Effects of Adding Pre-Fermented Fluid Prepared from Red Clover or Lucerne on Fermentation Quality and In Vitro Digestibility of Red Clover and Lucerne Silages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparing Pre-Fermented Juices
2.2. LAB Strains, Genomic DNA Extraction and Species Identification
2.3. Silage Preparation
2.4. Analysis
2.5. Statistical Analyses
3. Results
3.1. pH and LAB Count of PFJs
3.2. Identification of LAB Isolated from PFJs
3.3. Forage Characteristics before Ensiling
3.4. Fermentation Quality of Red Clover Silage and Lucerne Silage
3.5. Nutrient Composition and In Vitro Digestibility of Red Clover Silage and Lucerne Silage
3.6. Correlation between In Vitro Digestibility and Quality of Red Clover Silage and Lucerne Silage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Cambrian Printers, Ltd.: Wales, UK, 1991. [Google Scholar]
- Wang, J.; Wang, J.Q.; Zhou, H.; Feng, T. Effects of addition of previously fermented juice prepared from alfalfa on fermentation quality and protein degradation of alfalfa silage. Anim. Feed Sci. Technol. 2009, 151, 280–290. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Weinberg, Z.G.; Ogunade, I.M.; Cervantes, A.A.; Arriola, K.G.; Jiang, Y.; Kim, D.; Li, X.; Goncalves, M.C.M.; Vyas, D.; et al. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. J. Dairy Sci. 2017, 100, 4587–4603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.H.; Dong, Z.H.; Shao, T. Effect of additives on fatty acid profile of high moisture alfalfa silage during ensiling and after exposure to air. Anim. Feed Sci. Technol. 2018, 236, 29–38. [Google Scholar] [CrossRef]
- Bureenok, S.; Namihira, T.; Kawamoto, Y.; Nakada, T. Additive effects of fermented juice of epiphytic lactic acid bacteria on the fermentative quality of guineagrass (Panicum maximum Jacq.) silage. Grassl. Sci. 2005, 51, 243–248. [Google Scholar] [CrossRef]
- Ohshima, M.; Kimura, E.; Yokota, H. A method of making good quality silage from direct cut alfalfa by spraying previously fermented juice. Anim. Feed Sci. Technol. 1997, 66, 129–137. [Google Scholar] [CrossRef]
- Ohshima, M.; Cao, L.; Kimura, E.; Ohshima, Y.; Yokota, H. Influence of addition of previously fermented juice to alfalfa ensiled at different moisture contents. Grassl. Sci. 1997, 43, 56–58. [Google Scholar] [CrossRef]
- Nishino, N.; Uchida, S. Laboratory evaluation of previously fermented juice as a fermentation stimulant for alfalfa silage. J. Sci. Food Agric. 1999, 79, 1285–1288. [Google Scholar] [CrossRef]
- Denek, N.; Can, A.; Avci, M.; Aksu, T.; Durmaz, H. The effect of molasses-based pre-fermented juice on the fermentation quality of first-cut alfalfa silage. Grass Forage Sci. 2011, 66, 243–250. [Google Scholar] [CrossRef]
- Ohshima, M.; Ohshima, Y.; Kimura, E.; Yokota, H. Fermentation quality of alfalfa and Italian Ryegrass silages treated with previously fermented juices prepared from both the herbages. Anim. Feed Sci. Technol. 1997, 68, 41–44. [Google Scholar] [CrossRef]
- Cai, Y. Identification and characterization of Enterococcus species isolated from forage crops and their influence on silage fermentation. J. Dairy Sci. 1999, 82, 2466–2471. [Google Scholar] [CrossRef]
- Ávila, C.L.S.; Carvalho, B.F.; Pinto, J.C.; Duarte, W.F.; Schwan, R.F. The use of Lactobacillus species as starter cultures for enhancing the quality of sugar cane silage. J. Dairy Sci. 2014, 97, 940–951. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yu, Z.; Wang, X.G. Isolating and evaluating lactic acid bacteria strains with or without sucrose for effectiveness of silage fermentation. Grassl. Sci. 2015, 61, 167–176. [Google Scholar] [CrossRef]
- Chen, M.M.; Liu, Q.H.; Xin, G.R.; Zhang, J.G. Characteristics of lactic acid bacteria isolates and their inoculating effects on the silage fermentation at high temperature. Lett. Appl. Microbiol. 2013, 56, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Benno, Y.; Ogawa, M.; Ohamomo, S.; Kumai, S.; Nakase, T. Influence of Lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. from forage crops on silage fermentation. Appl. Environ. Microb. 1998, 64, 2982–2987. [Google Scholar] [CrossRef] [Green Version]
- McDonald, P.; Henderson, A.R. Determination of water-soluble carbohydrates in grass. J. Sci. Food Agric. 1964, 15, 395–398. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Roberts, J.; Lewis, B.A. Methods for dietary fibre neutral detergent fibre and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3594. [Google Scholar] [CrossRef]
- Playne, M.J.; McDonald, P. The buffering constituents of herbage and silage. J. Sci. Food Agric. 1966, 17, 264–268. [Google Scholar] [CrossRef]
- Tilley, J.M.A.; Terry, R.A. A two stages technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Filya, I.; Sucu, E.; Karabulut, A. The effect of Lactobacillus buchneri on the fermentation, aerobic stability and ruminal degradability of maize silage. J. Appl. Microbiol. 2006, 101, 1216–1223. [Google Scholar] [CrossRef]
- Owens, V.N.; Albrecht, K.A.; Muck, R.E. Protein degradation and ensiling characteristics of red clover and alfalfa wilted under varying levels of shade. Can. J. Plant Sci. 1999, 79, 209–222. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, X.J.; Zhao, M.M.; Yu, Z. Isolating and evaluating lactic acid bacteria strains for effectiveness of Leymus chinensis silage fermentation. Lett. Appl. Microbiol. 2014, 59, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Zhou, H.; Zhang, N.F.; Si, B.W.; Tu, Y.; Ma, T.; Diao, Q.Y. Effects of different source additives and wilt conditions on the pH value, aerobic stability, and carbohydrate and protein fractions of alfalfa silage. Anim. Sci. J. 2017, 88, 99–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parvin, S.; Nishino, N. Succession of lactic acid bacteria in wilted rhodesgrass silage assessed by plate culture and denaturing gradient gel electrophoresis. Grassl. Sci. 2010, 56, 51–55. [Google Scholar] [CrossRef]
- Parvin, S.; Wang, C.; Li, Y.; Nishino, N. Effects of inoculation with lactic acid bacteria on the bacterial communities of Italian ryegrass, whole crop maize, guinea grass and rhodes grass silages. Anim. Feed Sci. Technol. 2010, 160, 160–166. [Google Scholar] [CrossRef]
- Wu, J.J.; Du, R.P.; Gao, M.; Sui, Y.Q.; Xiu, L.; Wang, X. Naturally occuring lactic acid bacteria isolated from tomato pomace silage. Asian-Australas. J. Anim. Sci. 2014, 27, 648–657. [Google Scholar] [CrossRef] [Green Version]
- Yin, G.; Bai, C.; Sun, J.; Sun, L.; Xue, Y.; Zhang, Y.; Zhao, H.; Yu, Z.; Liu, S.; Zhang, K. Fermentation quality and nutritive value of total mixed ration silages based on desert wormwood (Artemisia desertorum Spreng.) combining with early stage corn. Anim. Sci. J. 2017, 88, 1963–1969. [Google Scholar] [CrossRef]
- Kung Jr., L.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- McGarvey, J.A.; Franco, R.B.; Palumbo, J.D.; Hnasko, R.; Stanker, L.; Mitloehner, F.M. Bacterial population dynamics during the ensiling of Medicago sativa (alfalfa) and subsequent exposure to air. J. Appl. Microbiol. 2013, 114, 1661–1670. [Google Scholar] [CrossRef]
- Ni, K.K.; Wang, F.F.; Zhu, B.G.; Yang, J.X.; Zhou, G.A.; Pan, Y.; Tao, Y.; Zhong, J. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef]
- Ávila, C.L.S.; Carvalho, B.F. Silage fermentation—updates focusing on the performance of micro-organisms. J. Appl. Microbiol. 2019, 128, 966–984. [Google Scholar] [CrossRef] [Green Version]
- Buxton, D.R.; Muck, R.E.; Harrison, J.H. Silage science and technology; American Society of Agronomy: Madison, WI, USA, 2003. [Google Scholar]
- Weinberg, Z.G.; Ashbell, G.; Hen, Y.; Azrieli, A. The effect of applying lactic acid bacteria at ensiling on the aerobic stability of silages. J. Anim. Plant Sci. 1993, 75, 512–518. [Google Scholar] [CrossRef]
- Kaiser, E.; Weiss, K. A new systems for the evaluation of the fermentation quality of silage: Silage production and utilization. In Proceedings of the XIV International Silage Conference, a satellite workshop of the XX International Grassland Congress, Belfast, UK, 3–6 July 2005. [Google Scholar]
- Sun, L.; Bai, C.; Xu, H.; Na, N.; Jiang, Y.; Yin, G.; Liu, S.; Xue, Y. Succession of bacterial community during the initial aerobic, intense fermentation and stable phases of whole-plant corn silages treated with lactic acid bacteria suspensions prepared from other silages. Front. Microbiol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Wang, S.; Zhao, J.; Dong, Z.; Li, J.; Nazar, M.; Shao, T. Microbial diversity and fermentation profile of red clover silage inoculated with reconstituted indigenous and exogenous epiphytic microbiota. Bioresour. Technol. 2020, 123606. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.C.; Chamberlain, D.G.; Kelly, N.C.; Wait, M.K. The nutritive value of silages digestion of nitrogenous constituents in sheep receiving diets of grass-silage and grass silage and barley. Br. J. Nutr. 1980, 43, 469–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, W.C.; Yang, F.Y.; Undersander, D.J.; Guo, X.S. Fermentation characteristics, aerobic stability, proteolysis and lipid composition of alfalfa silage ensiled with apple or grape pomace. Anim. Feed Sci. Technol. 2015, 202, 12–19. [Google Scholar] [CrossRef]
- Ellis, J.L.; Bannink, A.; Hindrichsen, I.K.; Kinley, R.D.; Pellikaan, W.F.; Milora, N.; Dijkstra, J. The effect of lactic acid bacteria included as a probiotic or silage inoculant on in vitro rumen digestibility, total gas and methane production. Anim. Feed Sci. Technol. 2016, 211, 61–74. [Google Scholar] [CrossRef]
- Contreras-Govea, F.E.; Muck, R.E.; Armstrong, K.L.; Albrecht, K.A. Nutritive value of corn silage in mixture with climbing beans. Anim. Feed Sci. Technol. 2009, 150, 1–8. [Google Scholar] [CrossRef]
- Xue, Y.L.; Yin, G.M.; Zhao, H.P.; Bai, C.S.; Sun, J.J.; Yu, Z.; Sun, Q.Z. Nutritive value of desert wormwood (Artemisia desertorum Spreng.) silage in mixture with high-moisture maize straw. Grass Forage Sci. 2017, 72, 174–178. [Google Scholar] [CrossRef]
Items | pH | LAB | |
---|---|---|---|
Red clover | Chopping | 3.84 | 7.80a |
Chopping + blender maceration | 3.89 | 6.58b | |
SEM | 0.062 | 0.069 | |
p-value | 0.600 | <0.001 | |
Lucerne | Chopping | 3.77b | 7.57a |
Chopping + blender maceration | 5.11a | 6.54b | |
SEM | 0.056 | 0.200 | |
p-value | <0.001 | <0.001 |
Species | No. of Strains | Similarity | Accession | |
---|---|---|---|---|
PFJ-RC | PFJ-LC | |||
Lactiplantibacillus plantarum | 2 | 2 | >99% | NZ_CP030105.1 |
Leuconostoc mesenteroides | 2 | 2 | >99% | NZ_CP028251.1 |
Enterococcus mundtii | 2 | 1 | >99% | NZ_CP018061.1 |
Levilactobacillus brevis | 1 | 1 | >99% | NZ_LS483405.1 |
Pediococcus pentosaceus | 1 | 1 | >99% | NC_008525.1 |
Lactococcus lactis subsp. cremoris | 1 | 1 | >99% | NC_022369.1 |
Lacticaseibacillus paracasei | 1 | − | >99% | NC_014334.2 |
Pediococcus acidilactici | − | 1 | >99% | NZ_CP053421.1 |
Weissella cibaria | − | 1 | >99% | NZ_CP027563.1 |
Total | 10 | 10 |
Items | Red Clover | Lucerne |
---|---|---|
LAB count (log CFU/g FW) | 4.15 | 4.00 |
Dry matter (DM, g/kg) | 401 | 398 |
Crude protein (g/kg DM) | 195 | 206 |
Water-soluble carbohydrates (g/kg DM) | 55.6 | 57.3 |
Neutral detergent fiber (NDF, g/kg DM) | 350 | 410 |
Acid detergent fiber (ADF, g/kg DM) | 268 | 282 |
Acid detergent lignin (g/kg DM) | 106 | 99 |
Buffering capacity (mEq/kg DM) | 583 | 425 |
In vitro DM digestibility (g/kg) | 574 | 619 |
In vitro NDF digestibility (g/kg) | 304 | 334 |
In vitro ADF digestibility (g/kg) | 332 | 299 |
Items | Red Clover Silage | Lucerne Silage | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | PFJ-RC | PFJ-LC | SEM | p-value | Control | PFJ-RC | PFJ-LC | SEM | p-Value | |
LAB (log CFU/g FW) | 6.13c | 8.22a | 7.51b | 0.038 | <0.001 | 6.25c | 7.29b | 8.21a | 0.108 | <0.001 |
pH | 5.31a | 4.63c | 4.70b | 0.017 | <0.001 | 5.43a | 4.67b | 4.32c | 0.014 | <0.001 |
LA (g/kg DM) | 7.65c | 41.81a | 29.83b | 1.44 | <0.001 | 8.58c | 30.60b | 44.70a | 1.51 | <0.001 |
AA (g/kg DM) | 14.39a | 5.50b | 6.06b | 0.771 | <0.001 | 12.78a | 6.17b | 3.90b | 0.813 | <0.001 |
PA (g/kg DM) | 0.23 | ND | ND | 0.009 | <0.001 | 0.28a | ND | ND | 0.008 | <0.001 |
BA (g/kg DM) | 0.14a | ND | ND | 0.007 | <0.001 | 0.24a | ND | ND | 0.009 | <0.001 |
LA/AA | 0.54c | 7.70a | 4.95b | 0.467 | <0.001 | 0.69c | 5.01b | 11.82a | 0.946 | <0.001 |
NH3-N/TN (g/kg) | 106.4a | 38.3c | 45.8b | 1.61 | <0.001 | 106.3a | 43.1b | 30.6c | 0.552 | <0.001 |
WSC (g/kg DM) | 20.5b | 24.1a | 23.9a | 0.714 | 0.022 | 20.5 | 22.5 | 22.6 | 0.611 | 0.090 |
Items | Red Clover Silage | Lucerne Silage | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | PFJ-RC | PFJ-LC | SEM | p-Value | Control | PFJ-RC | PFJ-LC | SEM | p-Value | |
DM (g/kg) | 385b | 393a | 380b | 1.63 | 0.005 | 371c | 390a | 381b | 2.01 | 0.015 |
CP (g/kg DM) | 201 | 200 | 203 | 2.35 | 0.736 | 222 | 229 | 229 | 3.22 | 0.296 |
NDF (g/kg DM) | 348a | 338b | 330b | 2.77 | 0.011 | 401a | 389b | 374c | 2.94 | 0.002 |
ADF (g/kg DM) | 240a | 236a | 220b | 2.60 | 0.004 | 264a | 259a | 239b | 2.36 | <0.001 |
ADL (g/kg DM) | 73.2b | 79.6a | 74.0b | 1.46 | 0.042 | 87.6 | 89.2 | 77.1 | 4.94 | 0.247 |
BC (mEq/kg DM) | 716 | 705 | 696 | 12.7 | 0.557 | 536 | 539 | 532 | 11.7 | 0.908 |
IVDMD (g/kg) | 624c | 664b | 684a | 2.89 | <0.001 | 631c | 652b | 705a | 5.33 | <0.001 |
IVNDFD (g/kg) | 513 | 547 | 550 | 10.8 | 0.498 | 539 | 576 | 549 | 16.0 | 0.315 |
IVADFD (g/kg) | 497 | 492 | 492 | 8.25 | 0.893 | 439 | 458 | 484 | 10.7 | 0.068 |
Items | Red Clover Silage | Lucerne Silage | ||||
---|---|---|---|---|---|---|
IVDMD | IVNDFD | IVADFD | IVDMD | IVNDFD | IVADFD | |
Lactic acid bacteria | 0.767 * | 0.433 | −0.176 | 0.894 ** | 0.186 | 0.784 * |
pH | −0.899 *** | −0.439 | 0.167 | −0.875 ** | −0.256 | −0.722 * |
Lactic acid | 0.781 * | 0.443 | −0.251 | 0.887 ** | 0.276 | 0.763 * |
Acetic acid | −0.873 ** | −0.334 | 0.213 | −0.793 * | −0.381 | −0.746 * |
Propionic acid | −0.932 *** | −0.515 | 0.172 | −0.696 * | −0.407 | −0.648 |
Butyric acid | −0.920 *** | −0.39 | 0.215 | −0.692 * | −0.402 | −0.611 |
Lactic acid/acetic acid | 0.741 * | 0.398 | −0.178 | 0.931 *** | 0.265 | 0.746 * |
Ammonia nitrogen/total nitrogen | −0.886 ** | −0.428 | 0.170 | −0.796 * | −0.319 | −0.696 * |
Water-soluble carbohydrates | 0.738 * | 0.209 | 0.014 | 0.530 | 0.329 | 0.484 |
Dry matter | −0.179 | 0.226 | 0.133 | 0.347 | 0.601 | 0.297 |
Crude protein | 0.074 | 0.084 | 0.567 | 0.289 | 0.357 | 0.732 * |
Neutral detergent fiber | −0.933 *** | −0.530 | 0.325 | −0.951 *** | −0.192 | −0.524 |
Acid detergent fiber | −0.788 * | −0.246 | 0.146 | −0.929 *** | −0.047 | −0.620 |
Acid detergent lignin | 0.234 | 0.127 | −0.313 | −0.54 | 0.012 | −0.250 |
Buffering capacity | −0.389 | 0.368 | 0.026 | −0.174 | −0.130 | −0.081 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Jiang, Y.; Ling, Q.; Na, N.; Xu, H.; Vyas, D.; Adesogan, A.T.; Xue, Y. Effects of Adding Pre-Fermented Fluid Prepared from Red Clover or Lucerne on Fermentation Quality and In Vitro Digestibility of Red Clover and Lucerne Silages. Agriculture 2021, 11, 454. https://doi.org/10.3390/agriculture11050454
Sun L, Jiang Y, Ling Q, Na N, Xu H, Vyas D, Adesogan AT, Xue Y. Effects of Adding Pre-Fermented Fluid Prepared from Red Clover or Lucerne on Fermentation Quality and In Vitro Digestibility of Red Clover and Lucerne Silages. Agriculture. 2021; 11(5):454. https://doi.org/10.3390/agriculture11050454
Chicago/Turabian StyleSun, Lin, Yun Jiang, Qinyin Ling, Na Na, Haiwen Xu, Diwakar Vyas, Adegbola Tolulope Adesogan, and Yanlin Xue. 2021. "Effects of Adding Pre-Fermented Fluid Prepared from Red Clover or Lucerne on Fermentation Quality and In Vitro Digestibility of Red Clover and Lucerne Silages" Agriculture 11, no. 5: 454. https://doi.org/10.3390/agriculture11050454
APA StyleSun, L., Jiang, Y., Ling, Q., Na, N., Xu, H., Vyas, D., Adesogan, A. T., & Xue, Y. (2021). Effects of Adding Pre-Fermented Fluid Prepared from Red Clover or Lucerne on Fermentation Quality and In Vitro Digestibility of Red Clover and Lucerne Silages. Agriculture, 11(5), 454. https://doi.org/10.3390/agriculture11050454