Functional Quality of Improved Tomato Genotypes Grown in Open Field and in Plastic Tunnel under Organic Farming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Genotype Resources
2.3. Sample of Fruits
2.4. Sample Preparation for Analyses
2.5. pH Value Determination
2.6. Total Soluble Solids Analysis
2.7. Titratable Acidity Analysis
2.8. Maturity index (MI) and Flavor index (FI) calculation
2.9. Dry Matter Analysis
2.10. Ascorbic Acid Analysis
2.11. β-Carotene and Lycopene Analysis
2.12. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stoleru, V.; Inculet, S.C.; Mihalache, G.; Cojocaru, A.; Teliban, G.C.; Caruso, G. Yield and Nutritional Response of Greenhouse Grown Tomato Cultivars to Sustainable Fertilization and Irrigation Management. Plants 2020, 9, 1053. [Google Scholar] [CrossRef]
- Argento, S.; Melilli, M.G.; Branca, F. Enchancing greenhouse tomato-crop productivity by using Brassica macrocarpa Guss. Leaves for Controlling Root-Knot nematodes. Agronomy 2019, 9, 820. [Google Scholar] [CrossRef] [Green Version]
- Faostat. 2020. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 20 January 2021).
- Melilli, M.G.; Tringali, S.; Riggi, E.; Raccuia, S.A. Screening of genetic variability for some phenolic constituents of globe artichoke head. ISHS Acta Hortic. 2007, 730. [Google Scholar] [CrossRef]
- Brezeanu, P.M.; Brezeanu, C.; Ambarus, S.; Voda, A.; Robu, T.; Cristea, T.O.; Calin, M. The influence of grafting on yield and quality of peppers, eggplants, tomatoes and melons. Acta Hortic. 2020, 1270, 347–354. [Google Scholar] [CrossRef]
- Vinson, J.A.; Hao, Y.; Su, X.; Zubik, L.; Hao, Y.; Su, X.H. Phenol antioxidant quantity and quality in foods: Vegetables. J. Agric. Food Chem. 1998, 46, 3630–3634. [Google Scholar] [CrossRef]
- Wilcox, J.K.; Catignani, G.L.; Lazarus, C. Tomatoes and cardiovascular health. Crit. Rev. Food Sci. Nutr. 2003, 43, 1–18. [Google Scholar] [CrossRef]
- Fonseca, M.F.A.C. A Institucio Nalização dos Mercados de Orgânicos no Mundo e no Brasil: Uma Interpretação. Ph.D. Thesis, Universida de Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil, 2005. [Google Scholar]
- Bartley, G.E.; Scolnik, P.A. Plant carotenoids: Pigments for photoprotection, visual attraction, and human health. Plant Cell 1995, 7, 1027–1038. [Google Scholar]
- Clinton, S.K. Lycopene: Chemistry, Biology, and Implications for Human Health and Disease. Nutr. Rev. 1998, 56, 35–51. [Google Scholar] [CrossRef]
- Tonucci, L.H.; Holden, J.M.; Beecher, G.R.; Khachik, F.; Davis, C.S.; Mulokozis, G. Carotenoid Content of Thermally Processed Tomato-Based Food Products. J. Agric. Food Chem. 1995, 43, 579–586. [Google Scholar] [CrossRef]
- De Sio, F.; Rapacciuolo, M.; De Giorgi, A.; Trifirò, A.; Giuliano, B.; Morano, G.; Cuciniello, A.; Caruso, G. Yield, quality, antioxidant, and sensorial properties of diced tomato as affected by genotype and industrial processing in southern Italy. Acta Alim. 2019, 48, 132–141. [Google Scholar] [CrossRef]
- Stoleru, V.; Munteanu, N.; Istrate, A. Perception Towards Organic vs. Conventional Products in Romania. Sustainability 2019, 11, 2394. [Google Scholar] [CrossRef] [Green Version]
- Thybo, A.K.; Edelenbos, M.; Christensen, L.P.; Sørensen, J.N.; Thorup-Kristensen, K. Effect of organic growing systems on sensory quality and chemical composition of tomatoes. LWT 2006, 39, 835–843. [Google Scholar] [CrossRef]
- Council Regulation (EC) 834/2007 on Organic Production and Labelling of Organic Products and Repealing Regulation (EEC) 2092/91. Available online: https://www.legislation.gov.uk/eur/2007/834 (accessed on 10 May 2019).
- MADR Order 895/2016—Approval of the Rules Regarding the Organization of the Inspection and Certification System, of the Approval of the Inspection and Certification of the Organism/ Organism of Control and of the Supervision of the Activity of the Control Organism in Ecological Agriculture. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjPnJf73LvxAhURGaYKHfy8AR0QFjAAegQIAhAD&url=https%3A%2F%2Fro.abg-cert.com%2Fwp-content%2Fuploads%2F2020%2F10%2FRomanian-Order-895-2016_updated-version_04-September-2020-003.pdf&usg=AOvVaw3wWwMs6K0TqYhceWfpD2Vs (accessed on 10 May 2019).
- Munteanu, N. Tomatele, Ardeii și Pătlăgelele Vinete; Editura “Ion Ionescu de la Brad”: Iași, Romania, 2003; p. 83. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 21st ed.; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Araujo, C.J.; Silva, P.; Telhado, S.; Sakai, R.; Spoto, M.; Melo, P. Physico-chemical and sensory parameters of tomato cultivars grown in organic systems. Hortic. Bras. 2014, 32, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Saad, A.G.; Jaiswal, P.; Jha, S.N. Non-destructive quality evaluation to intact tomato using VIS-NIR spectroscopy. Int. J. Adv. Res. 2014, 2, 632–639. [Google Scholar]
- Navez, B.; Letard, M.; Grassely, D.; Jost, M. Les criteres de qualite de la tomate. Infos-Ctifl 1999, 155, 41–47. [Google Scholar]
- Nielsen, S. Food Analysis, 3rd ed.; Kluwer Academic: New York, NY, USA, 2003. [Google Scholar]
- Hernández-Suárez, M.; Rodrígues-Rodrígues, E.M.; Diaz Romero, C. Chemical composition of tomato (Lycopersicon esculentum) from Tenerife, the Canary Islands. Food Chem. 2008, 106, 1046–1056. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Demiray, E.; Tulek, Y.; Yilmaz, Y. Degradation kinetics of lycopene, b-carotene and ascorbic acid in tomatoes during hot air drying. LWT Food Sci. Technol. 2013, 50, 172–176. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists, 15th ed.; AOAC: Washington, DC, USA, 1990; pp. 1058–1059. [Google Scholar]
- Dobrin, A.; Nedeluș, A.; Bujor, O.; Moț, A.; Zugravu, M.; Bădulescu, L. Nutritional quality parameters of the fresh red tomato varieties cultivated in organic system. Sci. Pap. Ser. B Hortic. 2019, 63, 439–443. [Google Scholar]
- Ilic, Z.; Nikolaos, K.; Ljubomir, S. Tomato fruit quality from organic and conventional production. In V. Pilipavicius, Organic Agriculture towards Sustainability; Tech Europe: Rijeka, Croatia, 2014; pp. 147–169. [Google Scholar]
- Caruso, G.; Stefania, P.; Cozzolino, E.; Cucinello, A.; Cenvinzo, V.; Bonini, P.; Colla, G.; Rouphael, Y. Yield and nutritional quality of vesuvian pienollo tomato PDO as affected by farming system and biostimulant application. Agronomy 2019, 9, 505. [Google Scholar] [CrossRef] [Green Version]
- Frusciante, L.; Carli, P.; Ercolano, M.R.; Pernice, R.; Di Matteo, A.; Fogliano, V.; Pellegrini, N. Antioxidant nutritional quality of tomato. Mol. Nutr. Food Res. 2007, 51, 609–617. [Google Scholar] [CrossRef]
- Hallmann, E.; Rembialkowska, E. Comparison of the Nutritive Quality of Tomato Fruits from Organic and Conventional Production in Poland. Available online: http://orgprints.org/9944/ (accessed on 16 June 2021).
- Hallmann, E.; Lipowski, J.; Marszałek, K.; Rembiałkowska, E. The Seasonal Variation in Bioactive Compounds Content in Juice from Organic and Non-organic Tomatoes. Plant Foods Hum. Nut. 2013, 68, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Dumas, Y.; Dadomo, M.; Di Lucca, G.; Grolier, P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 2003, 83, 369–382. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Jáuregui, O.; Medina-Remn, A.; Lamuela-Ravents, R.M. Evaluation of a method to characterize the phenolic profile of organic and conventional tomatoes. J. Agric. Food Chem. 2012, 60, 3373–3380. [Google Scholar] [CrossRef] [PubMed]
- Grierson, D.; Kader, D.D. Fruit Ripening and Quality. In The Tomato Crop, The Tomato Crop (A Scientific Basis for Improvement); Atherton, J.G., Rudich, J., Eds.; Springer: Dordrecht, The Netherlands, 1986; pp. 1389–1393. [Google Scholar]
- Brezeanu, C.; Robu, T.; Trofin, A.; Brezeanu, P.; Murariu, F.; Murariu, O.C. Research on the Physico-Chemical Characterization of Improved Genotypes for Lycopersicon Esculentum Mill. Obtained in the Ecological System. Lucr. Ştiinţifice Ser. Agron. 2020, 63. [Google Scholar]
- Tigist, M.; Workneh, T.S.; Woldetsadik, K. Effects of variety on the quality of tomato stored under ambient conditions. J. Food Sci. Technol. 2013, 50, 477–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulieman, A.M.E.; Awn, K.M.A.; Yousif, M.T. Suitability of some tomato (Lycopersicon esculentum Mill.) genotypes for paste production. J. Sci. Technol. 2011, 12, 45–51. [Google Scholar]
- Malundo, M.M.; Shewfelt, R.L.; Scott, J.W. Flavor quality of fresh tomato (Lycopersicon esculentum Mill.) as affected by sugar and acid levels. Postharvest Biol. Technol. 1995, 6, 103–110. [Google Scholar] [CrossRef]
- Tudor-Radu, M.; Vîjan, L.E.; Tudor-Radu, C.M.; Tiţa, I.; Sima, R.; Mitrea, R. Fruits Assessment of Ascorbic Acid, Polyphenols, Flavonoids, Anthocyanins and Carotenoids Content in Tomato. Not. Bot. Horti Agrobot. Cluj Napoca 2016, 44, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Lumpkin, H.M. A Comparison of Lycopene and Other Phytochemicals in Tomatoes Grown under Conventional and Organic Management Systems; Technical Bulletin No. 34; AVRDC: Shanhua, Taiwan, 2005; p. 48. [Google Scholar]
- Toor, R.K. Factors Affecting the Antioxidant Composition of Tomatoes (Lycopersicon esculentum). Ph.D. Thesis, Lincoln University, Lincoln, New Zealand, 2004. Unpublished. [Google Scholar]
- Heldt, H.W.; Chon, C.J.; Maronde, D.; Herold, A.; Stankovic, Z.S.; Walker, D.A.; Kraminer, A.; Kirk, M.R.; Heber, U. Role of Orthophosphate and Other Factors in the Regulation of Starch Formation in Leaves and Isolated Chloroplasts. Plant Physiol. 1977, 59, 1146–1155. [Google Scholar] [CrossRef] [Green Version]
- Raffo, A.; Leonardi, C.; Fogliano, V.; Ambrosino, P.; Salucci, M.; Gennaro, L.; Bugianesi, R.; Giuffrida, F.; Quaglia, G. Nutritional value of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1) harvested at different ripening stages. J. Agric. Food Chem. 2002, 50, 6550–6556. [Google Scholar] [CrossRef] [PubMed]
- Scalzo, J.; Politi, A.; Pellegrini, N.; Mezzetti, B.; Battino, M. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 2005, 21, 207–213. [Google Scholar] [CrossRef]
- Abushita, A.A.; Daood, H.G.; Biacs, P.A. Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. J. Agric. Food Chem. 2000, 48, 2075–2081. [Google Scholar] [CrossRef] [PubMed]
- Giovanelli, G.; Lavelli, V.; Nobili, C.P.S. Variation in antioxidant components of tomato during vine and post-harvest ripening. J. Sci. Food Agric. 1999, 79, 1583–1588. [Google Scholar] [CrossRef]
- Oliveira, A.B.; Moura, C.F.H.; Gomes-Filho, E.; Marco, C.A.; Urban, L.; Miranda, M.R.A. The Impact of Organic Farming on Quality of Tomatoes Is Associated to Increased Oxidative Stress during Fruit Development. PLoS ONE 2013, 8, e56354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, M.B.; Soliah, L.; Craig, J. Ascorbic acid content, pH, and acceptability of home-canned tomatoes. Plants Foods Hum. Nutr. 1982, 31, 327–332. [Google Scholar] [CrossRef]
- Farneti, B.; Schouten, R.E.; Woltering, E.J. Low temperature-induced lycopene degradation in red ripe tomato evaluated by remittance spectroscopy. Postharvest Biol. Technol. 2012, 73, 22–27. [Google Scholar] [CrossRef]
- Caris-Veyrat, C.; Amiot, M.J.; Tyssandier, V.; Grasselly, D.; Buret, M.; Mikolajczak, M.; Guilland, J.C. Bouteloup-Demange, C.; Borel, P. Influence of organic versus conventional agricultural practice on the antioxidant microconstituent content of tomatoes and derived purees; consequences on antioxidant plasma status in humans. J. Agric. Food Chem. 2004, 52, 6503–6509. [Google Scholar] [CrossRef]
- Ilahy, R.; Hdider, C.; Lenucci, M.S.; Tlili, I.; Dalessandro, G. Antioxidant activity and bioactive compound changes during fruit ripening of high-lycopene tomato cultivars. J. Food Compos. Anal. 2011, 24, 588–595. [Google Scholar] [CrossRef]
- Chawla, C.; Kaur, D.; Oberoi, D.P.S.; Sogi, D.S. Drying characteristics, sorption isotherms, and lycopene retention of tomato pulp. Dry. Technol. 2008, 26, 1257–1264. [Google Scholar] [CrossRef]
- Massantini, R.; Radicetti, E.; Frangipane, M.T.; Campiglia, E. Quality of Tomato (Solanum lycopersicum L.) Changes under Different Cover Crops, Soil Tillage and Nitrogen Fertilization Management. Agriculture 2021, 11, 106. [Google Scholar] [CrossRef]
- Markovic, K.; HruÐkar, M.; Vahcic, N. Lycopene content of tomato products and their contribution to the lycopene intake of Croatians. Nutr. Res. 2006, 26, 556–560. [Google Scholar] [CrossRef]
- Lacatus, V.; Botez, C.; Chelu, M.; Popescu, N.; Voican, V. Chemical composition of tomato and sweet pepper fruits cultivated on active substrates. Acta Hortic. 1995, 412, 168–175. [Google Scholar] [CrossRef]
Period | Air Temperature (°C) | Solar Radiation (W/m2) | VPD (kPa) | Relative Humidity (%) | Precipitation (mm) | Wind Speed (m/s) | EAG Soil Moisture (%) | Soil Temperature (°C) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
avg | avg | avg | avg | sum | avg | avg | avg | |||||||||
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
Sep | 25 | 26 | 167 | 169 | 0.7 | 0.8 | 70.3 | 73.6 | 75.3 | 78.6 | 0.9 | 0.8 | 34.8 | 36.5 | 18.9 | 19.2 |
Aug | 30 | 30 | 230 | 233 | 1.1 | 1.1 | 69.0 | 67.9 | 21.2 | 19.0 | 0.9 | 0.9 | 36.4 | 37.1 | 23.9 | 23.7 |
July | 28 | 28 | 234 | 236 | 0.7 | 0.8 | 76.4 | 76.6 | 64.2 | 64.8 | 0.8 | 0.8 | 37.5 | 37.6 | 23.4 | 23.0 |
June | 29 | 27 | 231 | 228 | 0.75 | 0.7 | 78.5 | 77.0 | 58.7 | 52.4 | 0.65 | 0.7 | 41.2 | 40.13 | 22.4 | 21.2 |
May | 22 | 20 | 189 | 185 | 0.55 | 0.6 | 76.4 | 72.6 | 114.6 | 110.8 | 1.2 | 1.30 | 41.8 | 40.69 | 14.9 | 14.60 |
Variant | pH | TSS (°Brix) | TA Citric Acid % | MI | FI |
---|---|---|---|---|---|
Crop systems | |||||
OF | 4.41 ± 0.01 | 4.68 ± 0.56 | 0.32 ± 0.03 | 16.80 ± 1.37 | 0.39 ± 0.03 |
PT | 4.29 ± 0.04 | 4.55 ± 0.11 | 0.36 ± 0.02 | 14.11 ± 1.04 | 0.44 ± 0.03 |
* | ns | ns | ns | ns | |
Genotypes | |||||
G 1 | 4.44 ± 0.03 a | 4.50 ± 0.23 bc | 0.35 ± 0.04 bc | 13.39 ± 1.00 cd | 0.43 ± 0.06 bc |
G 2 | 4.38 ± 0.01 ab | 4.55 ± 0.03 bc | 0.29 ± 0.04 bc | 17.95 ± 2.80 abc | 0.35 ± 0.05 bc |
G 3 | 4.27 ± 0.07 bc | 4.05 ± 0.28 c | 0.29 ± 0.02 bc | 14.23 ± 1.44 bcd | 0.35 ± 0.02 bc |
G 4 | 4.23 ± 0.04 c | 5.00 ± 0.23 ab | 0.34 ± 0.01 bc | 14.86 ± 0.39 bc | 0.42 ± 0.01 bc |
G 5 | 4.38 ± 0.00 ab | 4.20 ± 0.09 c | 0.38 ± 0.06 b | 12.23 ± 1.73 cd | 0.47 ± 0.07 b |
G 6 | 4.16 ± 0.09 c | 4.55 ± 0.07 bc | 0.54 ± 0.01 a | 8.41 ± 0.12 d | 0.66 ± 0.02 a |
G 7 | 4.45 ± 0.04 a | 5.30 ± 0.13 a | 0.26 ± 0.03 c | 22.55 ± 3.11 a | 0.33 ± 0.04 c |
G 8 | 4.47 ± 0.01 a | 4.80 ± 0.05 b | 0.26 ± 0.03 c | 20.00 ± 2.24 ab | 0.32 ± 0.04 c |
Variant | pH | TSS (°Brix) | TA Citric Acid% | MI | FI |
---|---|---|---|---|---|
OF × G1 | 4.37 ± 0.01 fg | 5.00 ± 0.00 bc | 0.45 ± 0.00 c | 11.16 ± 0.03 e | 0.56 ± 0.00 c |
OF × G2 | 4.40 ± 0.00 e | 4.60 ± 0.00 cdef | 0.19 ± 0.01 h | 24.17 ± 0.75 b | 0.24 ± 0.01 g |
OF × G3 | 4.42 ± 0.00 d | 4.20 ± 0.61 efgh | 0.26 ± 0.00 g | 16.24 ± 2.49 c | 0.31 ± 0.00 f |
OF × G4 | 4.32 ± 0.00 h | 4.50 ± 0.06 cdefg | 0.32 ± 0.01 f | 14.09 ± 0.33 cd | 0.39 ± 0.01 e |
OF × G5 | 4.37 ± 0.01 fg | 4.10 ± 0.06 fgh | 0.26 ± 0.00 g | 16.07 ± 0.41 c | 0.31 ± 0.00 f |
OF × G6 | 4.36 ± 0.01 g | 4.70 ± 0.06 cde | 0.57 ± 0.01 a | 8.22 ± 0.19 f | 0.70 ± 0.01 a |
OF × G7 | 4.53 ± 0.00 a | 5.60 ± 0.00 a | 0.19 ± 0.01 h | 29.43 ± 0.91 a | 0.25 ± 0.01 g |
OF × G8 | 4.49 ± 0.01 b | 4.80 ± 0.12 cd | 0.32 ± 0.01 f | 15.00 ± 0.09 c | 0.40 ± 0.01 e |
PT × G1 | 4.50 ± 0.00 b | 4.00 ± 0.06 gh | 0.26 ± 0.00 g | 15.63 ± 0.08 c | 0.31 ± 0.00 f |
PT × G2 | 4.36 ± 0.00 g | 4.50 ± 0.06 cdefg | 0.38 ± 0.00 d | 11.72 ± 0.08 e | 0.47 ± 0.01 d |
PT × G3 | 4.13 ± 0.01 j | 3.90 ± 0.06 h | 0.32 ± 0.01 f | 12.21 ± 0.26 de | 0.38 ± 0.01 e |
PT × G4 | 4.15 ± 0.00 i | 5.50 ± 0.06 ab | 0.35 ± 0.00 e | 15.63 ± 0.22 c | 0.45 ± 0.00 d |
PT × G5 | 4.38 ± 0.00 ef | 4.30 ± 0.17 defgh | 0.51 ± 0.00 b | 8.40 ± 0.36 f | 0.62 ± 0.00 b |
PT × G6 | 3.95 ± 0.00 k | 4.40 ± 0.00 defgh | 0.51 ± 0.00 b | 8.59 ± 0.02 f | 0.62 ± 0.00 b |
PT × G7 | 4.37 ± 0.01 fg | 5.00 ± 0.00 bc | 0.32 ± 0.01 f | 15.67 ± 0.57 c | 0.40 ± 0.01 e |
PT × G8 | 4.44 ± 0.00 c | 4.80 ± 0.00 cd | 0.19 ± 0.00 h | 25.00 ± 0.15 b | 0.24 ± 0.00 g |
Variant | DM g·100 g−1 F.W. | Vitamin C mg·100 g−1 F.W. | β-Carotene mg·100 g−1 F.W. | Lycopene mg·100 g−1 F.W. |
---|---|---|---|---|
Crop systems | ||||
OF | 6.16 ± 0.16 | 18.57 ± 1.19 | 5.67 ± 0.19 | 6.03 ± 0.29 |
PT | 11.19 ± 0.49 | 11.12 ± 0.50 | 8.72 ± 0.26 | 8.44 ± 0.23 |
* | * | * | * | |
Genotypes | ||||
G1 | 10.65 ± 1.54 ab | 12.63 ± 1.33 bcd | 6.96 ± 0.52 ab | 7.81 ± 0.63 ab |
G2 | 7.45 ± 1.15 b | 16.80 ± 3.27 abc | 6.60 ± 0.89 ab | 7.09 ± 1.09 ab |
G3 | 8.04 ± 0.67 ab | 9.86 ± 1.50 d | 7.36 ± 0.09 ab | 8.39 ± 0.10 a |
G4 | 7.65 ± 0.93 b | 13.10 ± 0.59 bcd | 6.61 ± 0.48 ab | 7.32 ± 0.79 ab |
G5 | 8.26 ± 0.90 ab | 15.39 ± 1.37 abcd | 6.26 ± 0.60 b | 7.36 ± 0.85 ab |
G6 | 7.66 ± 1.05 b | 11.35 ± 0.13 cd | 7.20 ± 1.25 ab | 5.69 ± 0.93 b |
G7 | 8.06 ± 0.75 ab | 18.17 ± 1.72 ab | 7.72 ± 0.52 ab | 6.63 ± 0.33 ab |
G8 | 11.64 ± 2.04 a | 21.50 ± 3.45 a | 8.86 ± 1.09 a | 7.61 ± 0.23 ab |
Variant | DM g·100 g−1 F.W. | Vitamin C mg·100 g−1 F.W. | β-Carotene mg·100 g−1 F.W. | Lycopene mg·100 g−1 F.W. |
---|---|---|---|---|
OF × G1 | 7.20 ± 0.12 f | 15.59 ± 0.12 e | 5.79 ± 0.02 k | 6.40 ± 0.01 i |
OF × G2 | 4.90 ± 0.06 i | 24.10 ± 0.29 b | 4.62 ± 0.05 n | 4.65 ± 0.03 m |
OF × G3 | 6.55 ± 0.16 g | 13.20 ± 0.06 h | 7.15 ± 0.03 h | 8.16 ± 0.02 e |
OF × G4 | 5.57 ± 0.10 h | 14.41 ± 0.12 f | 5.53 ± 0.04 l | 5.55 ± 0.03 k |
OF × G5 | 6.25 ± 0.03 g | 18.46 ± 0.09 d | 4.91 ± 0.02 m | 5.45 ± 0.03 l |
OF × G6 | 5.32 ± 0.19 h | 11.61 ± 0.12 j | 4.40 ± 0.03 o | 3.60 ± 0.02 n |
OF × G7 | 6.39 ± 0.12 g | 22.00 ± 0.35 c | 6.56 ± 0.03 i | 7.35 ± 0.03 g |
OF × G8 | 7.07 ± 0.06 f | 29.21 ± 0.12 a | 6.41 ± 0.01 j | 7.10 ± 0.00 h |
PT × G1 | 14.09 ± 0.05 b | 9.67 ± 0.04 l | 8.12 ± 0.01 e | 9.22 ± 0.00 b |
PT × G2 | 10.00 ± 0.29 cd | 9.50 ± 0.00 l | 8.58 ± 0.05 d | 9.53 ± 0.02 a |
PT × G3 | 9.53 ± 0.02 e | 6.51 ± 0.00 m | 7.56 ± 0.03 g | 8.62 ± 0.00 d |
PT × G4 | 9.72 ± 0.01 de | 11.78 ± 0.01 j | 7.68 ± 0.05 f | 9.08 ± 0.01 c |
PT × G5 | 10.27 ± 0.02 c | 12.32 ± 0.01 i | 7.60 ± 0.03 fg | 9.27 ± 0.02 b |
PT × G6 | 10.00 ± 0.12 cd | 11.09 ± 0.00 k | 10.00 ± 0.03 b | 7.78 ± 0.01 f |
PT × G7 | 9.73 ± 0.01 de | 14.34 ± 0.00 f | 8.88 ± 0.01 c | 5.90 ± 0.06 j |
PT × G8 | 16.21 ± 0.01 a | 13.78 ± 0.00 g | 11.30 ± 0.01 a | 8.12 ± 0.05 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murariu, O.C.; Brezeanu, C.; Jităreanu, C.D.; Robu, T.; Irimia, L.M.; Trofin, A.E.; Popa, L.-D.; Stoleru, V.; Murariu, F.; Brezeanu, P.M. Functional Quality of Improved Tomato Genotypes Grown in Open Field and in Plastic Tunnel under Organic Farming. Agriculture 2021, 11, 609. https://doi.org/10.3390/agriculture11070609
Murariu OC, Brezeanu C, Jităreanu CD, Robu T, Irimia LM, Trofin AE, Popa L-D, Stoleru V, Murariu F, Brezeanu PM. Functional Quality of Improved Tomato Genotypes Grown in Open Field and in Plastic Tunnel under Organic Farming. Agriculture. 2021; 11(7):609. https://doi.org/10.3390/agriculture11070609
Chicago/Turabian StyleMurariu, Otilia Cristina, Creola Brezeanu, Carmenica Doina Jităreanu, Teodor Robu, Liviu Mihai Irimia, Alina Elena Trofin, Lorena-Diana Popa, Vasile Stoleru, Florin Murariu, and Petre Marian Brezeanu. 2021. "Functional Quality of Improved Tomato Genotypes Grown in Open Field and in Plastic Tunnel under Organic Farming" Agriculture 11, no. 7: 609. https://doi.org/10.3390/agriculture11070609
APA StyleMurariu, O. C., Brezeanu, C., Jităreanu, C. D., Robu, T., Irimia, L. M., Trofin, A. E., Popa, L. -D., Stoleru, V., Murariu, F., & Brezeanu, P. M. (2021). Functional Quality of Improved Tomato Genotypes Grown in Open Field and in Plastic Tunnel under Organic Farming. Agriculture, 11(7), 609. https://doi.org/10.3390/agriculture11070609