The Method and Timing of Weed Control Affect the Productivity of Intercropped Maize (Zea mays L.) and Bean (Phaseolus vulgaris L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Experimental Setup
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Weed Species before Weed Control
3.2. Weed Coverage in the Treatments
3.3. Weed Control Effect
3.4. Crop Productivity
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Rose, S.K.; Kriegler, E.; Bibas, R.; Calvin, K.; Popp, A.; van Vuuren, D.P.; Weyant, J. Bioenergy in energy transformation and climate management. Clim. Chang. 2014, 123, 477–493. [Google Scholar] [CrossRef]
- Thrän, D.; Schaubach, K.; Majer, S.; Horschig, T. Governance of sustainability in the German biogas sector—Adaptive management of the Renewable Energy Act between agriculture and the energy sector. Energy Sustain. Soc. 2020, 10. [Google Scholar] [CrossRef]
- Herrmann, A. Biogas Production from Maize: Current State, Challenges and Prospects. 2. Agronomic and Environmental Aspects. Bioenerg. Res. 2013, 6, 372–387. [Google Scholar] [CrossRef]
- Kalač, P. The required characteristics of ensiled crops used as a feedstock for biogas production: A review. J. Agrobiol. 2011, 28, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, T.W.; Waddington, S.R.; Anderson, C.L.; Chew, A.; True, Z.; Cullen, A. Environmental impacts and constraints associated with the production of major food crops in Sub-Saharan Africa and South Asia. Food Sec. 2015, 7, 795–822. [Google Scholar] [CrossRef] [Green Version]
- Stoate, C.; Boatman, N.D.; Borralho, R.J.; Carvalho, C.R.; Snoo, G.R.; de Eden, P. Ecological impacts of arable intensification in Europe. J. Environ. Manag. 2001, 63, 337–365. [Google Scholar] [CrossRef] [PubMed]
- Betencourt, E.; Duputel, M.; Colomb, B.; Desclaux, D.; Hinsinger, P. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biol. Biochem. 2012, 46, 181–190. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Jørnsgaard, B.; Kinane, J.; Jensen, E.S. Grain legume–cereal intercropping: The practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew. Agric. Food Syst. 2008, 23, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Seran, T.; Brintha, I. Review on Maize Based Intercropping. J. Agron. 2010, 9, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Eichler-Löbermann, B.; Gaj, R.; Schnug, E. Improvement of Soil Phosphorus Availability by Green Fertilization with Catch Crops. Commun. Soil Sci. Plan. 2009, 40, 70–81. [Google Scholar] [CrossRef]
- Liebman, M.; Dyck, E. Crop Rotation and Intercropping Strategies for Weed Management. Ecol. Appl. 1993, 3, 92–122. [Google Scholar] [CrossRef]
- Neumann, A.; Schmidtke, K.; Rauber, R. Effects of crop density and tillage system on grain yield and N uptake from soil and atmosphere of sole and intercropped pea and oat. Field Crops Res. 2007, 100, 285–293. [Google Scholar] [CrossRef]
- Nassary, E.K.; Baijukya, F.; Ndakidemi, P.A. Productivity of intercropping with maize and common bean over five cropping seasons on smallholder farms of Tanzania. Eur. J. Agron. 2020, 113, 125964. [Google Scholar] [CrossRef]
- Giller, K.E. Nitrogen Fixation in Tropical Cropping Systems, 2nd ed.; CABI Pub: Wallingford, Oxon, UK; New York, NY, USA, 2001; ISBN 9780851994178. [Google Scholar]
- Bybee-Finley, K.; Ryan, M. Advancing Intercropping Research and Practices in Industrialized Agricultural Landscapes. Agriculture 2018, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Nurk, L.; Graβ, R.; Pekrun, C.; Wachendorf, M. Methane Yield and Feed Quality Parameters of Mixed Silages from Maize (Zea mays L.) and Common Bean (Phaseolus vulgaris L.). Bioenergy Res. 2017, 10, 64–73. [Google Scholar] [CrossRef]
- Fischer, C.; Thies, C.; Tscharntke, T. Mixed effects of landscape complexity and farming practice on weed seed removal. Perspect. Plant Ecol. Evol. Syst. 2011, 13, 297–303. [Google Scholar] [CrossRef]
- Bedoussac, L.; Journet, E.-P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Latati, M.; Bargaz, A.; Belarbi, B.; Lazali, M.; Benlahrech, S.; Tellah, S.; Kaci, G.; Drevon, J.J.; Ounane, S.M. The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability. Eur. J. Agron. 2016, 72, 80–90. [Google Scholar] [CrossRef]
- Eure, P.M.; Culpepper, A.S.; Merchant, R.M.; Roberts, P.M.; Collins, G.C. Weed Control, Crop Response, and Profitability When Intercropping Cantaloupe and Cotton. Weed Technol. 2015, 29, 217–225. [Google Scholar] [CrossRef]
- Verret, V.; Gardarin, A.; Pelzer, E.; Médiène, S.; Makowski, D.; Valantin-Morison, M. Can legume companion plants control weeds without decreasing crop yield? A meta-analysis. Field Crops Res. 2017, 204, 158–168. [Google Scholar] [CrossRef]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.-F.; Ferrer, A.; Peigné, J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.; Böhm, H.; Heβ, J. Maize-bean intercropping yields in Northern Germany are comparable to those of pure silage maize. Eur. J. Agron. 2020, 112, 125947. [Google Scholar] [CrossRef]
- Federal Office of Consumer Protection and Food Safety. Online Data Base on Plant Protection Products. Available online: https://apps2.bvl.bund.de/psm/jsp/index.jsp (accessed on 14 January 2021).
- Nurk, L.; Graß, R.; Pekrun, C.; Wachendorf, M. Effect of Sowing Method and Weed Control on the Performance of Maize (Zea mays L.) Intercropped with Climbing Beans (Phaseolus vulgaris L.). Agriculture 2017, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Usinglme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Rajeshkumar, A.; Venkataraman, N.S.; Ramadass, S.; Ashokkumar, N.; Thirumeninathan, S. In this context, weed control is an important issue in intercropping, as chemical control is challenging. Generally, intercropping a dicotyledonous crop with a monocotyledonous crop reduces herbicide options. J. Crop Weed 2011, 13, 150–155. [Google Scholar]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 5844–5853. [Google Scholar] [CrossRef] [Green Version]
- Muasya, R.M.; Lommen, W.; Muui, C.; Struik, P.C. How weather during development of common bean (Phaseolus vulgaris L.) affects the crop’s maximum attainable seed quality. NJAS Wagening. J. Life Sci. 2008. [Google Scholar] [CrossRef] [Green Version]
- Destatis. Land-und Forstwirtschaft, Fischerei Wachstum und Ernte—Feldfrüchte. 2018. Available online: https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Feldfruechte-Gruenland/Publikationen/Downloads-Feldfruechte/feldfruechte-jahr-2030321187164.pdf?__blob=publicationFile&v=3 (accessed on 19 April 2021).
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 583. [Google Scholar] [CrossRef]
- Nakagawa, S.; Johnson, P.C.D.; Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 2017. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 19 April 2021).
- de Mendiburu, F.; Yaseen, M. Agricolae: Statistical Procedures for Agricultural Research. R package Version 1.4.0; 2020; Available online: https://myaseen208.github.io/agricolae/ (accessed on 19 April 2021).
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Lüdecke, D.; Ben-Shachar, M.S.; Patil, I.; Waggoner, P.; Makowski, D. Assessment, Testing and Comparison of Statistical Models using R. J. Open Source Softw. 2021, 3112. [Google Scholar] [CrossRef]
- Fried, G.; Norton, L.R.; Reboud, X. Environmental and management factors determining weed species composition and diversity in France. Agric. Ecosyst. Environ. 2008, 128, 68–76. [Google Scholar] [CrossRef]
- Andreasen, C.; Skovgaard, I.M. Crop and soil factors of importance for the distribution of plant species on arable fields in Denmark. Agric. Ecosyst. Environ. 2009, 133, 61–67. [Google Scholar] [CrossRef]
- Pinke, G.; Karácsony, P.; Czúcz, B.; Botta-Dukát, Z.; Lengyel, A. The influence of environment, management and site context on species composition of summer arable weed vegetation in Hungary. Appl. Veg. Sci. 2012, 15, 136–144. [Google Scholar] [CrossRef]
- de Mol, F.; Redwitz, C.; von Gerowitt, B. Weed species composition of maize fields in Germany is influenced by site and crop sequence. Weed Res. 2015, 55, 574–585. [Google Scholar] [CrossRef]
- Jursík, M.; Soukup, J.; Holec, J.; Andr, J.; Hamouzová, K. Efficacy and selectivity of pre-emergent sunflower herbicides under different soil moisture conditions. Plant Protect. Sci. 2016, 51, 214–222. [Google Scholar] [CrossRef] [Green Version]
- Idziak, R.; Woznica, Z. Efficacy of Reduced Rates of Soil-Applied Dimethenamid-P and Pendimethalin Mixture Followed by Postemergence Herbicides in Maize. Agriculture 2020, 10, 163. [Google Scholar] [CrossRef]
- Janak, T.W.; Grichar, W.J.; Serrano, M. Weed Control in Corn (Zea mays L.) as Influenced by Preemergence Herbicides. Int. J. Agron. 2016, 2016, 2607671. [Google Scholar] [CrossRef] [Green Version]
- Andr, J.; Hejnák, V.; Jursík, M.; Fendrychová, V. Effects of application terms of three soil active herbicides on herbicide efficacy and reproductive ability for weeds in maize. Plant Soil Environ. 2014, 60, 452–458. [Google Scholar] [CrossRef] [Green Version]
- van der Weide, R.Y.; Bleeker, P.O.; Achten, V.T.J.M.; Lotz, L.A.P.; Fogelberg, F.; Melander, B. Innovation in mechanical weed control in crop rows. Weed Res. 2008, 48, 215–224. [Google Scholar] [CrossRef]
- Page, E.R.; Cerrudo, D.; Westra, P.; Loux, M.; Smith, K.; Foresman, C.; Wright, H.; Swanton, C.J. Why Early Season Weed Control Is Important in Maize. Weed Sci. 2012, 60, 423–430. [Google Scholar] [CrossRef]
- German Maize Committee. Silage Maize Yields (Incl. Biogas Use) in Germany, 2015–2019, by Federal State. Available online: https://www.maiskomitee.de/Fakten/Statistik/Deutschland/Fl%C3%A4chenertr%C3%A4ge (accessed on 25 February 2021).
- Rajcan, I.; Swanton, C.J. Understanding maize–weed competition: Resource competition, light quality and the whole plant. Field Crops Res. 2001, 71, 139–150. [Google Scholar] [CrossRef]
Management | 2017 | 2018 | 2019 |
---|---|---|---|
Pre-crop | Cauliflower (Brassica oleracea L. var. botrytis) | Maize (Zea mays L.) | Maize (Zea mays L.) |
Tillage | Plough | Plough | Plough |
Sowing maize | |||
Date | 9 May | 2 May | 21 April |
Density (seeds m2) | 7 | 7 | 7 |
Sowing bean | |||
Date | 7 June | 1 June | 22 May |
Density (seeds m2) | 7 | 7 | 7 |
Mineral fertilization | |||
Nitrogen (kg ha−1) | 80 | 80 | 80 |
Potassium (kg ha−1) | 60 | 60 | 60 |
Harvest date | 1 September | 21 August | 4 September |
2017 | 2018 | 2019 | |
---|---|---|---|
Precipitation (mm) | 345 | 131 | 233 |
Mean temperature (°C) | 14.5 | 16.6 | 15.5 |
Treatment | Weed Control Method | Phenological Growth Stages (BBCH) | |
---|---|---|---|
Maize | Bean | ||
Control | Control | - | - |
CHEM-PRE | Chemical pre-emergence herbicide application | 12 | - |
CHEM-POST | Chemical post-emergence herbicide application | - | 12 |
CHEM PRE/POST | Chemical pre- and post-emergence herbicide application | 12 | 12 |
MECH-C | Mechanical control | 12 | 12 |
Treatment | Active Ingredients | HRAC/WSSA Code | Active Ingredient Content (g L−1) | Dose Rate (L ha−1) |
---|---|---|---|---|
CHEM-PRE | Dimethenamid-P + Pendimethalin | 3 + 15 | 455 + 720 | 2.8 + 1.4 |
CHEM-POST | Cycloxydim + adjuvant | 1 | 100 | 1.5 + 1.5 |
Weed Species | EPPO Code | Plant Density m−1 | ||
---|---|---|---|---|
2017 | 2018 | 2019 | ||
Monocotyledon | ||||
Poa spp. | POASS | 35 | 80 | 78 |
Dicotyledons | ||||
Capsella bursa-pastoris | CAPBP | 18 | - | 6 |
Chenopodium spp. | CHESS | 14 | 7 | 69 |
Galinsoga spp. | GASSS | 15 | - | 86 |
Lamium spp. | LAMSS | 20 | 12 | 37 |
Matricaria spp. | MATSS | - | - | 4 |
Polygonum spp. | POLPE | 25 | 20 | 52 |
Stellaria media | STEME | 12 | - | 15 |
Spergula arvensis | SPRAR | 14 | - | 42 |
Thlaspi arvense | THLAR | - | - | 12 |
Veronica spp. | VERSS | 12 | - | 25 |
Estimate | P(t) | Effect Relative to the Control (%) | |
---|---|---|---|
Mean weed coverage (%) of control | 85.5 | 0.0041 ** | |
Difference to the control | |||
CHEM-POST | −7.9 | 0.0357 * | −8.6 |
MECH-C | −51.9 | <2e-16 *** | −60.7 |
CHEM-PRE | −50.3 | <2e-16 *** | −58.8 |
CHEM-PRE/POST | −64.4 | <2e-16 *** | −75.3 |
Fitting quality of the model | |||
Conditional R2 | 0.72 | ||
Marginal R2 | 0.56 |
Estimate | P(t) | Effect Relative to the Control (%) | |
---|---|---|---|
Mean yield (t ha−1) of control | 7.23 | 0.00800 ** | |
Difference to the control | |||
CHEM-POST | +0.27 | 0.60517 | +3.7 |
MECH-C | +1.66 | 0.00286 ** | +22.9 |
CHEM-PRE | +2.70 | 4.59e-06 *** | +37.3 |
CHEM-PRE/POST | +3.86 | 1.59e-09 *** | +53.4 |
Fitting quality of the model | |||
Conditional R2 | 0.73 | ||
Marginal R2 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andert, S. The Method and Timing of Weed Control Affect the Productivity of Intercropped Maize (Zea mays L.) and Bean (Phaseolus vulgaris L.). Agriculture 2021, 11, 380. https://doi.org/10.3390/agriculture11050380
Andert S. The Method and Timing of Weed Control Affect the Productivity of Intercropped Maize (Zea mays L.) and Bean (Phaseolus vulgaris L.). Agriculture. 2021; 11(5):380. https://doi.org/10.3390/agriculture11050380
Chicago/Turabian StyleAndert, Sabine. 2021. "The Method and Timing of Weed Control Affect the Productivity of Intercropped Maize (Zea mays L.) and Bean (Phaseolus vulgaris L.)" Agriculture 11, no. 5: 380. https://doi.org/10.3390/agriculture11050380
APA StyleAndert, S. (2021). The Method and Timing of Weed Control Affect the Productivity of Intercropped Maize (Zea mays L.) and Bean (Phaseolus vulgaris L.). Agriculture, 11(5), 380. https://doi.org/10.3390/agriculture11050380