Identification of Risk Factors for Lameness Detection with Help of Biosensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Animals
2.2. Measurements
2.3. Data Analysis and Statistics
3. Results
3.1. Relationship of Lameness in Fresh Dairy Cows with Milk Traits
3.2. Relationship of Lameness in Cows with Reticulorumen Indicators, Activity, and Body Weight
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bennett, R.; Barker, Z.; Main, D.; Whay, H.; Leach, K. Investigating the value dairy farmers place on a reduction of lameness in their herds using a willingness to pay approach. Vet. J. 2014, 199, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Green, L.; Huxley, J.; Banks, C.; Green, M. Temporal associations between low body condition, lameness and milk yield in a UK dairy herd. Prev. Vet. Med. 2014, 113, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Huxley, J. Impact of lameness and claw lesions in cows on health and production. Livest. Sci. 2013, 156, 64–70. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, J.; Li, Y.; Song, Q.; Li, S.; Hayat, M.A.; Zhang, J.; Wang, H. The changes of inflammatory mediators and vasoactive substances in dairy cows’ plasma with pasture-associated laminitis. BMC Vet. Res. 2020, 16, 119. [Google Scholar] [CrossRef]
- Donovan, G.A.; Risco, C.A.; Temple, G.D.; Tran, T.Q.; Van Horn, H.H. Influence of transition diets on occurrence of sub-clinical laminitis in Holstein dairy cows. J. Dairy Sci. 2004, 87, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Shearer, J.K. Lameness of Dairy Cattle: Consequences and Causes; Department of Large Animal Clinical Sciences College of Veterinary Medicine University of Florida Gainesville: Gainesville, FL, USA, 1997; pp. 38–50. [Google Scholar]
- King, M.; Leblanc, S.; Pajor, E.; Devries, T. Cow-level associations of lameness, behavior, and milk yield of cows milked in automated systems. J. Dairy Sci. 2017, 100, 4818–4828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonfatti, V.; Ho, P.; Pryce, J. Usefulness of milk mid-infrared spectroscopy for predicting lameness score in dairy cows. J. Dairy Sci. 2020, 103, 2534–2544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bramley, E.; Costa, N.; Fulkerson, W.; Lean, I. Associations between body condition, rumen fill, diarrhoea and lameness and ruminal acidosis in Australian dairy herds. N. Z. Vet. J. 2013, 61, 323–329. [Google Scholar] [CrossRef]
- Nocek, J.E. Bovine Acidosis: Implications on Laminitis. J. Dairy Sci. 1997, 80, 1005–1028. [Google Scholar] [CrossRef]
- Plaizier, J.; Krause, D.; Gozho, G.; McBride, B. Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Vet. J. 2008, 176, 21–31. [Google Scholar] [CrossRef]
- AlZahal, O.; Kebreab, E.; France, J.; Froetschel, M.; McBride, B. Ruminal Temperature May Aid in the Detection of Subacute Ruminal Acidosis. J. Dairy Sci. 2008, 91, 202–207. [Google Scholar] [CrossRef] [PubMed]
- AlZahal, O.; Steele, M.; Van Schaik, M.; Kyriazakis, I.; Duffield, T.; McBride, B.; AlZahal, H. The use of a radiotelemetric ruminal bolus to detect body temperature changes in lactating dairy cattle. J. Dairy Sci. 2011, 94, 3568–3574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Hailemariam, D.; Dervishi, E.; Deng, Q.; Goldansaz, S.A.; Dunn, S.M.; Ametaj, B.N. Alterations of Innate Immunity Reactants in Transition Dairy Cows before Clinical Signs of Lameness. Animals 2015, 5, 717–747. [Google Scholar] [CrossRef] [PubMed]
- Enemark, D.J.M.; Jørgensen, R.J.; Enemark, S.S. Rumen acidosis with special emphasis on diagnostic aspects of subclinical rumen acidosis: A review. Vet. Zootech. 2002, 20, 42. [Google Scholar]
- Miekley, B.; Traulsen, I.; Krieter, J. Detection of mastitis and lameness in dairy cows using wavelet analysis. Livest. Sci. 2012, 148, 227–236. [Google Scholar] [CrossRef]
- Lukas, J.; Reneau, J.; Wallace, R.; Hawkins, D.; Munoz-Zanzi, C. A novel method of analyzing daily milk production and electrical conductivity to predict disease onset. J. Dairy Sci. 2009, 92, 5964–5976. [Google Scholar] [CrossRef] [PubMed]
- Khatun, M. Data-Based Approaches to Improve Accuracy and Timing of Mastitis Detection in Automatic Milking Systems. Ph.D. Thesis, The University of Sydney, Sydney, Australia, 2019. [Google Scholar]
- Walker, S.L.; Smith, R.; Routly, J.E.; Jones, D.N.; Morris, M.J.; Dobson, H. Lameness, Activity Time-Budgets, and Estrus Expression in Dairy Cattle. J. Dairy Sci. 2008, 91, 4552–4559. [Google Scholar] [CrossRef]
- Mazrier, H.; Tal, S.; Aizinbud, E.; Bargai, U. A field investigation of the use of the pedometer for the early detection of lameness in cattle. Can. Vet. J. 2006, 47, 883–886. [Google Scholar]
- Gonzalez, L.A.; Tolkamp, B.J.; Coffey, M.; Ferret, A.; Kyriazakis, I. Changes in Feeding Behavior as Possible Indicators for the Automatic Monitoring of Health Disorders in Dairy Cows. J. Dairy Sci. 2008, 91, 1017–1028. [Google Scholar] [CrossRef] [Green Version]
- O’Callaghan, K.A.; Cripps, P.J.; Downham, D.Y.; Murray, R.D. Subjective and objective assessment of pain and discomfort due to lameness in dairy cattle. Anim. Welf. 2003, 12, 605–610. [Google Scholar]
- King, M.; Pajor, E.; Leblanc, S.; Devries, T. Associations of herd-level housing, management, and lameness prevalence with productivity and cow behavior in herds with automated milking systems. J. Dairy Sci. 2016, 99, 9069–9079. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.A.; Siegford, J.M. Invited review: The impact of automatic milking systems on dairy cow management, behavior, health, and welfare. J. Dairy Sci. 2012, 95, 2227–2247. [Google Scholar] [CrossRef] [PubMed]
- King, M.; Leblanc, S.; Pajor, E.; Wright, T.; Devries, T. Behavior and productivity of cows milked in automated systems before diagnosis of health disorders in early lactation. J. Dairy Sci. 2018, 101, 4343–4356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sprecher, D.; Hostetler, D.; Kaneene, J. A lameness scoring system that uses posture and gait to predict dairy cattle reproductive performance. Theriogenology 1997, 47, 1179–1187. [Google Scholar] [CrossRef]
- Warnick, L.; Janssen, D.; Guard, C.; Gröhn, Y. The Effect of Lameness on Milk Production in Dairy Cows. J. Dairy Sci. 2001, 84, 1988–1997. [Google Scholar] [CrossRef]
- Bach, A.; Dinarés, M.; Devant, M.; Carré, X. Associations between lameness and production, feeding and milking attendance of Holstein cows milked with an automatic milking system. J. Dairy Res. 2006, 74, 40–46. [Google Scholar] [CrossRef]
- Deming, J.A.; Bergeron, R.; Leslie, K.E.; Devries, T.J. Associations of cow-level factors, frequency of feed delivery, and standing and lying behaviour of dairy cows milked in an automatic system. Can. J. Anim. Sci. 2013, 93, 427–433. [Google Scholar] [CrossRef]
- Weigele, H.C.; Gygax, L.; Steiner, A.; Wechsler, B.; Burla, J.B. Moderate lameness leads to marked behavioral changes in dairy cows. J. Dairy Sci. 2018, 101, 2370–2382. [Google Scholar] [CrossRef] [Green Version]
- Gáspárdy, A.; Ismach, G.; Bajcsy, Á.C.; Veress, G.; Márkus, S.; Komlósi, I. Evaluation of the on-line electrical conductivity of milk in mastitic dairy cows. Acta Vet. Hung. 2012, 60, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; von Keyserlingk, M.; Leblanc, S.; Weary, D. Lying behavior as an indicator of lameness in dairy cows. J. Dairy Sci. 2010, 93, 3553–3560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Singh, S.; Gupta, D.K.; Bansal, B.K. Relationship of lameness to body condition score, udder health and milk quality in crossbred dairy cattle. Vet. Arh. 2018, 88, 179–190. [Google Scholar] [CrossRef]
- Olechnowicz, J.; Jaskowski, J.M. Impact of clinical lameness, calving season, parity, and month of lactation on milk, fat, protein, and lactose yields during early lactation of dairy cows. Bull. Vet. Inst. Pulawy 2010, 54, 605–610. [Google Scholar]
- Olechnowicz, J.; Jaskowski, M.J. Relationship between clinical lameness and somatic cell counts, and fat and protein contents in the milk of dairy cows. Med. Weter 2012, 68, 12. [Google Scholar]
- Randall, L.; Green, M.; Chagunda, M.; Mason, C.; Archer, S.; Green, L.; Huxley, J. Low body condition predisposes cattle to lameness: An 8-year study of one dairy herd. J. Dairy Sci. 2015, 98, 3766–3777. [Google Scholar] [CrossRef]
- Dyer, R.; Neerchal, N.; Tasch, U.; Wu, Y.; Dyer, P.; Rajkondawar, P. Objective Determination of Claw Pain and Its Relationship to Limb Locomotion Score in Dairy Cattle. J. Dairy Sci. 2007, 90, 4592–4602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutten, C.; Velthuis, A.; Steeneveld, W.; Hogeveen, H. Invited review: Sensors to support health management on dairy farms. J. Dairy Sci. 2013, 96, 1928–1952. [Google Scholar] [CrossRef]
- Nechanitzky, K.; Starke, A.; Vidondo, B.; Müller, H.; Reckardt, M.; Friedli, K.; Steiner, A. Analysis of behavioral changes in dairy cows associated with claw horn lesions. J. Dairy Sci. 2016, 99, 2904–2914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabbar, K.A.; Hansen, M.F.; Smith, M.L.; Smith, L. Early and non-intrusive lameness detection in dairy cows using 3-dimensional video. Biosyst. Eng. 2017, 153, 63–69. [Google Scholar] [CrossRef]
- Thorup, V.; Munksgaard, L.; Robert, P.-E.; Erhard, H.; Thomsen, P.T.; Friggens, N. Lameness detection via leg-mounted accelerometers on dairy cows on four commercial farms. Animals 2015, 9, 1704–1712. [Google Scholar] [CrossRef] [Green Version]
- Solano, L.; Barkema, H.; Pajor, E.; Mason, S.; Leblanc, S.; Nash, C.; Haley, D.; Pellerin, D.; Rushen, J.; De Passillé, A.; et al. Associations between lying behavior and lameness in Canadian Holstein-Friesian cows housed in freestall barns. J. Dairy Sci. 2016, 99, 2086–2101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandel, R.; Harazy, H.; Gygax, L.; Nicol, C.; Ben-David, A.; Whay, H.; Klement, E. Short communication: Detection of lameness in dairy cows using a grooming device. J. Dairy Sci. 2018, 101, 1511–1517. [Google Scholar] [CrossRef]
- Blackie, N.; Amory, J.; Bleach, E.; Scaife, J. The effect of lameness on lying behaviour of zero grazed Holstein dairy cattle. Appl. Anim. Behav. Sci. 2011, 134, 85–91. [Google Scholar] [CrossRef]
- Juarez, S.T.; Robinson, P.H.; DePeters, E.J.; Price, E.O. Impact of lameness on behavior and productivity of lactating Holstein cows. Appl. Anim. Behav. Sci. 2003, 83, 1–14. [Google Scholar] [CrossRef]
- Beer, G.; Alsaaod, M.; Starke, A.; Schüpbach-Regula, G.; Müller, H.; Kohler, P.; Steiner, A. Use of Extended Characteristics of Locomotion and Feeding Behavior for Automated Identification of Lame Dairy Cows. PLoS ONE 2016, 11, e0155796. [Google Scholar] [CrossRef] [Green Version]
- Palmer, M.A.; Law, R.; O’Connell, N. Relationships between lameness and feeding behaviour in cubicle-housed Holstein–Friesian dairy cows. Appl. Anim. Behav. Sci. 2012, 140, 121–127. [Google Scholar] [CrossRef]
- Bareille, N.; Beaudeau, F.; Billon, S.; Robert, A.; Faverdin, P. Effects of health disorders on feed intake and milk production in dairy cows. Livest. Prod. Sci. 2003, 83, 53–62. [Google Scholar] [CrossRef]
- Bicalho, R.; Machado, V.; Caixeta, L. Lameness in dairy cattle: A debilitating disease or a disease of debilitated cattle? A cross-sectional study of lameness prevalence and thickness of the digital cushion. J. Dairy Sci. 2009, 92, 3175–3184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norring, M.; Haggman, J.; Simojoki, H.; Tamminen, P.; Winckler, C.; Pastell, M. Short communication: Lameness impairs feeding behavior of dairy cows. J. Dairy Sci. 2014, 97, 4317–4321. [Google Scholar] [CrossRef]
- Thorup, V.M.; Nielsen, B.L.; Robert, P.-E.; Giger-Reverdin, S.; Konka, J.; Michie, W.; Friggens, N.C. Lameness Affects Cow Feeding but Not Rumination Behavior as Characterized from Sensor Data. Front. Vet. Sci. 2016, 3, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilgour, R.J. In pursuit of “normal”: A review of the behaviour of cattle at pasture. Appl. Anim. Behav. Sci. 2012, 138, 1–11. [Google Scholar] [CrossRef]
- Schirmann, K.; Chapinal, N.; Weary, D.; Heuwieser, W.; von Keyserlingk, M. Rumination and its relationship to feeding and lying behavior in Holstein dairy cows. J. Dairy Sci. 2012, 95, 3212–3217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dirksen, G. Rumen Function and Disorders Related to Production Disease. In Proceedings of the VII International Conference Distance Farm Animal; Cornell University: Ithaca, NY, USA, 1989; p. 350. [Google Scholar]
- Gentile, G.; Cinotti, S.; Ferri, G.; Famigli-Bergamini, P. Nutritional acidosis and technological characteristics of milk in high producing dairy cows. In Proceedings of the XIV World Congress on Diseases of Cattle, Dublin, Ireland, 26–29 August 1986; pp. 823–829. [Google Scholar]
- Bergsten, C. Hemorrhages of the sole horn of dairy cows as a retrospective indicator of laminitis: An epidemiological study. Acta Vet. Scand. 1994, 35, 55. [Google Scholar] [CrossRef] [PubMed]
- Boosman, R.; Németh, F.; Gruys, E.; Klarenbeek, A. Arteriographical and pathological changes in chronic laminitis in dairy cattle. Vet. Q. 1989, 11, 144–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brent, B.E. Relationship of Acidosis to Other Feedlot Ailments. J. Anim. Sci. 1976, 43, 930–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ossent, P.; Lischer, C.J. Theories on the pathogenesis of bovine laminitis. In Proceedings of the 8th International Symposium Disorder Ruminant Digit International Conference; Greenough, P.R., Ed.; Bovine Lameness: Saskatoon, SK, Canada; Banff, AB, Canada, 1994; p. 207. [Google Scholar]
Variable | HC | LC | p |
---|---|---|---|
MY (kg) | 43.39 ± 7.65 | 34.00 ± 9.59 | <0.001 |
Fat (%) | 4.15 ± 0.54 | 4.89 ± 0.67 | <0.001 |
Protein (%) | 3.74 ± 0.35 | 3.50 ± 0.44 | 0.031 |
F/P | 1.11 ± 0.09 | 1.41 ± 0.11 | <0.001 |
Lactose (%) | 4.66 ± 0.05 | 4.52 ± 0.07 | <0.001 |
MCFL (mS/cm) | 67.1 ± 2.24 | 74.6 ± 2.81 | <0.001 |
MCFR (mS/cm) | 66.3 ± 2.98 | 73.9 ± 3.74 | <0.001 |
MCBL (mS/cm) | 67.5 ± 2.61 | 71.7 ± 3.27 | <0.001 |
MCBR (mS/cm) | 69.5 ± 1.96 | 71.5 ± 0.05 | <0.001 |
Variable | HC | LC | p |
---|---|---|---|
RT (min/day) | 517.6 ± 21.80 | 384.2 ± 52.41 | <0.001 |
pH | 6.43 ± 0.17 | 6.46 ± 0.22 | 0.231 |
TRR °C | 39.16 ± 0.87 | 39.33 ± 1.17 | 0.059 |
Activity (steps/h) | 8.55 ± 0.45 | 9.93 ± 0.37 | 0.027 |
Body weight (kg) | 734.5 ± 15.44 | 728.8 ± 20.89 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antanaitis, R.; Juozaitienė, V.; Urbonavičius, G.; Malašauskienė, D.; Televičius, M.; Urbutis, M.; Džermeikaitė, K.; Baumgartner, W. Identification of Risk Factors for Lameness Detection with Help of Biosensors. Agriculture 2021, 11, 610. https://doi.org/10.3390/agriculture11070610
Antanaitis R, Juozaitienė V, Urbonavičius G, Malašauskienė D, Televičius M, Urbutis M, Džermeikaitė K, Baumgartner W. Identification of Risk Factors for Lameness Detection with Help of Biosensors. Agriculture. 2021; 11(7):610. https://doi.org/10.3390/agriculture11070610
Chicago/Turabian StyleAntanaitis, Ramūnas, Vida Juozaitienė, Gediminas Urbonavičius, Dovilė Malašauskienė, Mindaugas Televičius, Mingaudas Urbutis, Karina Džermeikaitė, and Walter Baumgartner. 2021. "Identification of Risk Factors for Lameness Detection with Help of Biosensors" Agriculture 11, no. 7: 610. https://doi.org/10.3390/agriculture11070610
APA StyleAntanaitis, R., Juozaitienė, V., Urbonavičius, G., Malašauskienė, D., Televičius, M., Urbutis, M., Džermeikaitė, K., & Baumgartner, W. (2021). Identification of Risk Factors for Lameness Detection with Help of Biosensors. Agriculture, 11(7), 610. https://doi.org/10.3390/agriculture11070610