI | Achillea millefolium L. | 0.242 | BRASS | Brachiaria (Trin.) Griseb. sp. | 0.014 |
POAAN | Ochlopoa annua (L.) H. Scholz | 0.237 | CENJA | Centaurea jacea L. | 0.014 |
RANRE | Ranunculus repens L. | 0.237 | ERYSS | Erysimum L. sp. | 0.014 |
VICHI | Vicia hirsuta (L.) Gray | 0.237 | FESPR | Schedonorus pratensis (Huds.) P. Beauv. | 0.014 |
ARTVU | Artemisia vulgaris L. | 0.222 | GAETE | Galeopsis tetrahit | 0.014 |
TRFSS | Trifolium L. sp. | 0.222 | GASCI | Galinsoga quadriradiata Ruiz & Pav. | 0.014 |
CONAR | Convolvulus arvensis L. | 0.217 | MYSMI | Myosurus minimus L. | 0.014 |
GERPU | Geranium pusillum L. | 0.217 | POAPR | Poa pratensis L. | 0.014 |
RAPRA | Raphanus raphanistrum L. | 0.217 | VERSS | Veronica L. sp. | 0.014 |
SINAR | Sinapis arvensis L. | 0.217 | VIOTR | Viola tricolor L. | 0.014 |
TUSFA | Tussilago farfara L. | 0.217 | ALOGE | Alopecurus geniculatus L. | 0.010 |
GAESP | Galeopsis speciosa Mill. | 0.213 | APHAR | Aphanes arvensis L. | 0.010 |
GALAP | Galium aparine L. | 0.203 | BROST | Anisantha sterilis (L.) Nevski | 0.010 |
PAPRH | Papaver rhoeas L. | 0.184 | CERFO | Cerastium fontanum Baumg. | 0.010 |
CVPCA | Crepis capillaris (L.) Wallr. | 0.164 | CIRVU | Cirsium vulgare (Savi) Ten. | 0.010 |
LAMAM | Lamium amplexicaule L. | 0.164 | DACGL | Dactylis glomerata L. | 0.010 |
MATMT | Matricaria discoidea DC. | 0.159 | FESRU | Festuca rubra L. | 0.010 |
PLAMA | Plantago major L. | 0.155 | IUNBU | Juncus bufonius L. | 0.010 |
SONAS | Sonchus asper (L.) Hill | 0.155 | MEDSA | Medicago sativa L. | 0.010 |
MENAR | Mentha arvensis L. | 0.150 | MELAL | Silene latifolia Poir. | 0.010 |
LOTSS | Lotus L. sp. | 0.145 | POATR | Poa trivialis L. | 0.010 |
PHLPR | Phleum pratense L. | 0.145 | RANSS | Ranunculus L. sp. | 0.010 |
STAPA | Stachys palustris L. | 0.140 | TRFCA | Trifolium campestre Schreb. | 0.010 |
EPHHE | Euphorbia helioscopia L. | 0.130 | URTDI | Urtica dioica L. | 0.010 |
RUMSS | Rumex L. sp. | 0.130 | ALOSS | Alopecurus sp | 0.005 |
CHESS | Chenopodium L. sp. | 0.126 | BARVU | Barbarea vulgaris R. Br. | 0.005 |
PTLAN | Argentina anserina (L.) Rydb. | 0.126 | BORSS | Borago L. sp. | 0.005 |
EPHES | Euphorbia esula L. | 0.121 | CNSRE | Consolida regalis Gray | 0.005 |
GAEBI | Galeopsis bifida Boenn. | 0.121 | CONSS | Convolvulus L. sp. | 0.005 |
PLAME | Plantago media L. | 0.121 | CRDSS | Arabidopsis Heynh. sp. | 0.005 |
BARSS | Barbarea W. T. Aiton sp. | 0.116 | CRUCR | Carduus crispus L. | 0.005 |
BRSRO | Brassica rapa subsp. oleifera (DC.) Metzg. | 0.116 | ECHCG | Echinochloa crus-galli (L.) P. Beauv. | 0.005 |
LOLPE | Lolium perenne L. | 0.116 | FESAR | Schedonorus arundinaceus (Schreb.) Dumort. | 0.005 |
RUMAA | Rumex acetosella subsp. acetosella L. | 0.116 | HELTU | Helianthus tuberosus L. | 0.005 |
SONSS | Sonchus L. sp. | 0.111 | HERMZ | Heracleum mantegazzianum Sommier & Levier | 0.005 |
CERAR | Cerastium arvense L. | 0.106 | HOLLA | Holcus lanatus L. | 0.005 |
PRASS | Persicaria Mill. sp. | 0.106 | HOLMO | Holcus mollis L. | 0.005 |
EPHSS | Euphorbia L. sp. | 0.101 | HRYRA | Hypochaeris radicata L. | 0.005 |
ANTAR | Anthemis arvensis L. | 0.097 | LITAR | Buglossoides arvensis (L.) I. M. Johnst. | 0.005 |
MATCH | Matricaria chamomilla L. | 0.097 | LIUUT | Linum usitatissimum L. | 0.005 |
LAMSS | Lamium L. sp. | 0.087 | MALPU | Malva pusilla Sm. | 0.005 |
LTHPR | Lathyrus pratensis L. | 0.087 | MELRU | Silene dioica (L.) Clairv. | 0.005 |
RUMLO | Rumex longifolius DC. | 0.082 | MEUAL | Melilotus albus Medik. | 0.005 |
BRSNN | Brassica napus L. | 0.077 | PIBSA | Pisum sativum L. subsp. sativum | 0.005 |
PRUVU | Prunella vulgaris L. | 0.077 | PIEAB | Picea abies (L.) H. Karst. | 0.005 |
SILSS | Silene L. sp. | 0.072 | PLASS | Plantago L. sp. | 0.005 |
SONOL | Sonchus oleraceus L. | 0.072 | POASS | Poa L. sp. | 0.005 |
CHYLE | Leucanthemum vulgare (Vaill.) Lam. | 0.068 | RORSY | Rorippa sylvestris (L.) Besser | 0.005 |
RUMCO | Rumex conglomeratus Murray | 0.068 | SETSS | Setaria P. Beauv. sp. | 0.005 |
RANAC | Ranunculus acris L. | 0.063 | SOLNI | Solanum nigrum L. | 0.005 |
ERPVE | Erophila verna (L.) Chevall. | 0.058 | SOLTU | Solanum tuberosum L. | 0.005 |
VERHE | Veronica hederifolia L. | 0.058 | SOOCA | Solidago canadensis L. | 0.005 |
APESV | Apera spica-venti (L.) P. Beauv. | 0.053 | SSYSS | Sisymbrium L. | 0.005 |
GERSS | Geranium L. | 0.053 | STASS | Stachys L. sp. | 0.005 |
VICSA | Vicia sativa L. | 0.053 | STEPA | Stellaria palustris Hoffm. | 0.005 |
ARFTO | Arctium tomentosum Mill. | 0.048 | TRKMO | Medicago sativa L. | 0.005 |
AMSSS | Amsinckia Lehm. sp. | 0.043 | URTUR | Urtica urens L. | 0.005 |
ANGAR | Anagallis arvensis L. | 0.043 | VESSS | Verbascum L. sp. | 0.005 |
BIDTR | Bidens tripartitus L. | 0.043 | VICLA | Vicia lathyroides L. | 0.005 |
BRSRA | Brassica rapa subsp. campestris (L.) A. R. Clapham | 0.043 | VICVI | Vicia villosa Roth | 0.005 |
Trait Code | Source of Information | Trait Level/Value | Trait Explanation |
---|---|---|---|
1. Raunkiaer life form (RLF) | A, C, H | Qualitative; response and effect trait | The Raunkiær system (1934) is based on the place of the plant’s growth point (bud) during seasons with adverse conditions (cold seasons, dry seasons) Therophytes: Annual plants which survive the unfavorable season in the form of seeds and complete their life cycle during favorable seasons; annual species are therophytes Hemicryptophytes: Buds at or near the soil surface Geophytes: Below ground, with resting buds lying either beneath the surface of the ground as a rhizome (bulb, corm, etc.) Chamaephytes: Buds on persistent shoots near the ground; woody plants with perennating buds borne close to the ground, no more than 25 cm above the soil surface |
1.1 1.2 1.3 1.4 | Therophyte = 1 Hemicriptophyte = 2 Geophyte = 3 Chamaephyte = 4 | ||
2. Growth form (GTF) | A, C | Qualitative; response and effect trait | Species can be grouped into growth form classes on the basis of their similarities in structure and function. Herbaceous species can be grouped into rosette-forming, ascending, or creeping leafy species and graminoids considering the architecture and occupancy of the space Rosette-forming: Cluster of leaves with very short internodes that are crowded together, normally on the soil surface but sometimes higher on the stem Ascending or creeping leafy stems: Growing uprightly, in an upward direction, heading in the direction of the top or growing along the ground and producing roots at intervals along surface Graminoids: Grass or grass-like plant, including grasses (Poaceae), sedges (Cyperaceae), and rushes (Juncaceae) |
2.1 2.2 2.3 | Rosette-forming = 1 Ascending or creeping leafy species = 2 Graminoids = 3 | ||
3. Grime’s life strategy (GLS) | C, D, F, I | Qualitative; response and effect trait | Plants are classified according to their life strategy (Grime, 1974) (C as competitive, S as stress-tolerant, R as ruderal, and the combined strategies CR, CS, SR, and CSR). Despite some species being able to vary their strategy according to environmental and agronomic factors, their main life strategy is indicated For CSR strategy: for some species classes were attributed using the information available for similar species |
4.1 4.2 4.3 4.4 4.5 4.6 4.7 | Competitive = 1 Stress-tolerant = 2 Ruderal = 3 CR = 4 CS = 5 SR = 6 CSR = 7 | ||
4. Specific leaf area (SLA) | H | Quantitative | SLA is a proxy for a plant’s ability to use light efficiently within the classical acquisition/conservation tradeoff |
5. Plant height (PLH) (m) | E, H, J | Quantitative | Plant height characterizes species ability to compete for light with neighboring plants and especially with crop individuals |
6. Seed weight (SWT) (mg) | D, G, J | Quantitative | Seed weight is related to species ability to disperse, colonize soil, and persist |
7. Seasonality of germination (SSG) | D | Qualitative; response and effect trait | Seed germination period determines the match between a weed species life cycle and the growing cycle of a crop and, hence, its ability to escape disturbance posed by farming practices |
7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 | Unknown = 0 Germination in autumn = 1 Germination in spring= 2 Germination in summer = 3 Germination in winter = 4 Non seasonal germination = 5 Germination in autumn/spring = 6 Germination in autumn/summer = 7 Germination in spring/summer = 8 Germination in spring/winter = 9 | ||
8. Duration of flowering period (DFF) (months) | C | Quantitative | Duration of the flowering period indicates the length of the reproduction phase. Mechanical removal of weed seeds before shedding is an excellent strategy preventing weed seeds from entering the seed bank. Duration of the flowering period also informs on the provision of floral resources for higher trophic levels. |
9. Affinity to soil nutrient conditions (SNC) | B | Semi-quantitative; response and effect trait | Species are classified on the basis of their affinity to soil nutrient conditions (N) following Ellenberg (1979) nutrient indicator values |
9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 | Unknown = 0 Oligotrophic soils which contain low amounts of nitrate, as well as phosphorus and organic matter = 1 Intermediate conditions between a and c = 2 Nutrient-poor soils = 3 Intermediate conditions between c and e = 4 Soils with humus, well stocked with nutrients = 5 Intermediate conditions between e and g = 6 Environments with high concentrations of soil nutrients = 7 Intermediate conditions between g and i = 8 Environments with excessive concentration of nitrogen and phosphorus = 9 Wide range = 10 |
References
- Fried, G.; Petit, S.; Dessaint, F.; Reboud, X. Arable Weed Decline in Northern France: Crop Edges as Refugia for Weed Conservation? Biol. Conserv. 2009, 142, 238–243. [Google Scholar] [CrossRef]
- Storkey, J.; Meyer, S.; Still, K.S.; Leuschner, C. The Impact of Agricultural Intensification and Land-Use Change on the European Arable Flora. Proc. R. Soc. B Biol. Sci. 2012, 279, 1421–1429. [Google Scholar] [CrossRef]
- Marshall, E.J.P.; Brown, V.K.; Boatman, N.D.; Lutman, P.J.W.; Squire, G.R.; Ward, L.K. The Role of Weeds in Supporting Biological Diversity within Crop Fields. Weed Res. 2003, 43, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Petit, S.; Munier-Jolain, N.; Bretagnolle, V.; Bockstaller, C.; Gaba, S.; Cordeau, S.; Lechenet, M.; Mézière, D.; Colbach, N. Ecological Intensification Through Pesticide Reduction: Weed Control, Weed Biodiversity and Sustainability in Arable Farming. Environ. Manag. 2015, 56, 1078–1090. [Google Scholar] [CrossRef]
- Alrøe, H.F.; Halberg, N. Udvikling, Vækst og Integritet i Den Danske Økologisektor. Vidensyntese om Muligheder og Barrierer for Fortsat Udvikling og Markedsbaseret Vækst i Produktion, Forarbejdning og Omsætning af Økologiske Produkter; Alrøe, H.F., Halberg, N., Eds.; Internationalt Center for Forskning i Økologisk Jordbrug og Fødevaresystemer (ICROFS): Tjele, Denmark, 2008. [Google Scholar]
- Turner, R.J.; Davies, G.; Moore, H.; Grundy, A.C.; Mead, A. Organic Weed Management: A Review of the Current UK Farmer Perspective. Crop. Prot. 2007, 26, 377–382. [Google Scholar] [CrossRef]
- Penfold, C.M.; Miyan, M.S.; Reeves, T.G.; Grierson, I.T. Biological Farming for Sustainable Agricultural Production. Aust. J. Exp. Agric. 1995, 35, 849–856. [Google Scholar] [CrossRef]
- Melander, B.; Rasmussen, I.A.; Bàrberi, P. Integrating Physical and Cultural Methods of Weed Control—Examples from European Research. Weed Sci. 2005, 53, 369–381. [Google Scholar] [CrossRef]
- Storkey, J.; Neve, P. What Good Is Weed Diversity? Weed Res. 2018, 58, 239–243. [Google Scholar] [CrossRef]
- Adeux, G.; Vieren, E.; Carlesi, S.; Bàrberi, P.; Munier-Jolain, N.; Cordeau, S. Mitigating Crop Yield Losses through Weed Diversity. Nat. Sustain. 2019, 2, 1018–1026. [Google Scholar] [CrossRef]
- Navas, M.-L. Trait-Based Approaches to Unravelling the Assembly of Weed Communities and Their Impact on Agro-Ecosystem Functioning. Weed Res. 2012, 52, 479–488. [Google Scholar] [CrossRef]
- Macarthur, R.; Levins, R. The Limiting Similarity, Convergence, and Divergence of Coexisting Species. Am. Nat. 1967, 101, 377–385. [Google Scholar] [CrossRef]
- Booth, B.D.; Swanton, C.J. Assembly Theory Applied to Weed Communities. Weed Sci. 2002, 50, 2–13. [Google Scholar] [CrossRef]
- Storkey, J.; Moss, S.R.; Cussans, J.W. Using Assembly Theory to Explain Changes in a Weed Flora in Response to Agricultural Intensification. Weed Sci. 2010, 58, 39–46. [Google Scholar] [CrossRef]
- Gaba, S.; Fried, G.; Kazakou, E.; Chauvel, B.; Navas, M.-L. Agroecological Weed Control Using a Functional Approach: A Review of Cropping Systems Diversity. Agron. Sustain. Dev. 2014, 34, 103–119. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.G. Timing of Tillage Is an Important Filter on the Assembly of Weed Communities. Weed Sci. 2006, 54, 705–712. [Google Scholar] [CrossRef]
- Gunton, R.M.; Petit, S.; Gaba, S. Functional Traits Relating Arable Weed Communities to Crop Characteristics. J. Veg. Sci. 2011, 22, 541–550. [Google Scholar] [CrossRef]
- Hofmeijer, M.A.J.; Melander, B.; Salonen, J.; Lundkvist, A.; Zarina, L.; Gerowitt, B. Crop Diversification Affects Weed Communities and Densities in Organic Spring Cereal Fields in Northern Europe. Agric. Ecosyst. Environ. 2021, 308, 107251. [Google Scholar] [CrossRef]
- Salonen, J. Weed Infestation and Factors Affecting Weed Incidence in Spring Cereals in Finland—A Multivariate Approach. Agric. Food Sci. 1993, 2, 525–536. [Google Scholar] [CrossRef]
- Fried, G.; Norton, L.R.; Reboud, X. Environmental and Management Factors Determining Weed Species Composition and Diversity in France. Agric. Ecosyst. Environ. 2008, 128, 68–76. [Google Scholar] [CrossRef]
- Fried, G.; Cordeau, S.; Metay, A.; Kazakou, E. Relative Importance of Environmental Factors and Farming Practices in Shaping Weed Communities Structure and Composition in French Vineyards. Agric. Ecosyst. Environ. 2019, 275, 1–13. [Google Scholar] [CrossRef]
- Andreasen, C.; Skovgaard, I.M. Crop and Soil Factors of Importance for the Distribution of Plant Species on Arable Fields in Denmark. Agric. Ecosyst. Environ. 2009, 133, 61–67. [Google Scholar] [CrossRef]
- Hanzlik, K.; Gerowitt, B. The Importance of Climate, Site and Management on Weed Vegetation in Oilseed Rape in Germany. Agric. Ecosyst. Environ. 2011, 141, 323–331. [Google Scholar] [CrossRef]
- Fried, G.; Kazakou, E.; Gaba, S. Trajectories of Weed Communities Explained by Traits Associated with Species’ Response to Management Practices. Agric. Ecosyst. Environ. 2012, 158, 147–155. [Google Scholar] [CrossRef]
- Armengot, L.; Blanco-Moreno, J.M.; Bàrberi, P.; Bocci, G.; Carlesi, S.; Aendekerk, R.; Berner, A.; Celette, F.; Grosse, M.; Huiting, H.; et al. Tillage as a Driver of Change in Weed Communities: A Functional Perspective. Agric. Ecosyst. Environ. 2016, 222, 276–285. [Google Scholar] [CrossRef]
- Smith, R.G.; Gross, K.L. Assembly of Weed Communities along a Crop Diversity Gradient. J. Appl. Ecol. 2007, 44, 1046–1056. [Google Scholar] [CrossRef]
- Meiss, H.; Médiène, S.; Waldhardt, R.; Caneill, J.; Munier-Jolain, N. Contrasting Weed Species Composition in Perennial Alfalfas and Six Annual Crops: Implications for Integrated Weed Management. Agron. Sustain. Dev. 2010, 30, 657–666. [Google Scholar] [CrossRef] [Green Version]
- Hallgren, E.; Palmer, M.W.; Milberg, P. Data Diving with Cross-Validation: An Investigation of Broad-Scale Gradients in Swedish Weed Communities. J. Ecol. 1999, 87, 1037–1051. [Google Scholar] [CrossRef] [Green Version]
- Andersson, T.N.; Milberg, P. Weed Flora and the Relative Importance of Site, Crop, Crop Rotation, and Nitrogen. Weed Sci. 1998, 46, 30–38. [Google Scholar] [CrossRef]
- Pinke, G.; Pál, R.; Botta-Dukát, Z. Effects of Environmental Factors on Weed Species Composition of Cereal and Stubble Fields in Western Hungary. Cent. Eur. J. Biol. 2010, 5, 283–292. [Google Scholar] [CrossRef]
- Meier, U. Phenological Growth Stages. In Phenology: An Integrative Environmental Science; Schwartz, M.D., Ed.; Tasks for Vegetation Science; Springer Netherlands: Dordrecht, The Netherlands, 2003; pp. 269–283. ISBN 978-94-007-0632-3. [Google Scholar]
- The Euro + Med Plantbase Project. Available online: https://ww2.bgbm.org/EuroPlusMed/query.asp (accessed on 7 April 2021).
- EPPO Global Database. Available online: https://gd.eppo.int/ (accessed on 6 April 2021).
- Bàrberi, P.; Bocci, G.; Carlesi, S.; Armengot, L.; Blanco-Moreno, J.M.; Sans, F.X. Linking Species Traits to Agroecosystem Services: A Functional Analysis of Weed Communities. Weed Res. 2018, 58, 76–88. [Google Scholar] [CrossRef]
- Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis-Ter Braak-1986-Ecology-Wiley Online Library. Available online: https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1938672 (accessed on 6 April 2021).
- Dray, S.; Legendre, P. Testing the Species Traits–Environment Relationships: The Fourth-Corner Problem Revisited. Ecology 2008, 89, 3400–3412. [Google Scholar] [CrossRef] [PubMed]
- Dolédec, S.; Chessel, D.; ter Braak, C.J.F.; Champely, S. Matching Species Traits to Environmental Variables: A New Three-Table Ordination Method. Environ. Ecol. Stat. 1996, 3, 143–166. [Google Scholar] [CrossRef]
- Hill, M.O.; Smith, A.J.E. Principal Component Analysis of Taxonomic Data with Multi-State Discrete Characters. Taxon 1976, 25, 249–255. [Google Scholar] [CrossRef]
- R Core Team; R Foundation for Statistical Computing: Vienna, Austria, 2017.
- Dray, S.; Dufour, A.-B. The Ade4 Package: Implementing the Duality Diagram for Ecologists. J. Stat. Softw. 2007, 22. [Google Scholar] [CrossRef] [Green Version]
- Glemnitz, M.; Czimber, G.; Radics, L.; Hoffmann, J. Weed Flora Composition along a North-South Climate Gradient in Europe. Acta Agron. Óvár. 2000, 42, 155–169. [Google Scholar]
- Lososová, Z.; Chytrý, M.; Cimalová, S.; Kropáč, Z.; Otýpková, Z.; Pyšek, P.; Tichý, L. Weed Vegetation of Arable Land in Central Europe: Gradients of Diversity and Species Composition. J. Veg. Sci. 2004, 15, 415–422. [Google Scholar] [CrossRef]
- Šilc, U.; Vrbničanin, S.; Božić, D.; Čarni, A.; Stevanović, Z.D. Weed Vegetation in the North-Western Balkans: Diversity and Species Composition. Weed Res. 2009, 49, 602–612. [Google Scholar] [CrossRef]
- Andreasen, C.; Stryhn, H. Increasing Weed Flora in Danish Arable Fields and Its Importance for Biodiversity. Weed Res. 2008, 48, 1–9. [Google Scholar] [CrossRef]
- Vigueira, C.C.; Olsen, K.M.; Caicedo, A.L. The Red Queen in the Corn: Agricultural Weeds as Models of Rapid Adaptive Evolution. Heredity 2013, 110, 303–311. [Google Scholar] [CrossRef]
- Albrecht, H. Development of Arable Weed Seedbanks during the 6 Years after the Change from Conventional to Organic Farming. Weed Res. 2005, 45, 339–350. [Google Scholar] [CrossRef]
- Rydberg, N.T.; Milberg, P. A Survey of Weeds in Organic Farming in Sweden. Biol. Agric. Hortic. 2000, 18, 175–185. [Google Scholar] [CrossRef]
- Salonen, J.; Hyvönen, T.; Jalli, H. Composition of Weed Flora in Spring Cereals in Finland—A Fourth Survey. Agric. Food Sci. 2011, 20, 245–261. [Google Scholar] [CrossRef] [Green Version]
- Melander, B.; Rasmussen, I.A.; Olesen, J.E. Incompatibility between Fertility Building Measures and the Management of Perennial Weeds in Organic Cropping Systems. Agric. Ecosyst. Environ. 2016, 220, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Hald, A.B. Weed Vegetation (Wild Flora) of Long Established Organic versus Conventional Cereal Fields in Denmark. Ann. Appl. Biol. 1999, 134, 307–314. [Google Scholar] [CrossRef]
- Roschewitz, I.; Gabriel, D.; Tscharntke, T.; Thies, C. The Effects of Landscape Complexity on Arable Weed Species Diversity in Organic and Conventional Farming. J. Appl. Ecol. 2005, 42, 873–882. [Google Scholar] [CrossRef]
- Hyvönen, T.; Ketoja, E.; Salonen, J.; Jalli, H.; Tiainen, J. Weed Species Diversity and Community Composition in Organic and Conventional Cropping of Spring Cereals. Agric. Ecosyst. Environ. 2003, 97, 131–149. [Google Scholar] [CrossRef]
- Armengot, L.; Sans, F.X.; Fischer, C.; Flohre, A.; José-María, L.; Tscharntke, T.; Thies, C. The β-Diversity of Arable Weed Communities on Organic and Conventional Cereal Farms in Two Contrasting Regions. Appl. Veg. Sci. 2012, 15, 571–579. [Google Scholar] [CrossRef]
- Fonseca, C.R.; Ganade, G. Species Functional Redundancy, Random Extinctions and the Stability of Ecosystems. J. Ecol. 2001, 89, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Henckel, L.; Börger, L.; Meiss, H.; Gaba, S.; Bretagnolle, V. Organic Fields Sustain Weed Metacommunity Dynamics in Farmland Landscapes. Proc. R. Soc. B Biol. Sci. 2015, 282, 20150002. [Google Scholar] [CrossRef] [Green Version]
- Munoz, F.; Fried, G.; Armengot, L.; Bourgeois, B.; Bretagnolle, V.; Chadoeuf, J.; Mahaut, L.; Plumejeaud, C.; Storkey, J.; Violle, C.; et al. Ecological Specialization and Rarity of Arable Weeds: Insights from a Comprehensive Survey in France. Plants 2020, 9, 824. [Google Scholar] [CrossRef]
- Laliberté, E.; Wells, J.A.; DeClerck, F.; Metcalfe, D.J.; Catterall, C.P.; Queiroz, C.; Aubin, I.; Bonser, S.P.; Ding, Y.; Fraterrigo, J.M.; et al. Land-Use Intensification Reduces Functional Redundancy and Response Diversity in Plant Communities. Ecol. Lett. 2010, 13, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Carmona, C.P.; Guerrero, I.; Peco, B.; Morales, M.B.; Oñate, J.J.; Pärt, T.; Tscharntke, T.; Liira, J.; Aavik, T.; Emmerson, M.; et al. Agriculture Intensification Reduces Plant Taxonomic and Functional Diversity across European Arable Systems. Funct. Ecol. 2020, 34, 1448–1460. [Google Scholar] [CrossRef]
- Melander, B.; Rasmussen, I.A.; Olesen, J.E. Legacy Effects of Leguminous Green Manure Crops on the Weed Seed Bank in Organic Crop Rotations. Agric. Ecosyst. Environ. 2020, 302, 107078. [Google Scholar] [CrossRef]
- Pignatti, S. Flora d’Italia; Edagricole: Bologna, Italy, 1982. [Google Scholar]
- Ellenberg, H. Zeigerwerte Der Pflanzen in Mitteleuropa, 2nd ed.; Erich Goltze KG: Goettingen, Germany, 1979. [Google Scholar]
- Klotz, S.; Kühn, I.; Durka, W.; Briemle, G. Bundesamt für Naturschutz BIOLFLOR: Eine Datenbank Mit Biologisch-Ökologischen Merkmalen zur Flora von Deutschland; BfN-Schriftenvertrieb im Landwirtschaftsverlag: Münster, Germany, 2002; ISBN 978-3-7843-3508-7. [Google Scholar]
- Fitter, A.H.; Peat, H.J. The Ecological Flora Database. J. Ecol. 1994, 82, 415–425. [Google Scholar] [CrossRef]
- Missouri Botanical Garden. Available online: http://www.efloras.org (accessed on 11 May 2016).
- Grime, J.P.; Hodgson, J.C.; Hunt, R. Comparative Plant. Ecology: A Functional Approach to Common British Species, 2nd ed.; Castlepoint Press: Colvend, UK, 2007; ISBN 978-1-897604-30-4. [Google Scholar]
- Seed Information Database: Royal Botanic Gardens, Kew. Available online: http://data.kew.org/sid/ (accessed on 10 April 2021).
- Kleyer, M.; Bekker, R.M.; Knevel, I.C.; Bakker, J.P.; Thompson, K.; Sonnenschein, M.; Poschlod, P.; Groenendael, J.M.V.; Klimeš, L.; Klimešová, J.; et al. The LEDA Traitbase: A Database of Life-History Traits of the Northwest European Flora. J. Ecol. 2008, 96, 1266–1274. [Google Scholar] [CrossRef]
- Hodgson, J. Allocating C-S-R Types to Plant Species. Available online: http://people.exeter.ac.uk/rh203/csr_lookup_table.xls (accessed on 11 May 2016).
- Westoby, M. A Leaf-Height-Seed (LHS) Plant Ecology Strategy Scheme. Plant. Soil 1998, 199, 213–227. [Google Scholar] [CrossRef]
Region | RLF | GTF | GLS | SLA | PLH | SWT | SSG | DFF | SNC |
---|---|---|---|---|---|---|---|---|---|
Denmark | |||||||||
Finland | |||||||||
Germany | |||||||||
Latvia | X2: 0.0075 | ||||||||
Sweden | |||||||||
Region general | X2: 0.036 |
Crop Management Variables | RLF | GTF | GLS | SLA | PLH | SWT | DFF | SSG | SNC | |
---|---|---|---|---|---|---|---|---|---|---|
Crop | Cereal | −0.365 | ||||||||
Cereal intercropped | ||||||||||
Cereal undersown | 0.265 | |||||||||
Crop general | 0.355 | |||||||||
Previous crop | Cereal | 0.263 | ||||||||
Grass clover | ||||||||||
Row crop | ||||||||||
Summer crop | 0.265 | |||||||||
Winter Cereal | ||||||||||
Previous crop general | 0.293 | |||||||||
Crop diversity frequency | Crop mixture | |||||||||
Undersown | 0.047 | |||||||||
Winter catch crop | −0.315 | |||||||||
Rotation frequency | Cereal | 0.293 | −0.047 | |||||||
Grass clover | −0.207 | 0.207 | ||||||||
Other crop | ||||||||||
Harrowing | No | 0.265 | 0.265 | |||||||
Yes | −0.265 | −0.265 | ||||||||
Harrowing general | 0.285 | 0.293 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofmeijer, M.A.J.; Melander, B.; Salonen, J.; Lundkvist, A.; Zarina, L.; Gerowitt, B. Weed Species Trait Selection as Shaped by Region and Crop Diversity in Organically Managed Spring Cereals. Agriculture 2021, 11, 433. https://doi.org/10.3390/agriculture11050433
Hofmeijer MAJ, Melander B, Salonen J, Lundkvist A, Zarina L, Gerowitt B. Weed Species Trait Selection as Shaped by Region and Crop Diversity in Organically Managed Spring Cereals. Agriculture. 2021; 11(5):433. https://doi.org/10.3390/agriculture11050433
Chicago/Turabian StyleHofmeijer, Merel A. J., Bo Melander, Jukka Salonen, Anneli Lundkvist, Livija Zarina, and Bärbel Gerowitt. 2021. "Weed Species Trait Selection as Shaped by Region and Crop Diversity in Organically Managed Spring Cereals" Agriculture 11, no. 5: 433. https://doi.org/10.3390/agriculture11050433
APA StyleHofmeijer, M. A. J., Melander, B., Salonen, J., Lundkvist, A., Zarina, L., & Gerowitt, B. (2021). Weed Species Trait Selection as Shaped by Region and Crop Diversity in Organically Managed Spring Cereals. Agriculture, 11(5), 433. https://doi.org/10.3390/agriculture11050433