Aroma Profile, Microbial and Chemical Quality of Ensiled Green Forages Mixtures of Winter Cereals and Italian Ryegrass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growing and Ensiling Conditions of Experimental Green Fodder
2.2. Sample Description
2.3. Chemical Analysis
2.4. Microbial Quality
2.5. Aroma Profiling
2.6. Statistical Analysis
Chemical Composition, Fermentation Characteristics and Microbiological Count
3. Results
3.1. Chemical Compositions of Ensiled Mixtures
3.2. Fermentation Characteristics of Ensiled Mixtures
3.3. Microbiological Count of Ensiled Mixtures
3.4. Aroma Profiling
3.4.1. Fermentation Characteristics of Ensiled Mixes Described by EN
3.4.2. Comparing the Aroma Profiles between Mixtures
3.4.3. Comparing the Aroma Profiles over Time within a Mixture
3.4.4. Comparing the Aroma Profiles of All Mixtures at Single Stages
4. Discussion
4.1. Chemical and Microbial Quality of Ensiled Mixtures
4.2. Aroma Profiling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Harris, C.E.; Raymond, W.F. The effect of ensiling on crop digestibility. J. Br. Grassl. Soci. 1963, 18, 204–212. [Google Scholar] [CrossRef]
- Phalow, G.; Muck, R.E.; Driehuis, F.; Qude Elferink, S.J.; Spoelstra, S.F. Microbiology of ensiling. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; American Society of Agronomy (Agronomy 42): Madison, WI, USA, 2003; pp. 31–93. [Google Scholar]
- Charmley, E. Towards improved silage quality—A review. Can. J. Ani. Sci. 2001, 81, 157–168. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E.; Cavallarin, L. A new oxygen barrier film reduces aerobic deterioration in farm-scale corn silage. J. Dairy Sci. 2007, 90, 4701–4706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campagnoli, A.; Dell’Orto, V. Potential Application of Electronic Olfaction Systems in Feedstuffs Analysis and Animal Nutrition. Sensors 2013, 13, 14611–14632. [Google Scholar] [CrossRef] [PubMed]
- Masoero, G.; Sala, G.; Peiretti, P.G. Development of near infrared (NIR) spectroscopy and electronic nose (EN) techniques to analyse the conservation quality of farm silages. J. Food Agri. Envt. 2007, 5, 172–177. [Google Scholar]
- Sberveglieri, V.; Carmona, E.N.; Comini, E.; Ponzoni, A.; Zappa, D.; Pirrotta, O.; Pulvirenti, A. A novel electronic nose as adaptable device to judge microbiological quality and safety in foodstuff. Biomed. Res. Int. 2014, 2014, 529519. [Google Scholar] [CrossRef]
- Campagnoli, A.; Pinotti, L.; Tognon, G.; Cheli, F.; Baldi, A.; Dell’Orto, V. Potential application of electronic nose in processed animal proteins (PAP) detection in feedstuffs. Biotech. Agron. Soc. Environ. 2004, 8, 253–255. [Google Scholar]
- Turner, L.B.; Cairns, A.J.; Armstead, P.; Ashton, J.; SkØt, K.; Whittaker, D.; Humphreys, M.O. Dissecting the regulation of fructan metabolism in perennial ryegrass (Lolium perenne) with quantitative trait locus mapping. New Phytol. 2006, 169, 45–58. [Google Scholar] [CrossRef]
- Baldinger, L.; Baumung, R.; Zollitsch, W.; Knaus, W.F. Italian ryegrass silage in winter feeding of organic dairy cows: Forage intake, milk yield and composition. J. Sci. Food Agric. 2011, 91, 435–442. [Google Scholar] [CrossRef]
- Baldinger, L.; Zollitsch, W.; Knaus, W.F. Maize silage and Italian ryegrass silage as high energy forages in organic dairy cow diets: Differences in feed intake, milk yield and quality, and nitrogen efficiency. Ren. Agri. Food Syst. 2014, 29, 378–387. [Google Scholar] [CrossRef]
- Lehel, L.; Orosz, S.; Tóthné, P.A.; Sümeghy, L.; Hajda, Z.; Sipiczki, B.; Várhegyi, J.; Fébel, H. The rye grass silage apparent digestibility, rumen protein degradability, content of metabolizable protein and net energy. AWETH 2011, 7, 149–157. [Google Scholar]
- World Weather Online. Kaposvar Monthly Climate Average. 2018. Available online: https://www.worldweatheronline.com/kaposvar-weather-averages/somogy/hu.aspx (accessed on 25 July 2018).
- BBCH (Biologische Bundesanstallt für Land-und Forstwirtschaft). Growth Stages of Mono-and Dicotyledonous Plants: BBCH Monograph; Blackwell Wissenschafts-Verlag: Berlin, Germany, 1997. [Google Scholar]
- AOAC (Association of Official Analytical Chemist). Official Methods of Analysis, 18th ed.; AOAC International: Washington, DC, USA, 2006. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Megias, M.D.; Martinez, A.; Teruela, A.; Gallego, J.A.; Nuñez, J.M. Chemical changes during the ensiling of orange peel. Anim. Feed Sci. Tech. 1993, 43, 269–274. [Google Scholar] [CrossRef]
- Playne, M.J. Determination of ethanol, volatile fatty acids, lactic and succinic acids in fermentation liquids by gas chromatography. J. Sci. Food Agri. 1985, 36, 638–644. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- IOS (International Organization for Standardization). Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique; International Standard ISO 4833-1; ISO: Geneva, Switzerland, 2013. [Google Scholar]
- IOS (International Organization for Standardization). Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Mold—Part 1: Colony Count Technique in Products with Water Activity Greater than 0.95; International Standard ISO 21527-1; ISO: Geneva, Switzerland, 2008. [Google Scholar]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage, 3rd ed.; Blackie Academic and Professional: London, UK, 2009. [Google Scholar]
- SAS (Statistical analysis system). SAS Inc. SAS® User’s Guide: Statistics; Version 9.1; SAS Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Kovacs, Z.; Zsanett, B.; John-Lewis, Z.Z.; Timea, K.; George, B.; Tamás, T.; Csilla, M. Electronic nose for monitoring odor changes of Lactobacillus species during milk fermentation and rapid selection of probiotic candidates. Foods 2020, 9, 1539. [Google Scholar] [CrossRef] [PubMed]
- Naes, T.; Isaksson, T.; Feran, T.; Davies, T. A User-Friendly Guide to Multivariate Calibration and Classification; NIR Publication: Chichester, UK, 2002. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Marlow, UK, 1991. [Google Scholar]
- Kung, L.; Shaver, R. Interpretation and Use of Silage Fermentation Analysis Reports. Focus Forage 2001, 3, 13. Available online: https://fyi.extension.wisc.edu/forage/files/2014/01/Fermentation.pdf (accessed on 7 August 2001).
- Kung, L., Jr.; Stanley, R.W. Effect of stage of maturity on the nutritive value of whole plant sugarcane preserved as silage. J. Anim. Sci. 1982, 54, 689–696. [Google Scholar] [CrossRef]
- Daniel, J.L.P.; Weiss, K.; Custodio, L.; Sa Neto, A.; Santos, M.C.; Zopollatto, M.; Nussio, L.G. Occurrence of volatile organic compounds in sugarcane silages. Ani. Feed Sci. Tech. 2013, 185, 101–105. [Google Scholar] [CrossRef]
- GMP (Good Manufacturing Practise). GMP+ Certification Scheme Animal Feed Sector 2006. Production of and Trade in Pet Foods. GMP+ Standard B8. 2008. Available online: http://www.bezpecna-krmiva.cz/soubory/gmp%20standard%2008%20EN.pdf (accessed on 25 November 2008).
- González, M.L.; Alonso, V.A.; Sager, R.; Morlaco, M.B.; Magnoli, C.E.; Astoreca, A.L.; Rosa, C.A.R.; Chiacchiera, S.M.; Dalcero, A.M.; Cavaglieri, L.R. Fungi and selected mycotoxins from pre-and post- fermented corn silage. J. Ap. Micro. 2008, 104, 1034–1041. [Google Scholar] [CrossRef]
- Huhtanen, P.; Khalili, H.; Nousiainen, J.I.; Rinne, M.; Jaakkola, S.; Heikkila, T.; Nousiainen, J. Prediction of the relative intake potential of grass silage by dairy cows. Liv. Prod. Sci. 2002, 73, 111–130. [Google Scholar] [CrossRef]
- Muck, R.E. Factors influencing silage quality and their implications for management. J. Dairy Sci. 1998, 71, 2992–3002. [Google Scholar] [CrossRef]
- Mo, M.; Selmer-Olsen, I.; Randby, Å.T.; Aakre, S.E.; Asmyhr, A. “New” Fermentation Products in Grass Silage and Their Effects on Feed Intake and Milk Taste. In Proceedings of the 10th International Symposium on Forage Conservation, Brno, Czech Republic, 10–12 September 2001; pp. 98–99. [Google Scholar]
- Kristensen, N.B.; Sloth, K.H.; Højberg, O.; Spliid, N.H.; Jensen, C.; Thøgersen, R. Effects of microbial inoculants on corn silage fermentation, microbial contents, aerobic stability, and milk production under field conditions. J. Dairy Sci. 2010, 93, 3764–3774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krizsan, S.J.; Westad, F.; Ådnøy, T.; Odden, E.; Aakre, S.E.; Randby, Å.T. Effect of volatile compounds in grass silage on voluntary intake by growing cattle. Animals 2007, 1, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, R.; Rodrigues, A.I.; do Céu Costa, M. Volatile composition of red clover (Trifolium pratense L.) forages in Portugal: The influence of ripening stage and ensilage. Food Chem. 2007, 104, 1445–1453. [Google Scholar] [CrossRef]
- Arena, E.; Guarrera, N.; Campisi, S.; Nicolosi, A.C. Comparison of odour active compounds detected by gas-chromatography- olfactometry between hand-squeezed juices from different orange varieties. Food Chem. 2005, 98, 59–63. [Google Scholar] [CrossRef]
- Morgan, M.E.; Pereira, R.L. Volatile Constituents of Grass and Corn Silage. I. Steam Distillates. J. Dairy Sci. 1962, 45, 457–466. [Google Scholar] [CrossRef]
- Cometto-Muñiz, J.E.; Cain, W.S. Efficacy of volatile organic compounds in evoking nasal pungency and odor. Arch. Environ. Heal. 1993, 48, 309–314. [Google Scholar] [CrossRef] [Green Version]
Components | Mixture A | Mixture B | Mixture C | Mixture D |
---|---|---|---|---|
Dry matter (g) | 186 | 184 | 168 | 173 |
Crude protein (g/kg DM) | 125 | 117 | 108 | 95 |
Neutral detergent fiber (g/kg DM) | 566 | 579 | 535 | 532 |
Total sugar (g/kg DM) | 168 | 166 | 168 | 140 |
Components (%DM) | Mixture A | Mixture B | Mixture C | Mixture D | SEM | p Value |
---|---|---|---|---|---|---|
DM (%) | 33.06 a | 30.32 b | 33.94 a | 32.38 ab | 1.199 | <0.01 |
CP | 11.70 a | 9.36 b | 11.18 b | 12.56 a | 0.935 | <0.001 |
EE | 2.96 b | 3.56 a | 2.78 b | 3.74 a | 0.201 | <0.001 |
CF | 35.10 a | 30.32 b | 34.20 a | 34.10 a | 1.434 | <0.001 |
NDF | 66.66 a | 57.54 b | 61.14 ab | 61.92 ab | 3.313 | <0.01 |
ADF | 38.16 | 33.18 | 36.78 | 34.48 | 3.817 | ns |
TS | 13.30 a | 5.28 c | 6.18 c | 10.28 b | 1.479 | <0.001 |
Components | Mixture A | Mixture B | Mixture C | Mixture D | SEM | p Value |
---|---|---|---|---|---|---|
pH | 5.03 b | 4.47 c | 5.04 b | 5.30 a | 0.085 | <0.001 |
Ethanol (%DM) | 3.54 | 2.17 | 0.83 | 4.77 | 2.171 | ns |
AA (%DM) | 0.42 b | 0.70 a | 0.73 a | 0.41 b | 0.213 | <0.05 |
LA (%DM) | 4.35 ab | 5.32 a | 3.44 b | 4.08 ab | 0.734 | <0.05 |
TFA (%DM) | 4.97 b | 7.23 a | 4.20 b | 4.59 b | 0.817 | <0.001 |
LA/AA | 10.39 a | 8.00 ab | 5.80 b | 10.27 a | 2.490 | <0.05 |
LA (%TFA) | 87.46 a | 74.28 b | 82.74 a | 88.54 a | 4.372 | <0.001 |
NH3–N (g/100 g tot. N) | 3.99 | 5.35 | 4.22 | 4.42 | 0.751 | ns |
Components | Mixture A | Mixture B | Mixture C | Mixture D | SEM | p Value |
---|---|---|---|---|---|---|
Aerobic mesophilic bacterial count (AMC) (Log10 CFU g−1) (1) | 7.22 b | 7.29 b | 8.73 a | 7.44 b | 0.601 | <0.01 |
Mold and yeast count (Log10 CFU g−1) (1) | 6.73 ab | 4.53 b | 7.27 a | 5.03 ab | 1.414 | <0.05 |
Retention Index | Column | Appearance (in Classification of) | 1st Identified Volatile Compound | 2nd Identified Volatile Compound | 3rd Identified Volatile Compound | 4th Identified Volatile Compound |
---|---|---|---|---|---|---|
489 | 1A | Day 7 | diethyl ether | 2-methyl-2-propanol | 2-methyl-1-butene | 3-chloropropene |
600 | 1A | mixture D, Day 7 | Hexane | di-isopropyl ether | 2-butanol | 2-methylfuran |
658 | 1A | Day 0, Day 14 | methylbutanone | 1,1-dicholopropene | 2-methylbutanal | tert-amylmethylether |
711 | 1A | mixture C | ethylene glycol | propyl acetate | Acetoin | Benyotrifluoride |
725 | 1A | mixture B, mixture C | diethoxy-1,1-ethane | 2,2,3-trimethylpentane | 3-methyl-3-buten-1-ol | 3-penten-2-one |
736 | 1A | mixture A | Thiazole | 3-methyl-1-butanol | 4-methyl-2-pentanone | Pyrazine |
748 | 1A | mixture A | propionic acid | ethanedioic acid | dimethyl disulfide | isopropyl propanoate |
801 | 1A | Day 7, Day 14 | 2-hexanol | Hexanal | 3-hexanol | Octane |
858 | 1A | mixture C | 2,3-dimethylheptane | 1,3-propanedithiol | 3-methylbutanoic acid | methylthio-2-propanone |
960 | 1A | Day 90 | ethyl 3-methylpentanoate | isopropyl 2-methylbutanoate | 2-heptanal | 1-ethyl-3-methylbenzene |
991 | 1A | Day 0 | butyl butanoate | ethyl hexanoate | hexanoic acid | Trimethylpyrazine |
1046 | 1A | mixture C, Day 0 | limonene | Benzeneacetaldehyde | Cineole | 2-methyl-phenol |
1189 | 1A | Day 90 | methylacetophenone | ocatnoic acid | ethyl octanoate | |
492 | 2A | mixture B, mixture D | lactic acid | |||
506 | 2A | Day 7, Day 14 | acetaldehyde | |||
541 | 2A | Day 90 | ethanol | |||
600 | 2A | mixture A, mixture B | formic acid | 2-propanol | Propanal | 2-methylpropanal |
639 | 2A | mixture D | 2-methylpropanal | Butanal | ||
670 | 2A | mixture D | butanal | ethyl acetate | butane2-one | butane-2,3-dione |
698 | 2A | mixture A | butan-2-one | butane-2,3-dione | ||
744 | 2A | mixture B, Day 7 | 2-methyl-1-propanol | 3-methylbutanal | ethyl propanoate | isopropyl acetate |
869 | 2A | Day 14 | propyl propanoate | ethyl butyrate | butyl acetate | propionic acid |
951 | 2A | Day 90 | pirene | isoamyl acetate | Propyleneglycol | |
1070 | 2A | mixture C | isovaleric acid | butyl butanoate | Cymene | limonene |
1101 | 2A | mixture C | octanal | trimethylpyrazine | alpha-terpinene | |
1206 | 2A | Day 90 | acetophenone | nonanal | ethyl-3-methylthiopropanoate | |
1366 | 2A | Day 0 | ethylnonanoate | ethylphenylacetate | Citronellol | phenylethyl acetate |
1555 | 2A | Day 0 | pentyl octanoate | methyl cinnamate | Indole | eugenol |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Worku, A.; Tóth, T.; Orosz, S.; Fébel, H.; Kacsala, L.; Húth, B.; Hoffmann, R.; Yakubu, H.G.; Bazar, G.; Tóthi, R. Aroma Profile, Microbial and Chemical Quality of Ensiled Green Forages Mixtures of Winter Cereals and Italian Ryegrass. Agriculture 2021, 11, 512. https://doi.org/10.3390/agriculture11060512
Worku A, Tóth T, Orosz S, Fébel H, Kacsala L, Húth B, Hoffmann R, Yakubu HG, Bazar G, Tóthi R. Aroma Profile, Microbial and Chemical Quality of Ensiled Green Forages Mixtures of Winter Cereals and Italian Ryegrass. Agriculture. 2021; 11(6):512. https://doi.org/10.3390/agriculture11060512
Chicago/Turabian StyleWorku, Alemayehu, Tamás Tóth, Szilvia Orosz, Hedvig Fébel, László Kacsala, Balázs Húth, Richárd Hoffmann, Haruna Gado Yakubu, George Bazar, and Róbert Tóthi. 2021. "Aroma Profile, Microbial and Chemical Quality of Ensiled Green Forages Mixtures of Winter Cereals and Italian Ryegrass" Agriculture 11, no. 6: 512. https://doi.org/10.3390/agriculture11060512
APA StyleWorku, A., Tóth, T., Orosz, S., Fébel, H., Kacsala, L., Húth, B., Hoffmann, R., Yakubu, H. G., Bazar, G., & Tóthi, R. (2021). Aroma Profile, Microbial and Chemical Quality of Ensiled Green Forages Mixtures of Winter Cereals and Italian Ryegrass. Agriculture, 11(6), 512. https://doi.org/10.3390/agriculture11060512