Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Material Preparation
2.2. Laboratory Characterization Tests
- ISO 17225-1: 2014—Solid biofuels—Fuel specifications and classes—Part 1: General requirements.
- ISO 16948: 2015—Solid biofuels—Determination of total content of carbon, hydrogen and nitrogen.
- ISO 16967: 2015—Solid biofuels—Determination of major elements—Al, Ca, Fe, Mg, P, K, Si, Na and Ti.
- ISO 16968: 2015—Solid biofuels—Determination of minor elements—Ar, Cd, Cobalt, Cr, Copper, Hg, Mn, Mo, Ni, Pb, Sb, V and Zn.
- ISO 16994: 2016—Solid biofuels—Determination of total content of sulfur and chlorine.
- ISO 18125: 2017—Solid biofuels—Determination of calorific value.
- ISO 21404: 2020(en)—Solid biofuels—Determination of ash melting behavior.
- ASTM E870—82(2019)—Standard Test Methods for Analysis of Wood Fuels (with reference documents: ASTM D1102—84(2021)—Standard Test Method for Ash in Wood; ASTM E871—82(2019)—Standard Test Method for Moisture Analysis of Particulate Wood Fuels; ASTM E871—82(2019)—Standard Test Method for Moisture Analysis of Particulate Wood Fuels)—Determination of proximate analysis by thermogravimetry.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kennedy, G.E. From the ape’s dilemma to the weanling’s dilemma: Early weaning and its evolutionary context. J. Hum. Evol. 2005, 48, 123–145. [Google Scholar] [CrossRef] [PubMed]
- Nunes, L.; Matias, J.C.; Catalao, J.P. Wood pellets as a sustainable energy alternative in Portugal. Renew. Energy 2016, 85, 1011–1016. [Google Scholar] [CrossRef]
- Isaksson, R.; Johansson, P.; Fischer, K. Detecting supply chain innovation potential for sustainable development. J. Bus. Ethics 2010, 97, 425–442. [Google Scholar] [CrossRef] [Green Version]
- Nunes, L.J.; Matias, J.C. Biomass torrefaction as a key driver for the sustainable development and decarbonization of energy production. Sustainability 2020, 12, 922. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Song, W.; Buhain, J. Bioenergy and biofuels: History, status, and perspective. Renew. Sustain. Energy Rev. 2015, 42, 712–725. [Google Scholar] [CrossRef]
- Rodrigues, A.; Loureiro, L.; Nunes, L. Torrefaction of woody biomasses from poplar SRC and Portuguese roundwood: Properties of torrefied products. Biomass Bioenergy 2018, 108, 55–65. [Google Scholar] [CrossRef]
- Nunes, L.J. Torrefied Biomass as an Alternative in Coal-Fueled Power Plants: A Case Study on Grindability of Agroforestry Waste Forms. Clean Technol. 2020, 2, 270–289. [Google Scholar] [CrossRef]
- Demirbas, A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 2005, 31, 171–192. [Google Scholar] [CrossRef]
- Ferreira Gregorio, V.; Pié, L.; Terceño, A. A systematic literature review of bio, green and circular economy trends in publications in the field of economics and business management. Sustainability 2018, 10, 4232. [Google Scholar] [CrossRef] [Green Version]
- Nunes, L.J.R.; Godina, R.; Matias, J.C.d.O. Technological innovation in biomass energy for the sustainable growth of textile industry. Sustainability 2019, 11, 528. [Google Scholar] [CrossRef] [Green Version]
- Nunes, L.; Matias, J.; Catalão, J. Economic evaluation and experimental setup of biomass energy as sustainable alternative for textile industry. In Proceedings of the 2013 48th International Universities’ Power Engineering Conference (UPEC), Dublin, Ireland, 2–5 September 2013; pp. 1–6. [Google Scholar]
- Santini, C.; Cavicchi, A.; Casini, L. Sustainability in the wine industry: Key questions and research trendsa. Agric. Food Econ. 2013, 1, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Yan, N.; Lapkin, A.A. Towards circular economy: Integration of bio-waste into chemical supply chain. Curr. Opin. Chem. Eng. 2019, 26, 148–156. [Google Scholar] [CrossRef]
- Nunes, L.J.; Loureiro, L.M.; Sá, L.C.; Silva, H.F. Evaluation of the potential for energy recovery from olive oil industry waste: Thermochemical conversion technologies as fuel improvement methods. Fuel 2020, 279, 118536. [Google Scholar] [CrossRef]
- Maniscalco, M.P.; Volpe, M.; Messineo, A. Hydrothermal carbonization as a valuable tool for energy and environmental applications: A review. Energies 2020, 13, 4098. [Google Scholar] [CrossRef]
- Keijer, T.; Bakker, V.; Slootweg, J.C. Circular chemistry to enable a circular economy. Nat. Chem. 2019, 11, 190–195. [Google Scholar] [CrossRef]
- Nunes, L.J.; Loureiro, L.M.; Sá, L.C.; Matias, J.C.; Ferraz, A.I.; Rodrigues, A.C. Energy Recovery of Agricultural Residues: Incorporation of Vine Pruning in the Production of Biomass Pellets with ENplus® Certification. Recycling 2021, 6, 28. [Google Scholar] [CrossRef]
- Winans, K.; Kendall, A.; Deng, H. The history and current applications of the circular economy concept. Renew. Sustain. Energy Rev. 2017, 68, 825–833. [Google Scholar] [CrossRef]
- Nunes, L.J.; Raposo, M.A.; Meireles, C.I.; Pinto Gomes, C.J.; Ribeiro, N.; Almeida, M. Control of Invasive Forest Species through the Creation of a Value Chain: Acacia dealbata Biomass Recovery. Environments 2020, 7, 39. [Google Scholar] [CrossRef]
- Nunes, L.J.; Matias, J.C.; Loureiro, L.M.; Sá, L.C.; Silva, H.F.; Rodrigues, A.M.; Causer, T.P.; DeVallance, D.B.; Ciolkosz, D.E. Evaluation of the potential of agricultural waste recovery: Energy densification as a factor for residual biomass logistics optimization. Appl. Sci. 2021, 11, 20. [Google Scholar] [CrossRef]
- Fytili, D.; Zabaniotou, A. Circular economy synergistic opportunities of decentralized thermochemical systems for bioenergy and biochar production fueled with agro-industrial wastes with environmental sustainability and social acceptance: A review. Curr. Sustain. Renew. Energy Rep. 2018, 5, 150–155. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Meireles, C.I.R.; Gomes, C.J.P.; de Almeida Ribeiro, N.M.C. Climate Change Impact on Environmental Variability in the Forest; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Tag, A.T.; Duman, G.; Ucar, S.; Yanik, J. Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J. Anal. Appl. Pyrolysis 2016, 120, 200–206. [Google Scholar] [CrossRef]
- Nunes, L.J. A case study about biomass torrefaction on an industrial scale: Solutions to problems related to self-heating, difficulties in pelletizing, and excessive wear of production equipment. Appl. Sci. 2020, 10, 2546. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, J.M.C.; Godina, R.; Matias, J.C.d.O.; Nunes, L.J.R. Future perspectives of biomass torrefaction: Review of the current state-of-the-art and research development. Sustainability 2018, 10, 2323. [Google Scholar] [CrossRef] [Green Version]
- Sá, L.C.; Loureiro, L.M.; Nunes, L.J.; Mendes, A.M. Torrefaction as a pretreatment technology for chlorine elimination from biomass: A case study using Eucalyptus globulus Labill. Resources 2020, 9, 54. [Google Scholar] [CrossRef]
- Otero, I.; Boada, M.; Tàbara, J.D. Social–ecological heritage and the conservation of Mediterranean landscapes under global change. A case study in Olzinelles (Catalonia). Land Use Policy 2013, 30, 25–37. [Google Scholar] [CrossRef]
- Alves, C.A.; Evtyugina, M.; Cerqueira, M.; Nunes, T.; Duarte, M.; Vicente, E. Volatile organic compounds emitted by the stacks of restaurants. Air Qual. Atmos. Health 2015, 8, 401–412. [Google Scholar] [CrossRef]
- Moreira, M.M.; Barroso, M.F.; Porto, J.V.; Ramalhosa, M.J.; Švarc-Gajić, J.; Estevinho, L.; Morais, S.; Delerue-Matos, C. Potential of Portuguese vine shoot wastes as natural resources of bioactive compounds. Sci. Total Environ. 2018, 634, 831–842. [Google Scholar] [CrossRef] [Green Version]
- Brito, P.S.; Oliveira, A.S.; Rodrigues, L.F. Energy valorization of solid vines pruning by thermal gasification in a pilot plant. Waste Biomass Valorization 2014, 5, 181–187. [Google Scholar] [CrossRef]
- Torreiro, Y.; Pérez, L.; Piñeiro, G.; Pedras, F.; Rodríguez-Abalde, A. The Role of Energy Valuation of Agroforestry Biomass on the Circular Economy. Energies 2020, 13, 2516. [Google Scholar] [CrossRef]
- Duca, D.; Toscano, G.; Pizzi, A.; Rossini, G.; Fabrizi, S.; Lucesoli, G.; Servili, A.; Mancini, V.; Romanazzi, G.; Mengarelli, C. Evaluation of the characteristics of vineyard pruning residues for energy applications: Effect of different copper-based treatments. J. Agric. Eng. 2016, 47, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Nunes, L.J.; Loureiro, L.M.; Sá, L.C.; Silva, H.F. Waste recovery through thermochemical conversion technologies: A case study with several Portuguese agroforestry by-products. Clean Technol. 2020, 2, 377–391. [Google Scholar] [CrossRef]
- Atelge, M.; Atabani, A.; Banu, J.R.; Krisa, D.; Kaya, M.; Eskicioglu, C.; Kumar, G.; Lee, C.; Yildiz, Y.; Unalan, S. A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel 2020, 270, 117494. [Google Scholar] [CrossRef]
- Ren, S.; Lei, H.; Wang, L.; Bu, Q.; Chen, S.; Wu, J. Thermal behaviour and kinetic study for woody biomass torrefaction and torrefied biomass pyrolysis by TGA. Biosyst. Eng. 2013, 116, 420–426. [Google Scholar] [CrossRef]
- Barzegar, R.; Yozgatligil, A.; Olgun, H.; Atimtay, A.T. TGA and kinetic study of different torrefaction conditions of wood biomass under air and oxy-fuel combustion atmospheres. J. Energy Inst. 2020, 93, 889–898. [Google Scholar] [CrossRef]
- Martínez, M.G.; Dupont, C.; Thiéry, S.; Meyer, X.-M.; Gourdon, C. Impact of biomass diversity on torrefaction: Study of solid conversion and volatile species formation through an innovative TGA-GC/MS apparatus. Biomass Bioenergy 2018, 119, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Bates, R.B.; Ghoniem, A.F. Biomass torrefaction: Modeling of volatile and solid product evolution kinetics. Bioresour. Technol. 2012, 124, 460–469. [Google Scholar] [CrossRef]
- Chen, W.-H.; Peng, J.; Bi, X.T. A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 2015, 44, 847–866. [Google Scholar] [CrossRef]
- Zhang, Z.; Duan, H.; Zhang, Y.; Guo, X.; Yu, X.; Zhang, X.; Rahman, M.M.; Cai, J. Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses. Energy 2020, 207, 118290. [Google Scholar] [CrossRef]
- Lu, K.-M.; Lee, W.-J.; Chen, W.-H.; Lin, T.-C. Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Appl. Energy 2013, 105, 57–65. [Google Scholar] [CrossRef]
- Lu, J.-J.; Chen, W.-H. Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Appl. Energy 2015, 160, 49–57. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef]
- Uchimiya, M.; Lima, I.M.; Klasson, K.T.; Wartelle, L.H. Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. Chemosphere 2010, 80, 935–940. [Google Scholar] [CrossRef]
- Jiang, T.-Y.; Jiang, J.; Xu, R.-K.; Li, Z. Adsorption of Pb (II) on variable charge soils amended with rice-straw derived biochar. Chemosphere 2012, 89, 249–256. [Google Scholar] [CrossRef]
- Chen, D.; Gao, A.; Cen, K.; Zhang, J.; Cao, X.; Ma, Z. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Convers. Manag. 2018, 169, 228–237. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Y.; Wang, T. Spirulina hydrothermal carbonization: Effect on hydrochar properties and sulfur transformation. Bioresour. Technol. 2020, 306, 123148. [Google Scholar] [CrossRef]
- Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. 2018, 90, 223–247. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chen, W.-H.; Lin, B.-J.; Chang, J.-S.; Ong, H.C. Fuel property variation of biomass undergoing torrefaction. Energy Procedia 2017, 105, 108–112. [Google Scholar] [CrossRef]
- Piskorz, J.; Radlein, D.; Scott, D.S. On the mechanism of the rapid pyrolysis of cellulose. J. Anal. Appl. Pyrolysis 1986, 9, 121–137. [Google Scholar] [CrossRef]
- Antal, M.J.J.; Varhegyi, G. Cellulose pyrolysis kinetics: The current state of knowledge. Ind. Eng. Chem. Res. 1995, 34, 703–717. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Soil Res. 2008, 45, 629–634. [Google Scholar] [CrossRef]
- Singh, B.; Singh, B.P.; Cowie, A.L. Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res. 2010, 48, 516–525. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaser, B.; Parr, M.; Braun, C.; Kopolo, G. Biochar is carbon negative. Nat. Geosci. 2009, 2, 2. [Google Scholar] [CrossRef]
- Arias, B.; Pevida, C.; Fermoso, J.; Plaza, M.; Rubiera, F.; Pis, J. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process. Technol. 2008, 89, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Simonic, M.; Goricanec, D.; Urbancl, D. Impact of torrefaction on biomass properties depending on temperature and operation time. Sci. Total Environ. 2020, 740, 140086. [Google Scholar] [CrossRef]
- Monedero, E.; Portero, H.; Lapuerta, M. Pellet blends of poplar and pine sawdust: Effects of material composition, additive, moisture content and compression die on pellet quality. Fuel Process. Technol. 2015, 132, 15–23. [Google Scholar] [CrossRef]
- Nielsen, H.P.; Frandsen, F.; Dam-Johansen, K.; Baxter, L. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers. Prog. Energy Combust. Sci. 2000, 26, 283–298. [Google Scholar] [CrossRef]
- Lith, S.C.v.; Frandsen, F.J.; Montgomery, M.; Vilhelmsen, T.; Jensen, S.A. Lab-scale investigation of deposit-induced chlorine corrosion of superheater materials under simulated biomass-firing conditions. Part 1: Exposure at 560 °C. Energy Fuels 2009, 23, 3457–3468. [Google Scholar] [CrossRef]
- San José, M.J.; Alvarez, S.; García, I.; Peñas, F.J. A novel conical combustor for thermal exploitation of vineyard pruning wastes. Fuel 2013, 110, 178–184. [Google Scholar] [CrossRef]
- Bilandzija, N. Energy potential of fruit tree pruned biomass in Croatia. Span. J. Agric. Res. 2012, 292–298. [Google Scholar]
- Sun, X.; Wei, X.; Zhang, J.; Ge, Q.; Liang, Y.; Ju, Y.; Zhang, A.; Ma, T.; Fang, Y. Biomass estimation and physicochemical characterization of winter vine prunings in the Chinese and global grape and wine industries. Waste Manag. 2020, 104, 119–129. [Google Scholar] [CrossRef]
- Acquadro, S.; Appleton, S.; Marengo, A.; Bicchi, C.; Sgorbini, B.; Mandrone, M.; Gai, F.; Peiretti, P.G.; Cagliero, C.; Rubiolo, P. Grapevine green pruning residues as a promising and sustainable source of bioactive phenolic compounds. Molecules 2020, 25, 464. [Google Scholar] [CrossRef] [Green Version]
- Loupit, G.; Prigent, S.; Franc, C.; De Revel, G.; Richard, T.; Cookson, S.J.; Fonayet, J.V. Polyphenol profiles of just pruned grapevine canes from wild Vitis accessions and Vitis vinifera cultivars. J. Agric. Food Chem. 2020, 68, 13397–13407. [Google Scholar] [CrossRef]
- Allesina, G.; Pedrazzi, S.; Puglia, M.; Morselli, N.; Allegretti, F.; Tartarini, P. Gasification and wine industry: Report on the use vine pruning as fuel in small-scale gasifiers. In Proceedings of the European Biomass Conference and Exhibition, Copenhagen, Denmark, 14–18 May 2018; pp. 722–725. [Google Scholar]
- Margaritis, N.; Grammelis, P.; Karampinis, E.; Kanaveli, I.-P. Impact of torrefaction on vine Pruning’s fuel characteristics. J. Energy Eng. 2020, 146, 04020006. [Google Scholar] [CrossRef]
- Azuara, M.; Sáiz, E.; Manso, J.A.; García-Ramos, F.J.; Manyà, J.J. Study on the effects of using a carbon dioxide atmosphere on the properties of vine shoots-derived biochar. J. Anal. Appl. Pyrolysis 2017, 124, 719–725. [Google Scholar] [CrossRef] [Green Version]
- Dunnigan, L.; Morton, B.J.; Ashman, P.J.; Zhang, X.; Kwong, C.W. Emission characteristics of a pyrolysis-combustion system for the co-production of biochar and bioenergy from agricultural wastes. Waste Manag. 2018, 77, 59–66. [Google Scholar] [CrossRef]
- Hoffmann, V.; Jung, D.; Zimmermann, J.; Rodriguez Correa, C.; Elleuch, A.; Halouani, K.; Kruse, A. Conductive carbon materials from the hydrothermal carbonization of vineyard residues for the application in electrochemical double-layer capacitors (EDLCs) and direct carbon fuel cells (DCFCs). Materials 2019, 12, 1703. [Google Scholar] [CrossRef] [Green Version]
- Kraiem, N.; Lajili, M.; Limousy, L.; Said, R.; Jeguirim, M. Energy recovery from Tunisian agri-food wastes: Evaluation of combustion performance and emissions characteristics of green pellets prepared from tomato residues and grape marc. Energy 2016, 107, 409–418. [Google Scholar] [CrossRef]
- Picchi, G.; Silvestri, S.; Cristoforetti, A. Vineyard residues as a fuel for domestic boilers in Trento Province (Italy): Comparison to wood chips and means of polluting emissions control. Fuel 2013, 113, 43–49. [Google Scholar] [CrossRef]
- García, R.; Pizarro, C.; Álvarez, A.; Lavín, A.G.; Bueno, J.L. Study of biomass combustion wastes. Fuel 2015, 148, 152–159. [Google Scholar] [CrossRef] [Green Version]
Stages | Carbonization Steps | Temperature (°C) | Residence Time (min) | Heating Rate (°C.min−1) |
---|---|---|---|---|
1 | Initial heating/pre-drying | Troom–180 | 30 | 5 |
2 | Post-drying and intermediate heating | 180–3400 | 60 | 3.7 |
3 | Carbonization | 400 | 90 | - |
4 | Cooling | 400–50 °C | Until can safely open the furnace | - |
Moisture (%) | Volatiles (%) | Ashes (%) | Fixed Carbon (%) | |||||
---|---|---|---|---|---|---|---|---|
Dry | Biochar | Dry | Biochar | Dry | Biochar | Dry | Biochar | |
Sample 1 | 3.74 | 1.35 | 77.83 | 33.33 | 1.42 | 7.30 | 19.51 | 59.36 |
Sample 2 | 3.77 | 1.37 | 77.84 | 34.51 | 1.41 | 7.33 | 19.46 | 58.16 |
Sample 3 | 3.51 | 1.30 | 77.72 | 33.85 | 1.42 | 7.22 | 19.78 | 58.94 |
Average | 3.67 | 1.34 | 77.80 | 33.90 | 1.42 | 7.28 | 19.58 | 58.82 |
Standard deviation | 0.14 | 0.03 | 0.07 | 0.59 | 0.01 | 0.06 | 0.17 | 0.61 |
Confidence | 0.16 | 0.04 | 0.08 | 0.67 | 0.01 | 0.07 | 0.20 | 0.69 |
C (%) | H (%) | N (%) | O (%) | |||||
---|---|---|---|---|---|---|---|---|
Dry | Biochar | Dry | Biochar | Dry | Biochar | Dry | Biochar | |
Sample 1 | 47.12 | 73.55 | 6.36 | 4.69 | 0.71 | 1.209 | 45.79 | 20.53 |
Sample 2 | 46.48 | 73.62 | 6.42 | 4.60 | 0.62 | 1.213 | 46.47 | 20.55 |
Sample 3 | 45.23 | 73.40 | 6.05 | 4.62 | 0.28 | 1.175 | 48.42 | 20.78 |
Average | 46.28 | 73.53 | 6.28 | 4.64 | 0.54 | 1.20 | 46.89 | 20.62 |
Standard deviation | 0.96 | 0.11 | 0.20 | 0.05 | 0.23 | 0.02 | 1.37 | 0.14 |
Confidence | 1.09 | 0.13 | 0.22 | 0.05 | 0.26 | 0.02 | 1.55 | 0.16 |
S (ppm) | Cl (ppm) | |||
---|---|---|---|---|
Dry | Biochar | Dry | Biochar | |
Sample 1 | 181 | 186 | 92.7 | 1.3 |
Sample 2 | 184 | 179 | 13.8 | 6.5 |
Sample 3 | 190 | 183 | 16.4 | 7.7 |
Average | 185 | 183 | 41.0 | 5.2 |
Standard deviation | 5 | 3.5 | 44.8 | 3.4 |
Confidence | 5 | 4 | 50.7 | 3.9 |
HHV (MJ/kg) | LHV (MJ/kg) | |||
---|---|---|---|---|
Dry | Biochar | Dry | Biochar | |
Sample 1 | 18.95 | 29.84 | 17.58 | 28.84 |
Sample 2 | 18.95 | 29.71 | 17.58 | 28.72 |
Sample 3 | 18.95 | 29.78 | 17.58 | 28.78 |
Average | 18.95 | 29.78 | 17.58 | 28.78 |
Standard deviation | 0.002 | 0.006 | 0.002 | 0.006 |
Confidence | 0.002 | 0.007 | 0.002 | 0.007 |
Initial Mass (g) | Final Mass (g) | Mass Loss (%) | |
---|---|---|---|
Sample 1 | 229.18 | 47.11 | 79.44 |
Sample 2 | 261.70 | 60.01 | 77.07 |
Sample 3 | 257.04 | 55.49 | 78.41 |
Average | 249.31 | 54.20 | 78.31 |
Standard deviation | 17.59 | 6.55 | 1.00 |
Confidence | 19.90 | 7.41 | 1.00 |
Al (ppm) | Ca (ppm) | Fe (ppm) | Mg (ppm) | P (ppm) | K (ppm) | Si (ppm) | Na (ppm) | Ti (ppm) | |
---|---|---|---|---|---|---|---|---|---|
Sample 1 | 74.54 | 6972.46 | 31.15 | 1303.74 | 1101.95 | 8120.49 | 188.82 | 407.25 | 2.71 |
Sample 2 | 53.66 | 7722.37 | 38.57 | 1386.39 | 1077.50 | 8444.39 | 137.45 | 413.72 | 3.48 |
Sample 3 | 53.44 | 7641.21 | 32.29 | 1387.78 | 1107.98 | 8168.23 | 131.67 | 444.39 | 2.83 |
Average | 60.55 | 7445.35 | 34.00 | 1359.30 | 1095.81 | 8244.37 | 152.65 | 421.79 | 3.01 |
Standard deviation | 12.12 | 411.54 | 4.00 | 48.12 | 16.14 | 174.86 | 31.46 | 19.84 | 0.41 |
Confidence | 13.71 | 465.69 | 4.52 | 54.46 | 18.26 | 197.87 | 35.60 | 22.45 | 0.47 |
Al (ppm) | Ca (ppm) | Fe (ppm) | Mg (ppm) | P (ppm) | K (ppm) | Si (ppm) | Na (ppm) | Ti (ppm) | |
---|---|---|---|---|---|---|---|---|---|
Sample 1 | 91.80 | 14,219.58 | 60.64 | 2331.45 | 2317.61 | 16,937.31 | 182.17 | 422.19 | 5.15 |
Sample 2 | 73.40 | 14,415.48 | 50.93 | 2329.09 | 2268.36 | 16,988.84 | 183.20 | 412.39 | 4.52 |
Sample 3 | 78.07 | 13,829.52 | 52.11 | 2314.15 | 2289.80 | 16,392.79 | 171.07 | 429.53 | 3.68 |
Average | 81.09 | 14,154.86 | 54.56 | 2324.90 | 2291.92 | 16,772.98 | 178.81 | 421.37 | 4.45 |
Standard deviation | 9.56 | 298.29 | 5.30 | 9.38 | 24.69 | 330.26 | 6.73 | 8.60 | 0.74 |
Confidence | 10.82 | 337.54 | 6.00 | 10.62 | 27.94 | 373.72 | 7.61 | 9.73 | 0.83 |
As (ppm) | Cd (ppm) | Co (ppm) | Cr (ppm) | Cu (ppm) | Mn (ppm) | Ni (ppm) | Pb (ppm) | Zn (ppm) | |
---|---|---|---|---|---|---|---|---|---|
Sample 1 | 0.58 | 0.58 | 0.40 | 0.48 | 23.16 | 39.64 | 0.63 | 0.29 | 14.51 |
Sample 2 | 0.88 | 0.34 | 0.20 | 0.34 | 26.48 | 43.44 | 0.41 | 0.10 | 14.53 |
Sample 3 | 0.73 | 0.39 | 0.32 | 0.04 | 25.15 | 40.95 | 0.13 | 0.09 | 78.40 |
Average | 0.73 | 0.44 | 0.31 | 0.29 | 24.93 | 41.34 | 0.39 | 0.16 | 35.81 |
Standard deviation | 0.15 | 0.13 | 0.10 | 0.22 | 1.67 | 1.93 | 0.25 | 0.11 | 36.88 |
Confidence | 0.17 | 0.14 | 0.11 | 0.25 | 1.89 | 2.18 | 0.28 | 0.13 | 41.73 |
As (ppm) | Cd (ppm) | Co (ppm) | Cr (ppm) | Cu (ppm) | Mn (ppm) | Ni (ppm) | Pb (ppm) | Zn (ppm) | |
---|---|---|---|---|---|---|---|---|---|
Sample 1 | 2.96 | 0.07 | 0.11 | 0.11 | 45.47 | 87.53 | 0.22 | 0.83 | 55.52 |
Sample 2 | 2.73 | 0.00 | 0.00 | 0.00 | 46.63 | 87.58 | 0.03 | 0.77 | 51.59 |
Sample 3 | 2.69 | 0.00 | 0.00 | 0.00 | 45.44 | 85.70 | 0.00 | 0.59 | 51.55 |
Average | 2.79 | 0.02 | 0.04 | 0,04 | 45.85 | 86.94 | 0.08 | 0.73 | 52.89 |
Standard deviation | 0.146 | 0.040 | 0.064 | 0.064 | 0.679 | 1.071 | 0.119 | 0.125 | 2.281 |
Confidence | 0.165 | 0.046 | 0.072 | 0.072 | 0.768 | 1.212 | 0.135 | 0.141 | 2.581 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, L.J.R.; Rodrigues, A.M.; Matias, J.C.O.; Ferraz, A.I.; Rodrigues, A.C. Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry. Agriculture 2021, 11, 489. https://doi.org/10.3390/agriculture11060489
Nunes LJR, Rodrigues AM, Matias JCO, Ferraz AI, Rodrigues AC. Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry. Agriculture. 2021; 11(6):489. https://doi.org/10.3390/agriculture11060489
Chicago/Turabian StyleNunes, Leonel J. R., Abel M. Rodrigues, João C. O. Matias, Ana I. Ferraz, and Ana C. Rodrigues. 2021. "Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry" Agriculture 11, no. 6: 489. https://doi.org/10.3390/agriculture11060489
APA StyleNunes, L. J. R., Rodrigues, A. M., Matias, J. C. O., Ferraz, A. I., & Rodrigues, A. C. (2021). Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry. Agriculture, 11(6), 489. https://doi.org/10.3390/agriculture11060489