Effect of Cover Crop, Slurry Application with Different Loads and Tire Inflation Pressures on Tire Track Depth, Soil Penetration Resistance and Maize Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Climatic Conditions
2.2. Experimental Design and Management
2.3. Measurements
2.4. Statistical Analysis
3. Results
3.1. Tire Track Depth
3.2. Soil Penetration Resistance
3.3. Grain of Maize Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lamandé, M.; Greve, M.H.; Schjønning, P. Risk assessment of soil compaction in Europe–Rubber tracks or wheels on machinery. Catena 2018, 167, 353–362. [Google Scholar] [CrossRef]
- Keller, T.; Sandin, M.; Colombi, T.; Horn, R.; Or, D. Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil Tillage Res. 2019, 194, 104293. [Google Scholar] [CrossRef]
- Molari, G.; Mattetti, M.; Walker, M. Field performance of an agricultural tractor fitted with rubber tracks on a low trafficable soil. J. Agric. Eng. 2015, 46, 162–166. [Google Scholar] [CrossRef] [Green Version]
- Moitzi, G.; Amon, S.; Klik, A.; Schwen, A. Effect of two-axle and three-axle sugarbeet tanker harvester on selected soil-physical properties in dry and wet soil conditions. Agric. Eng. Int. CIGR J. 2019, 21, 18–27. [Google Scholar]
- Moitzi, G.; Košutić, S.; Kumhála, F.; Nozdrovicky, L.; Martinov, M.; Gronauer, A. Machinery induced compaction of agricultural soil and mitigation strategies in the Danube Region. In Proceedings of the 44th International Symposium on Agricultural Engineering-Actual Tasks on Agricultural Engineering, Opatija, Croatia, 23–26 February 2016; Sveučilište u Zagrebu, Agronomski fakultet, Zavod za mehanizaciju poljoprivrede, Svetošimunska 25: Zagreb, Croatia, 2016; pp. 15–35, ISBN 1848–4425. [Google Scholar]
- Ren, L.; D’Hose, T.; Ruysschaert, G.; de Pue, J.; Meftah, R.; Cnudde, V.; Cornelis, W.M. Effects of soil wetness and tyre pressure on soil physical quality and maize growth by a slurry spreader system. Soil Tillage Res. 2019, 195, 104344. [Google Scholar] [CrossRef]
- Schjønning, P.; Lamandé, M.; Munkholm, L.J.; Lyngvig, H.S.; Nielsen, J.A. Soil precompression stress, penetration resistance and crop yields in relation to differently-trafficked, temperate-region sandy loam soils. Soil Tillage Res. 2016, 163, 298–308. [Google Scholar] [CrossRef]
- Chen, G.; Weil, R.R.; Hill, R.L. Effects of compaction and cover crops on soil least limiting water range and air permeability. Soil Tillage Res. 2014, 136, 61–69. [Google Scholar] [CrossRef]
- Chen, G.; Weil, R.R. Root growth and yield of maize as affected by soil compaction and cover crops. Soil Tillage Res. 2011, 117, 17–27. [Google Scholar] [CrossRef]
- ZAMG. Klima/Klimaübersichten/Jahrbuch. Available online: https://www.zamg.ac.at/cms/de/klima/klimauebersichten/jahrbuch (accessed on 14 May 2021).
- Diserens, E.; Alaoui, A. Contact Area of Agricultural Tyres, Estimation. In Encyclopedia of Agrophysics; Gliński, J., Horabik, J., Lipiec, J., Eds.; Springer Science + Business Media B.V: Dordrecht, The Netherlands, 2011; pp. 148–153. ISBN 978-90-481-3584-4. [Google Scholar]
- Raper, R.L.; Bailey, A.C.; Burt, E.C.; Way, T.R.; Liberati, P. The effects of reduced inflation pressure on soil-tire interface stresses and soil strength. J. Terramechanics 1995, 32, 43–51. [Google Scholar] [CrossRef]
- Brunotte, J. Konservierende Bodenbearbeitung als Beitrag zur Minderung von Bodenschadverdichtungen, Bodenerosion, Run off und Mykotoxinbildung im Getreide; Humboldt-Universität zu Berlin: Berlin, Germany, 2007. [Google Scholar]
- Moitzi, G.; Wagentristl, H.; Liebhard, P.; Neugschwandtner, R. Influence of tillage systems in a long-term experiment on track depths and crop yields under Pannonian climate. In IX International Scientific Symposium Farm Machinery; Department of Machinery Exploitation and Management of Production Processes, University of Life Sciences in Lublin: Lublin, Poland, 2017; pp. 250–254. [Google Scholar]
- Arvidsson, J.; Keller, T. Soil stress as affected by wheel load and tyre inflation pressure. Soil Tillage Res. 2007, 96, 284–291. [Google Scholar] [CrossRef]
- Folorunso, O.A.; Rolston, D.; Prichard, P.T.; Louie, D.T. Cover crops lower soil surface strength, may improve soil permeability. Calif. Agric. 1992, 46, 26–27. [Google Scholar] [CrossRef]
- Söhne, W. Some Basic Considerations of Soil Mechanics as Applied to Agricultural Engineering; National Inst. of Agricultural Engineering: Silsoe, UK, 1958. [Google Scholar]
- He, R.; Sandu, C.; Shenvi, M.N.; Mousavi, H.; Carrillo, J.; Osorio, J.E. Laboratory experimental study of tire tractive performance on soft soil: Towing mode, traction mode, and multi-pass effect. J. Terramechanics 2021, 95, 33–58. [Google Scholar] [CrossRef]
- Keller, T.; Arvidsson, J. Technical solutions to reduce the risk of subsoil compaction: Effects of dual wheels, tandem wheels and tyre inflation pressure on stress propagation in soil. Soil Tillage Res. 2004, 79, 191–205. [Google Scholar] [CrossRef]
Tanker Filling Level | Wheel | Wheel Load 4 (kN) | Tire-Soil Contact Area 5 (cm2) | Mean Ground Pressure (kPa) | ||
---|---|---|---|---|---|---|
Low Inflation Pressure 6 | High Inflation Pressure 7 | Low Inflation Pressure 6 | High Inflation Pressure 7 | |||
Filled | Tractor front 1 | 11 | 1904 | 57 | ||
Tractor rear 2 | 46 | 4840 | 96 | |||
Tanker 1st axle 3 | 57 | 7445 | 4152 | 76 | 136 | |
Tanker 2nd axle 3 | 56 | 7727 | 4526 | 72 | 123 | |
Half-filled | Tractor front | 10 | 1926 | 54 | ||
Tractor rear | 41 | 4335 | 95 | |||
Tanker 1st axle | 39 | 5112 | 3713 | 76 | 105 | |
Tanker 2nd axle | 37 | 5584 | 4029 | 66 | 91 | |
Empty | Tractor front | 13 | 2348 | 57 | ||
Tractor back | 31 | 3691 | 83 | |||
Tanker 1st axle | 18 | 4060 | 3652 | 45 | 50 | |
Tanker 2nd axle | 18 | 4335 | 3607 | 43 | 51 |
Parameter | Unit | ANOVA | |||||
---|---|---|---|---|---|---|---|
TFL a | TIP b | GC c | TFL × TIP | TFL × GC | TIP × GC | ||
Tire track depth | (cm) | n.s. | *** | * | n.s. | n.s. | n.s. |
Penetration resistance (0–20 cm) | (MPa) | n.s. | *** | ** | n.s. | n.s. | n.s. |
Penetration resistance (21–40 cm) | MPa) | n.s. | *** | n.s | n.s. | n.s. | n.s. |
Grain of maize yield | (kg ha−1) | n.s. | n.s. | * | n.s. | n.s. | n.s. |
Tire Inflation Pressure | Filled Tanker | Half-Filled Tanker | Empty Tanker | ||||||
---|---|---|---|---|---|---|---|---|---|
+Cover Crop | −Cover Crop | Mean | +Cover Crop | −Cover Crop | Mean | +Cover Crop | −Cover Crop | Mean | |
Low | 6.20 | 5.80 | 6.00 a | 6.86 | 5.83 | 6.35 a | 6.61 | 4.89 | 5.75 a |
High | 7.49 | 7.11 | 7.30 b | 7.23 | 5.93 | 6.58 b | 6.88 | 5.41 | 6.15 b |
Mean | 6.85 B | 6.46 A | 6.65 | 7.05 B | 5.88 A | 6.47 | 6.75 B | 5.15 A | 5.95 |
Soil Depth (cm) | Treatment | Filled Tanker | Half-Filled Tanker | Empty Tanker | ||||||
---|---|---|---|---|---|---|---|---|---|---|
+Cover Crop | −Cover Crop | Mean | +Cover Crop | −Cover Crop | Mean | +Cover Crop | −Cover Crop | Mean | ||
0–20 | Un-wheeled | 0.74 | 0.67 | 0.71 a | 0.70 | 0.82 | 0.76 a | 0.72 | 0.81 | 0.76 a |
Low | 1.17 | 1.27 | 1.22 b | 1.11 | 1.23 | 1.17 b | 1.06 | 1.21 | 1.14 b | |
High | 1.30 | 1.66 | 1.48 c | 1.18 | 1.32 | 1.25 c | 1.16 | 1.24 | 1.23 c | |
Mean | 1.07A | 1.20B | 1.14 | 1.00A | 1.12B | 1.06 | 0.98A | 1.09B | 1.03 | |
21–40 | Un-wheeled | 2.09 | 2.06 | 2.08 a | 1.88 | 1.99 | 1.94 a | 1.95 | 2.24 | 2.10 a |
Low | 2.25 | 2.21 | 2.23 b | 2.21 | 2.24 | 2.23 b | 2.15 | 2.34 | 2.25 b | |
High | 2.33 | 2.32 | 2.33 b | 2.20 | 2.25 | 2.23 b | 2.30 | 2.15 | 2.23 b | |
Mean | 2.22 | 2.20 | 2.21 | 2.10 | 2.16 | 2.13 | 2.14 | 2.24 | 2.19 |
Treatment | Filled Tanker | Half-Filled Tanker | Empty Tanker | ||||||
---|---|---|---|---|---|---|---|---|---|
+Cover Crop | −Cover Crop | Mean | +Cover Crop | −Cover Crop | Mean | +Cover Crop | −Cover Crop | Mean | |
Un-wheeled | 9609 | 9253 | 9431 | 9938 | 8809 | 9373 | 9967 | 8709 | 9338 |
Low | 10,516 | 9664 | 10,090 | 9218 | 9600 | 9409 | 9442 | 8751 | 9097 |
High | 8504 | 8791 | 8648 | 9362 | 8622 | 8992 | 10,193 | 9051 | 9622 |
Mean | 9543B | 9236A | 9390 | 9506B | 9010A | 9258 | 9867B | 8837A | 9352 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moitzi, G.; Sattler, E.; Wagentristl, H. Effect of Cover Crop, Slurry Application with Different Loads and Tire Inflation Pressures on Tire Track Depth, Soil Penetration Resistance and Maize Yield. Agriculture 2021, 11, 641. https://doi.org/10.3390/agriculture11070641
Moitzi G, Sattler E, Wagentristl H. Effect of Cover Crop, Slurry Application with Different Loads and Tire Inflation Pressures on Tire Track Depth, Soil Penetration Resistance and Maize Yield. Agriculture. 2021; 11(7):641. https://doi.org/10.3390/agriculture11070641
Chicago/Turabian StyleMoitzi, Gerhard, Elisabeth Sattler, and Helmut Wagentristl. 2021. "Effect of Cover Crop, Slurry Application with Different Loads and Tire Inflation Pressures on Tire Track Depth, Soil Penetration Resistance and Maize Yield" Agriculture 11, no. 7: 641. https://doi.org/10.3390/agriculture11070641
APA StyleMoitzi, G., Sattler, E., & Wagentristl, H. (2021). Effect of Cover Crop, Slurry Application with Different Loads and Tire Inflation Pressures on Tire Track Depth, Soil Penetration Resistance and Maize Yield. Agriculture, 11(7), 641. https://doi.org/10.3390/agriculture11070641