Relationships Linking the Colour and Elemental Concentrations of Blossom Honeys with Their Antioxidant Activity: A Chemometric Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Analyses
2.2.1. Physicochemical Properties
2.2.2. Antioxidant Activity
2.3. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Antioxidant Activity
3.3. Correlations
3.4. Principal Component Analysis
3.4.1. Antioxidant Activity and Colour
3.4.2. Antioxidant Activity and Minerals
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rao, P.V.; Krishnan, K.T.; Salleh, N.; Gan, S.H. Biological and therapeutic effects of honey produced by honey bees and stingless bees: A comparative review. Rev. Bras. Farmacogn. 2016, 26, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Kuś, P.; Congiu, F.; Teper, D.; Sroka, Z.; Jerković, I.; Tuberoso, C.I.G. Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. LWT-Food Sci. Technol. 2014, 55, 124–130. [Google Scholar] [CrossRef]
- Kędzierska-Matysek, M.; Florek, M.; Wolanciuk, A.; Barłowska, J.; Litwińczuk, Z. Concentration of Minerals in Nectar Honeys from Direct Sale and Retail in Poland. Biol. Trace Elem. Res. 2018, 186, 579–588. [Google Scholar] [CrossRef] [Green Version]
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Oliveira Costa, A.C.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Suárez, J.M.; Tulipani, S.; Díaz, D.; Estevez, Y.; Romandini, S.; Giampieri, F.; Damiani, E.; Astolfi, P.; Bompadre, S.; Battino, M. Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food Chem. Toxicol. 2010, 48, 2490–2499. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, A.; Muzolf-Panek, M.; Tomaszewska-Gras, J.; Konieczny, P. Predicting the Botanical Origin of Honeys with Chemometric Analysis According to Their Antioxidant and Physicochemical Properties. Pol. J. Food Nutr. Sci. 2019, 69, 191–201. [Google Scholar] [CrossRef]
- Nayik, G.A.; Nanda, V. Physico-Chemical, Enzymatic, Mineral and Colour Characterization of Three Different Varieties of Honeys from Kashmir Valley of India with a Multivariate Approach. Pol. J. Food Nutr. Sci. 2015, 65, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Voica, C.; Iordache, A.M.; Ionete, R.E. Multielemental characterization of honey using inductively coupled plasma mass spectrometry fused with chemometrics. J. Mass Spectrom. 2020, 55, e4512. [Google Scholar] [CrossRef]
- Akbulut, M.; Özcan, M.M.; Çoklar, H. Evaluation of antioxidant activity, phenolic, mineral contents and some physicochemical properties of several pine honeys collected from Western Anatolia. Int. J. Food Sci. Nutr. 2009, 60, 577–589. [Google Scholar] [CrossRef]
- Gheldof, N.; Engeseth, N.I. Antioxidant capacity of honeys from various flora sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoproteid oxidation in human serum samples. J. Agric. Food Chem. 2002, 50, 3050–3055. [Google Scholar] [CrossRef]
- Socha, R.; Juszczak, L.; Pietrzyk, S.; Gałkowska, D.; Fortuna, T.; Witczak, T. Phenolic profile and antioxidant properties of Polish honeys. Int. J. Food Sci. Technol. 2011, 46, 528–534. [Google Scholar] [CrossRef]
- Israili, Z.H. Antimicrobial properties of honey. Am. J. Therap. 2014, 21, 304–323. [Google Scholar] [CrossRef]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Bravo Lamas, L.; Martínez Flórez, S.; Agudo Toyos, P.; et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef] [Green Version]
- EU Council Directive 2001/110/EC of 20 December 2001 relating to honey. Off. J. EU 2002, L10, 47–52. Available online: http://data.europa.eu/eli/dir/2001/110/2014-06-23 (accessed on 8 November 2020).
- Kędzierska-Matysek, M.; Florek, M.; Wolanciuk, A.; Skałecki, P. Effect of freezing and room temperatures storage for 18 months on quality of raw rapeseed honey (Brassica napus). J. Food Sci. Technol. 2016, 53, 3349–3355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kędzierska-Matysek, M.; Florek, M.; Wolanciuk, A.; Skałecki, P.; Litwińczuk, A. Characterisation of viscosity, colour, 5-hydroxymethylfurfural content and diastase activity in raw rape honey (Brassica napus) at different temperatures. J. Food Sci. Technol. 2016, 53, 2092–2098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reshma, K.; Thasniya, M.; Gopika, S.K.; Arunima, S.H. Honey crystallization: Mechanism, evaluation and application. Pharma Innov. 2021, 10, 222–231. [Google Scholar] [CrossRef]
- Pisani, A.; Protano, G.; Riccobono, F. Minor and trace minerals in different honey types produced in Siena County (Italy). Food Chem. 2008, 107, 1553–1560. [Google Scholar] [CrossRef]
- MARD. Regulation of the Minister of Agriculture and Rural Development of 14 January 2009 on the methods of analysis related to the assessment of honey. J. Laws 2009, 17, 2018–2030. [Google Scholar]
- Bogdanov, S.; Martin, P.; Lüllmann, C. Harmonised methods of the European Honey Commission. Apidologie 2009, 1–59. Available online: http://www.ihc-platform.net/ihcmethods2009.pdf (accessed on 28 December 2020).
- White, J. Spectrophotometric method for hydroxymethylfurfural in honey. J. Assoc. Off. Anal. Chem. 1979, 62, 509–514. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Tornuk, F.; Karaman, S.; Ozturk, I.; Toker, O.S.; Tastemur, B.; Sagdic, O.; Dogan, M.; Kayacier, A. Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Ind. Crops Prod. 2013, 46, 124–131. [Google Scholar] [CrossRef]
- Kacaniova, M.; Knazovicka, W.; Melich, M.; Fikselova, M.; Massanyi, P.; Stawarz, R.; Hascik, P.; Pechociak, T.; Kuczkowska, A.; Putała, A. Environmental concentration of selected elements and relation to physicochemical parameters in honey. J. Environ. Sci. Health Part A 2009, 44, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Cavia, M.M.; Fernández-Muino, M.A.; Alonso-Torre, S.R.; Huidobro, J.F.; Sancho, M.T. Evolution of acidity of honeys from continental climates: Influence of induced granulation. Food Chem. 2007, 100, 1728–1733. [Google Scholar] [CrossRef]
- Chen, C. Relationship between water activity and moisture content in floral honey. Foods 2019, 8, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano, S.; Espejo, R.; Villarejo, M.; Jodral, M.J. Diastase and invertase activities in Andalusian honeys. Int. J. Food Sci. Technol. 2007, 42, 76–79. [Google Scholar] [CrossRef]
- Wesołowska, M.; Dżugan, M. Activity and thermal stability of diastase present in honey from Podkarpacie Region. Food Sci. Technol. Qual. 2017, 24, 103–112. Available online: http://wydawnictwo.pttz.org/wp-content/uploads/2018/03/09_Wesolowska.pdf (accessed on 6 December 2020).
- Kek, S.P.; Chin, N.L.; Tan, S.W.; Yusof, Y.A.; Chua, L.S. Classification of Honey from Its Bee Origin via Chemical Profiles and Mineral Content. Food Anal. Methods 2017, 10, 19–30. [Google Scholar] [CrossRef]
- Ördög, A.; Tari, I.; Bátori, Z.; Poór, P. Mineral content analysis of unifloral honeys from the Hungarian Great Plain. J. Elem. 2017, 22, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, J.; Pietrzak, M.; Pomianowski, J.; Wieczorek, Z. Honey as a source of bioactive compounds. Pol. J. Nat. Sci. 2014, 29, 275–285. Available online: http://www.uwm.edu.pl/polish-journal/sites/default/files/issues/articles/wieczorek_et_al._2014.pdf (accessed on 6 December 2020).
- Dżugan, M.; Zaguła, G.; Wesołowska, M.; Sowa, P.; Puchalski, C. Levels of Toxic and Essential Metals in Varietal Honeys from Podkarpacie. J. Elem. 2017, 22, 1039–1048. [Google Scholar] [CrossRef]
- Deng, J.; Liu, R.; Lu, Q.; Hao, P.; Xu, A.; Zhang, J.; Tan, J. Biochemical properties, antibacterial and cellular antioxidant activities of buckwheat honey in comparison to manuka honey. Food Chem. 2018, 252, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Škrovánková, S.; Snopek, L.; Mlček, J.; Volaříková, E. Bioactive Compounds Evaluation in Different Types of Czech and Slovak Honeys. Potravin. Slovak J. Food Sci. 2019, 13, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Cheng, N.; Wu, L.; Zheng, J.; Cao, W. Buckwheat Honey Attenuates Carbon Tetrachloride-Induced Liver and DNA Damage in Mice. Evid. Based Complementary Altern. Med. 2015, 2015, 987385. [Google Scholar] [CrossRef] [Green Version]
- Piszcz, P.; Głód, B.K. Antioxidative Properties of Selected Polish Honeys. J. Apic. Sci. 2019, 63, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Dżugan, M.; Tomczyk, M.; Sowa, P.; Grabek-Lejko, D. Antioxidant Activity as Biomarker of Honey Variety. Molecules 2018, 23, 2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moniruzzaman, M.; Sulaiman, S.A.; Khalil, M.I.; Gan, S.H. Evaluation of physicochemical and antioxidant properties of sourwood and other Malaysian honeys: A comparison with manuka honey. Chem. Cent. J. 2013, 7, 138. [Google Scholar] [CrossRef] [Green Version]
- Beretta, G.; Granata, P.; Ferrero, M.; Orioli, M.; Maffei Facino, R. Standardization of antioxidant properties of honey by combination of spectrophotometric⁄fluorimetric assays and chemometrics. Anal. Chim. Acta 2005, 533, 185–191. [Google Scholar] [CrossRef]
- Perna, A.; Simonetti, A.; Intaglietta, I.; Sofo, A.; Gambacorta, E. Metal content of southern Italy honey of different botanical origins and its correlation with polyphenol content and antioxidant activity. Int. J. Food Sci. Technol. 2012, 47, 1909–1917. [Google Scholar] [CrossRef]
Parameters | Multifloral (MF) | Rapeseed (RS) | Buckwheat (BW) | Linden (LI) | Black Locust (AC) |
---|---|---|---|---|---|
Water (%) | 17.53 ± 1.01 a | 17.93 ± 0.89 a | 17.83 ± 1.17 a | 17.11 ± 1.23 a | 17.90 ± 0.58 a |
Reducing sugars (%) | 74.12 ± 3.18 a | 74.60 ± 1.40 a | 74.93 ± 2.42 a | 73.76 ± 2.39 a | 77.24 ± 1.00 a |
Sucrose (%) | 2.09 ± 0.28 a | 2.04 ± 0.13 a | 2.02 ± 0.22 a | 2.14 ± 0.23 a | 1.83 ± 0.09 a |
pH | 3.80 ± 0.15 a | 3.83 ± 0.10 a | 3.69 ± 0.17 a | 3.91 ± 0.16 b | 3.68 ± 0.12 a |
Free acidity (mval kg−1) | 32.1 ± 9.9 AB | 21.9 ± 4.2 A | 44.5 ± 2.6 C | 35.1 ± 9.9 BC | 29.1 ± 10.3 AB |
Electrical conductivity (mS cm−1) | 0.390 ± 0.145 AB | 0.232 ± 0.037 A | 0.448 ± 0.099 AB | 0.564 ± 0.163 B | 0.304 ± 0.149 AB |
aW | 0.567 ± 0.026 AB | 0.582 ± 0.017 B | 0.570 ± 0.017 AB | 0.546 ± 0.023 A | 0.552 ± 0.028 AB |
5-HMF (mg kg−1) | 5.50 ± 2.77 A | 3.67 ± 3.81 A | 14.51 ± 8.54 B | 3.49 ± 2.27 A | 4.20 ± 1.69 A |
Diastase number (Schade unit) | 27.09 ± 7.44 A | 18.58 ± 5.98 A | 49.40 ± 17.66 B | 29.04 ± 7.50 A | 21.45 ± 4.86 A |
Colour CIE | |||||
L* | 44.12 ± 7.28 C | 49.47 ± 6.60 D | 30.84 ± 2.44 A | 35.64 ± 3.54 B | 31.55 ± 5.42 AB |
a* | 2.36 ± 1.48 B | 0.90 ± 0.36 A | 3.22 ± 0.92 C | 0.88 ± 0.51 A | 0.61 ± 0.28 A |
b* | 16.05 ± 5.84 B | 13.29 ± 2.03 B | 6.91 ± 2.90 A | 8.74 ± 2.38 A | 5.09 ± 2.40 A |
C* | 16.25 ± 5.96 B | 13.08 ± 2.27 B | 7.64 ± 2.93 A | 8.86 ± 2.36 A | 5.14 ± 2.39 A |
h° | 81.97 ± 3.45 B | 85.94 ± 1.39 C | 62.70 ± 6.96 A | 84.40 ± 3.62 BC | 82.38 ± 4.17 B |
Minerals (mg kg−1) | |||||
K | 1055.55 ± 479.47 ab | 700.94 ± 399.30 a | 1155.26 ± 359.17 ab | 1258.27 ± 564.50 b | 876.26 ± 435.06 ab |
Na | 29.10 ± 20.03 a | 24.21 ± 12.72 a | 33.18 ± 29.98 a | 25.86 ± 14.65 a | 15.09 ± 1.16 a |
Mg | 28.77 ± 10.55 a | 20.15 ± 4.26 a | 29.56 ± 10.36 a | 27.93 ± 9.83 a | 23.19 ± 9.94 a |
Zn | 1.84 ± 1.80 a | 1.26 ± 0.69 a | 2.94 ± 3.03 a | 1.65 ± 0.97 a | 0.88 ± 0.31 a |
Fe | 1.66 ± 0.68 a | 1.26 ± 0.49 a | 1.85 ± 0.92 a | 1.71 ± 0.62 a | 1.39 ± 0.97 a |
Mn | 1.77 ± 1.56 ab | 1.37 ± 1.50 ab | 5.58 ± 4.29 b | 1.22 ± 1.36 ab | 0.72 ± 0.62 a |
Cu | 0.56 ± 0.16 AB | 0.48 ± 0.17 A | 0.95 ± 0.37 B | 0.52 ± 0.09 AB | 0.47 ± 0.07 A |
Antioxidant activity | |||||
DPPH (mM TE kg−1) | 1.12 ± 0.44 BC | 0.83 ± 0.12 A | 2.33 ± 0.36 C | 0.90 ± 0.16 AB | 0.63 ± 0.17 A |
FRAP (mM TE kg−1) | 1.28 ± 0.49 B | 0.47 ± 0.10 A | 2.14 ± 0.27 C | 0.53 ± 0.15 A | 0.29 ± 0.01 A |
Parameter | FRAP | DPPH |
---|---|---|
Colour CIE | Pearson’s correlation coefficient (r) | |
L* | −0.259 * | −0.309 * |
a* | 0.549 *** | 0.452 *** |
b* | 0.022 | −0.127 |
C* | 0.058 | −0.091 |
h° | −0.706 *** | −0.781 *** |
Minerals | Spearman’s rank correlation coefficient (rS) | |
K | 0.155 | 0.268 * |
Na | 0.173 | 0.176 |
Mg | 0.156 | 0.276 * |
Fe | 0.247 | 0.218 |
Zn | 0.212 | 0.127 |
Cu | 0.386 ** | 0.522 *** |
Mn | 0.370 ** | 0.457 *** |
Variable | PC1 | PC2 |
---|---|---|
L* | 0.828 | −0.318 |
a* | −0.116 | −0.897 |
b* | 0.667 | −0.708 |
C* | 0.665 | −0.740 |
h° | 0.846 | 0.408 |
FRAP | −0.628 | −0.654 |
DPPH | −0.723 | −0.537 |
Variable | PC1 | PC2 | PC3 |
---|---|---|---|
K | 0.396 | 0.725 | −0.394 |
Mg | 0.535 | 0.708 | −0.264 |
Na | 0.451 | 0.128 | 0.760 |
Fe | 0.596 | 0.413 | 0.467 |
Zn | 0.395 | −0.051 | 0.433 |
Cu | 0.893 | −0.140 | −0.093 |
Mn | 0.808 | −0.259 | −0.170 |
FRAP | 0.697 | −0.410 | −0.156 |
DPPH | 0.772 | −0.413 | −0.200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kędzierska-Matysek, M.; Teter, A.; Stryjecka, M.; Skałecki, P.; Domaradzki, P.; Rudaś, M.; Florek, M. Relationships Linking the Colour and Elemental Concentrations of Blossom Honeys with Their Antioxidant Activity: A Chemometric Approach. Agriculture 2021, 11, 702. https://doi.org/10.3390/agriculture11080702
Kędzierska-Matysek M, Teter A, Stryjecka M, Skałecki P, Domaradzki P, Rudaś M, Florek M. Relationships Linking the Colour and Elemental Concentrations of Blossom Honeys with Their Antioxidant Activity: A Chemometric Approach. Agriculture. 2021; 11(8):702. https://doi.org/10.3390/agriculture11080702
Chicago/Turabian StyleKędzierska-Matysek, Monika, Anna Teter, Małgorzata Stryjecka, Piotr Skałecki, Piotr Domaradzki, Michał Rudaś, and Mariusz Florek. 2021. "Relationships Linking the Colour and Elemental Concentrations of Blossom Honeys with Their Antioxidant Activity: A Chemometric Approach" Agriculture 11, no. 8: 702. https://doi.org/10.3390/agriculture11080702
APA StyleKędzierska-Matysek, M., Teter, A., Stryjecka, M., Skałecki, P., Domaradzki, P., Rudaś, M., & Florek, M. (2021). Relationships Linking the Colour and Elemental Concentrations of Blossom Honeys with Their Antioxidant Activity: A Chemometric Approach. Agriculture, 11(8), 702. https://doi.org/10.3390/agriculture11080702