Comparison of the Grain Quality and Starch Physicochemical Properties between Japonica Rice Cultivars with Different Contents of Amylose, as Affected by Nitrogen Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Treatments
2.3. Grain Quality and Starch Property Measures
2.3.1. Processing Quality
2.3.2. Appearance Quality
2.3.3. Nutritional Quality
2.3.4. Eating Quality
2.3.5. Pasting Properties
2.3.6. Flour and Starch Isolation
2.3.7. X-ray Diffraction Analysis of the Starch
2.3.8. Small-Angle X-ray Scattering Analysis of the Starch
2.3.9. Gelatinization Properties
2.4. Statistical Analyses
3. Results
3.1. Grain Yield and Yield Components
3.2. Milling and Appearance Quality
3.3. Eating Qualities and Their Relationships
3.4. Pasting Properties in Relation to the Eating Quality
3.5. Thermal Properties of Starch
3.6. Small-Angle X-ray Scattering Variables and the Relative Crystallinity of the Starches
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, N.V.; Ferrero, A. Meeting the challenges of global rice production. Paddy Water Environ. 2006, 4, 1–9. [Google Scholar] [CrossRef]
- Yu, Y.Q.; Huang, Y.; Zhang, W. Changes in rice yields in China since 1980 associated with cultivar improvement, climate and crop management. Field Crops Res. 2012, 136, 65–75. [Google Scholar] [CrossRef]
- Huang, M.; Zou, Y.B. Integrating mechanization with agronomy and breeding to ensure food security in China. Field Crops Res. 2018, 224, 22–27. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Fan, F.J.; Zhu, J.Y.; Chen, T.; Wang, C.L.; Zheng, T.Q.; Zhang, J.; Zhong, W.G.; Xu, J.L. Development of AS-PCR marker based on a key mutation confirmed by resequencing of Wx-mp in Milky Princess and its application in japonica soft rice (Oryza sativa L.) breeding. Plant Breed. 2013, 132, 595–603. [Google Scholar] [CrossRef]
- Wang, C.L.; Zhang, Y.D.; Zhu, Z.; Chen, T.; Zhao, Q.Y.; Zhong, W.G.; Yang, J.; Yao, S.; Zhou, L.H.; Zhao, L.; et al. Research progress on the breeding of japonica super rice varieties in Jiangsu Province, China. J. Integr. Agric. 2017, 16, 992–999. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, M.; Ouwerkerk, P.B.F. Molecular and envrionmental factors determining grain quality in rice. Food Energy Secur. 2012, 2, 111–132. [Google Scholar] [CrossRef]
- Liu, Q.H.; Wu, X.; Ma, J.Q.; Xin, C.Y. Effects of cultivars, transplanting patterns, environment, and their interactions on grain quality of japonica rice. Cereal Chem. 2015, 92, 284–292. [Google Scholar] [CrossRef]
- Chun, A.; Lee, H.J.; Hamaker, B.R.; Janaswamy, S. Effects of ripening temperature on starch structure and gelatinization, pasting, and cooking properties in rice (Oryza sativa). J. Agric. Food Chem. 2015, 63, 3085–3093. [Google Scholar] [CrossRef]
- Ma, Z.H.; Cheng, H.T.; Nitta, Y.; Aoki, N.; Chen, Y.; Chen, H.X.; Ohsugi, R.; Lyu, W.Y. Differences in viscosity of superior and inferior spikelets of japonica rice with various percentage of apparent amylose content. J. Agric. Food Chem. 2017, 65, 4237–4246. [Google Scholar] [CrossRef]
- Patindol, J.A.; Siebenmorgen, T.J.; Wang, Y.J. Impact of environmental factors on rice starch structure: A review. Starch-Starke 2015, 67, 42–54. [Google Scholar] [CrossRef]
- Wei, H.Y.; Chen, Z.F.; Xing, Z.P.; Zhou, L.; Liu, Q.Y.; Zhang, Z.Z.; Jiang, Y.; Hu, Y.J.; Zhu, J.Y.; Cui, P.Y.; et al. Effects of slow or controlled release fertilizer types and fertilization modes on yield and quality of rice. J. Integr. Agric. 2018, 17, 2222–2234. [Google Scholar] [CrossRef]
- Li, E.P.; Wu, A.C.; Li, J.; Liu, Q.Q.; Gilbert, R.G. Improved understanding of rice amylose biosynthesis from advanced starch structural characterization. Rice 2015, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.Q.; Zhou, L.H.; Zhu, Z.B.; Lu, H.W.; Zhou, X.Z.; Qan, Y.T.; Li, Q.F.; Lu, Y.; Gu, M.H.; Liu, Q.Q. Characterization of grain quality and starch fine structure of two japonica rice (Oryza Sativa) cultivars with good sensory properties at different temperatures during the filling stage. J. Agric. Food Chem. 2016, 64, 4048–4057. [Google Scholar] [CrossRef]
- Liu, J.C.; Zhao, Q.; Zhou, L.J.; Cao, L.J.; Cao, Z.Z.; Shi, C.H.; Cheng, F.M. Influence of environmental temperature during grain filling period on granule size distribution of rice starch and its relation to gelatinization properties. J. Cereal Sci. 2017, 76, 42–55. [Google Scholar] [CrossRef]
- Cai, J.W.; Man, J.M.; Huang, J.; Liu, Q.Q.; Wei, W.X.; Wei, C.X. Relationship between structure and functional properties of normal rice starches with different amylose contents. Carbohydr. Polym. 2015, 125, 35–44. [Google Scholar] [CrossRef]
- Wang, S.J.; Li, P.Y.; Yu, J.L.; Guo, P.; Wang, S. Multi-scale structures and functional properties of starches from indica hybrid, japoninca and waxy rice. Int. J. Biol. Macromol. 2017, 102, 136–143. [Google Scholar] [CrossRef]
- Cheng, F.M.; Zhong, L.J.; Zhao, N.C.; Liu, Y.; Zhang, G.P. Temperature induced changes in the starch components and biosynthetic enzymes of two rice varieties. Plant Growth Regul. 2005, 46, 87–95. [Google Scholar] [CrossRef]
- Zhao, C.F.; Yue, H.L.; Huang, S.J.; Zhou, L.H.; Zhao, L.; Zhang, Y.D.; Chen, T.; Zhu, Z.; Zhao, Q.Y.; Yao, S.; et al. Eating quality and physicochemical properties in Nanjing rice varieties. Sci. Agric. Sin. 2019, 52, 909–920. (In Chinese) [Google Scholar]
- Gao, H.; Ma, Q.; Li, G.; Yang, X.; Li, X.; Yin, C.; Li, M.; Zhang, Q.; Zhang, H.; Wei, H. Effect of nitrogen application rate on cooking and eating qualities of different growth-development types ofjaponica rice. Sci. Agric. Sin. 2010, 43, 4543–4552. [Google Scholar]
- Zhu, D.W.; Zhang, H.C.; Guo, B.W.; Xu, K.; Dai, Q.G.; Wei, H.Y.; Gao, H.; Hu, Y.J.; Cui, P.Y.; Huo, Z.Y. Effects of nitrogen level on yield and quality of japonica soft super rice. J. Integr. Agric. 2017, 16, 1018–1027. [Google Scholar] [CrossRef]
- Wopereis-Pura, M.M.; Watanabe, H.; Moreira, J.; Wopereis, M.C.S. Effect of late nitrogen application on rice yield, grain quality and profitability in the Senegal river valley. Eur. J. Agron. 2002, 17, 191–198. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, J.L.; He, F.; Cui, K.H.; Zeng, J.M.; Nie, L.X.; Peng, S.B. Head rice yield of “super” hybrid rice Liangyoupeijiu grown under different nitrogen rates. Field Crops Res. 2012, 134, 71–79. [Google Scholar] [CrossRef]
- Tan, K.H. Soil Sampling, Preparation, and Analysis; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Zhou, C.C.; Huang, Y.C.; Jia, B.Y.; Wang, Y.; Wang, Y.; Xu, Q.; Li, R.F.; Wang, S.; Dou, F.G. Effects of cultivar, nitrogen rate, and planting density on rice-grain quality. Agronomy 2018, 8, 246. [Google Scholar] [CrossRef] [Green Version]
- Leesawatwong, M.; Jamjod, S.; Kuo, J.; Dell, B.; Rerkasem, B. Nitrogen fertilizer increases seed protein and milling quality of rice. Cereal Chem. 2005, 82, 588–593. [Google Scholar] [CrossRef] [Green Version]
- Champagne, E.T.; Bett-Garber, K.L.; Thomson, J.L.; Fitzgerald, M.A. Unravelling the impact of nitrogen nutrition on cooked rice flavor and texture. Cereal Chem. 2009, 86, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Gunaratne, A.; Sirisena, N.; Ratnayaka, U.K.; Ratnayaka, J.; Kong, X.L.; Arachchi, L.P.V.; Corke, H. Effect of fertiliser on functional properties of flour from four rice varieties grown in Sri Lanka. J. Sci. Food Agric. 2011, 91, 1271–1276. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Fitzgerald, M.A. Proteins in rice grains influence cooking properties. J. Cereal Sci. 2002, 36, 285–294. [Google Scholar] [CrossRef]
- Yang, X.Y.; Bi, J.G.; Gilbert, R.G.; Li, G.H.; Liu, Z.H.; Wang, S.H.; Ding, Y.F. Amylopectin chain length distribution in grains of japonica rice as affected by nitrogen fertilizer and genotype. J. Cereal Sci. 2016, 71, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.W.; Zhang, H.C.; Guo, B.W.; Xu, K.; Dai, Q.G.; Wei, C.X.; Zhou, G.S.; Huo, Z.Y. Effects of nitrogen level on structure and physicochemical properties of rice starch. Food Hydrocoll. 2017, 63, 525–532. [Google Scholar] [CrossRef]
- Singh, N.; Nisha Pal Mahajan, G.; Singh, S.; Shevkani, K. Rice grain and starch properties: Effects of nitrogen fertilizer application. Carbohydr. Polym. 2011, 86, 219–225. [Google Scholar] [CrossRef]
- Blazek, J.; Gilbert, E.P. Application of small-angle X-ray and neutron scattering techniques to the characterisation of starch structure: A review. Carbohydr. Polym. 2011, 85, 281–293. [Google Scholar] [CrossRef]
- Bao, J.S. Toward understanding the genetic and molecular bases of the eating and cooking qualities of rice. Cereal Foods World 2012, 57, 148–156. [Google Scholar] [CrossRef]
- Balindong, J.L.; Ward, R.M.; Liu, L.; Rose, T.J.; Pallas, L.A.; Ovenden, B.W.; Snell, P.J.; Waters, D.L.E. Rice grain protein composition influences instrumental measures of rice cooking and eating quality. J. Cereal Sci. 2018, 79, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.L.; Zhu, P.; Sui, Z.Q.; Bao, J.S. Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations. Food Chem. 2015, 172, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Kong, X.L.; Zhou, X.R.; Zhong, K.; Zhou, S.M.; Liu, X.X. Characterization of multi-scale structure and thermal properties of Indica rice starch with different amylose contents. RSC Adv. 2016, 6, 107491. [Google Scholar] [CrossRef]
- Takahashi, T.; Fujita, N. Thermal and rheological characteristics of mutant rice starches with widespread variation of amylose content and amylopectin structure. Food Hydrocoll. 2017, 62, 83–93. [Google Scholar] [CrossRef]
- Pang, Y.L.; Ali, J.; Wang, X.Q.; Franje, N.J.; Revilleza, J.E.; Xu, J.L.; Li, Z.K. Relationship of rice grain amylose, gelatinization temperature and pasting properties for breeding better eating and cooking quality of rice Varieties. PLoS ONE 2016, 11, e0168483. [Google Scholar] [CrossRef] [Green Version]
Cultivar Type | Cultivar/Line | Amylose Content of Official Release (%) | Year of Official Release | Cross Information | Breeding Organization |
---|---|---|---|---|---|
NAC | Jingeng 818 | 17.8 | 2014 | Jindao 9618 × Jindao 1007 | Tianjing Academy of Agricultural Science |
Sugeng 815 | 15.0 | 2014 | Zhengdao 99 × Wuyungeng 11 × Yandao 1229 | Jiangsu Zhongjiang Seed Industry Company | |
Liangeng 7 | 16.2 | 2014 | Zhendao 88/Zhonggeng 8415 × Zhongjingchuan 2/Wuyugeng 3 | Lianyungang Academy of Agricultural Science | |
Wuyungeng 27 | 17.2 | 2012 | Jia 45/9520 × Wuyungeng 21 | Wujing Rice Research Institute | |
LAC | Songzaoxiang 1 | 13.2 | 2014 | Zaoxiangruanfan 2 × Zaoxiangchangligeng | Shanghai Songjiang District Agricultural Technology Extension Center |
Zaoxianggeng 1 | 9.2 | 2019 | Nanjing 46 × Wuyugeng 21 | Changshu Agricultural Research Institute | |
Yanggeng 239 | 12.9 * | Not released | / | Yangzhou Academy of Agricultural Science | |
Ning 4725 | 14.2 * | Not released | / | Nanjing Agricultural University |
Nitrogen Treatment (1) | Cultivar Type (2) | Cultivar | Panicles (×104 ha−1) | Spikelets per Panicle | Filled Grain Percentage (%) | Grain Weight (mg) | Yield in 2016 (kg·ha−1) | Yield in 2017 (kg·ha−1) |
---|---|---|---|---|---|---|---|---|
NF | NAC | Jingeng 818 | 379.80 | 88.60 | 94.89 | 27.80 | 8.46 | 8.80 |
Sugeng 815 | 443.10 | 86.50 | 84.94 | 26.76 | 8.30 | 8.59 | ||
Liangeng 7 | 427.50 | 91.70 | 93.64 | 25.33 | 9.44 | 9.05 | ||
Wuyungeng 27 | 427.50 | 97.60 | 85.13 | 27.05 | 8.73 | 9.28 | ||
Mean | 419.48 ± 23.78 a | 91.10 ± 4.18 a | 89.65 ± 4.64 b | 26.73 ± 0.90 b | 8.73 ± 0.44 a | 8.93 ± 0.26 a | ||
LAC | Songzaoxiang 1 | 410.40 | 82.67 | 94.95 | 25.30 | 7.95 | 7.93 | |
Yanggeng 239 | 347.70 | 86.70 | 94.78 | 30.65 | 8.42 | 8.14 | ||
Zaoxianggeng 1 | 370.50 | 80.43 | 95.42 | 28.30 | 7.74 | 7.87 | ||
Ning 4725 | 401.10 | 88.43 | 95.68 | 25.58 | 8.10 | 7.96 | ||
Mean | 382.43 ± 24.90 a | 84.56 ± 3.17 a | 95.21 ± 0.36 ab | 27.46 ± 2.18 b | 8.06 ± 0.25 a | 7.98 ± 0.10 a | ||
WN | NAC | Jingeng 818 | 288.60 | 69.60 | 97.31 | 31.40 | 6.12 | 5.84 |
Sugeng 815 | 342.00 | 71.50 | 98.21 | 29.93 | 6.45 | 6.64 | ||
Liangeng 7 | 316.65 | 76.84 | 97.68 | 26.84 | 6.15 | 6.53 | ||
Wuyungeng 27 | 320.70 | 71.00 | 98.67 | 30.32 | 6.43 | 6.60 | ||
Mean | 316.99 ± 19.01 b | 72.24 ± 2.75 b | 97.97 ± 0.52 a | 29.62 ± 1.70 a | 6.29 ± 0.15 b | 6.40 ± 0.33 b | ||
LAC | Songzaoxiang 1 | 307.80 | 68.00 | 97.12 | 28.10 | 5.39 | 4.81 | |
Yanggeng 239 | 293.70 | 76.30 | 98.05 | 32.44 | 6.23 | 6.17 | ||
Zaoxianggeng 1 | 324.90 | 75.50 | 94.65 | 28.89 | 6.52 | 6.23 | ||
Ning 4725 | 404.70 | 71.60 | 91.86 | 26.72 | 6.83 | 6.49 | ||
Mean | 332.78 ± 42.97 b | 72.85 ± 3.32 b | 95.42 ± 2.40 ab | 29.04 ± 2.11 a | 6.24 ± 0.53 b | 5.93 ± 0.66 b |
Nitrogen treatment (1) | Cultivar Type (2) | Cultivar | Milling Quality | Appearance Quality | |||
---|---|---|---|---|---|---|---|
Brown Rice (%) | Milled Rice (%) | Head-Milled Rice (%) | Chalkiness (%) | Chalky Grain Percentage (%) | |||
NF | NAC | Jingeng 818 | 85.40 | 76.55 | 72.05 | 4.83 | 18.49 |
Sugeng 815 | 85.65 | 73.80 | 68.03 | 7.57 | 25.10 | ||
Liangeng 7 | 85.90 | 73.91 | 69.85 | 11.15 | 36.87 | ||
Wuyungeng 27 | 85.45 | 74.55 | 69.13 | 8.56 | 27.37 | ||
Mean | 85.60 ± 0.20 a | 74.70 ± 1.10 a | 69.76 ± 1.47 a | 8.03 ± 2.26 a | 26.96 ± 6.59 a | ||
LAC | Songzaoxiang 1 | 83.61 | 76.10 | 71.15 | 12.03 | 51.34 | |
Yanggeng 239 | 86.60 | 77.50 | 72.07 | 11.39 | 51.76 | ||
Zaoxianggeng 1 | 85.25 | 76.35 | 71.37 | 10.63 | 36.79 | ||
Ning 4725 | 83.55 | 74.50 | 70.55 | 8.93 | 26.85 | ||
Mean | 84.75 ± 1.27 a | 76.11 ± 1.07 a | 71.28 ± 0.54 a | 10.75 ± 1.16 a | 41.68 ± 10.48 a | ||
WN | NAC | Jingeng 818 | 84.50 | 75.75 | 69.05 | 4.37 | 17.39 |
Sugeng 815 | 85.90 | 72.35 | 64.52 | 7.49 | 22.85 | ||
Liangeng 7 | 85.55 | 73.10 | 66.17 | 7.94 | 29.68 | ||
Wuyungeng 27 | 85.20 | 74.65 | 70.53 | 8.24 | 24.53 | ||
Mean | 85.29 ± 0.52 a | 73.96 ± 1.32 a | 67.57 ± 2.36 a | 7.01 ± 1.55 a | 23.61 ± 4.39 a | ||
LAC | Songzaoxiang 1 | 81.95 | 73.25 | 64.82 | 7.63 | 23.96 | |
Yanggeng 239 | 84.95 | 75.95 | 69.75 | 13.35 | 47.80 | ||
Zaoxianggeng 1 | 84.35 | 74.70 | 71.79 | 8.55 | 35.28 | ||
Ning 4725 | 82.05 | 72.70 | 69.52 | 7.38 | 29.19 | ||
Mean | 83.33 ± 1.34 a | 74.15 ± 1.27 a | 68.97 ± 2.55 a | 9.23 ± 2.42 a | 34.05 ± 8.89 a |
Nitrogen Treatment (1) | Cultivar Type (2) | Cultivar | Protein Content (%) | Amylose Content (%) | Hardness | Stickiness | Palatability |
---|---|---|---|---|---|---|---|
NF | NAC | Jingeng 818 | 9.50 | 16.30 | 8.80 | 2.65 | 42.00 |
Sugeng 815 | 9.80 | 15.45 | 8.10 | 3.45 | 48.75 | ||
Liangeng 7 | 9.45 | 16.55 | 8.53 | 2.73 | 43.75 | ||
Wuyungeng 27 | 9.05 | 17.80 | 8.15 | 3.65 | 49.50 | ||
Mean | 9.45 ± 0.27 a | 16.53 ± 0.84 b | 8.39 ± 0.29 a | 3.12 ± 0.44 b | 46.00 ± 3.20 c | ||
LAC | Songzaoxiang 1 | 9.05 | 13.15 | 7.30 | 5.30 | 60.50 | |
Yanggeng 239 | 9.00 | 12.85 | 7.13 | 5.18 | 61.50 | ||
Zaoxianggeng 1 | 8.30 | 14.25 | 6.58 | 7.08 | 66.50 | ||
Ning 4725 | 8.10 | 14.15 | 6.23 | 6.78 | 64.24 | ||
Mean | 8.61 ± 0.42 b | 13.60 ± 0.61 c | 6.81 ± 0.43 b | 6.08 ± 0.85 a | 63.19 ± 5.52 ab | ||
WN | NAC | Jingeng 818 | 8.60 | 18.80 | 8.35 | 2.68 | 44.50 |
Sugeng 815 | 8.45 | 18.15 | 7.65 | 4.16 | 53.63 | ||
Liangeng 7 | 8.85 | 17.65 | 7.95 | 3.86 | 51.13 | ||
Wuyungeng 27 | 8.15 | 20.05 | 7.71 | 4.28 | 53.88 | ||
Mean | 8.51 ± 0.25 b | 18.66 ± 0.90 a | 7.92 ± 0.27 a | 3.74 ± 0.64 b | 50.78 ± 3.78 bc | ||
LAC | Songzaoxiang 1 | 8.65 | 15.95 | 6.28 | 7.34 | 73.38 | |
Yanggeng 239 | 8.00 | 16.15 | 6.30 | 6.26 | 70.00 | ||
Zaoxianggeng 1 | 8.10 | 16.25 | 6.21 | 6.89 | 72.50 | ||
Ning 4725 | 7.80 | 16.55 | 6.10 | 7.33 | 74.50 | ||
Mean | 8.14 ± 0.31 b | 16.23 ± 0.22 b | 6.22 ± 0.08 b | 6.95 ± 0.44 a | 72.59 ± 1.66 a |
AC | PA | HN | SN | PV | TV | BD | FV | SB | PT | |
---|---|---|---|---|---|---|---|---|---|---|
PC | −0.164 | −0.726 ** | 0.756 ** | −0.704 ** | −0.587 * | −0.480 | −0.320 | −0.019 | 0.376 | 0.231 |
AC | −0.494 * | 0.400 | −0.439 | −0.083 | 0.368 | −0.513 * | 0.775 ** | 0.693 ** | 0.141 | |
PA | −0.994 ** | 0.996 ** | 0.596 * | 0.116 | 0.723 ** | −0.543 * | −0.845 ** | −0.254 | ||
HN | −0.982 ** | −0.584 * | −0.123 | −0.700 ** | 0.532 * | 0.829 ** | 0.222 | |||
SN | 0.615 * | 0.118 | 0.749 ** | −0.535 * | −0.851 ** | −0.260 | ||||
PV | 0.713 ** | 0.658 ** | 0.113 | −0.575 * | −0.215 | |||||
TV | −0.059 | 0.709 ** | 0.108 | −0.426 | ||||||
BD | −0.601* | −0.934 ** | 0.152 | |||||||
FV | 0.748 ** | −0.210 | ||||||||
SB | −0.029 |
Nitrogen Treatment (1) | Cultivar Type (2) | Cultivar | Peak Viscosity (cP) | Trough Viscosity (cP) | Breakdown (cP) | Final Viscosity (cP) | Setback (cP) | Pasting Temperature (°C) |
---|---|---|---|---|---|---|---|---|
NF | NAC | Jingeng 818 | 2401.0 | 1307.0 | 1094.0 | 2465.0 | 64.0 | 70.45 |
Sugeng 815 | 2244.0 | 970.0 | 1274.0 | 1844.5 | −399.5 | 75.58 | ||
Liangeng 7 | 2200.5 | 1124.0 | 1076.5 | 2262.0 | 61.5 | 69.33 | ||
Wuyungeng 27 | 2427.0 | 1374.0 | 1053.0 | 2546.0 | 119.0 | 69.70 | ||
Mean | 2318.1 ± 97.5 b | 1193.8 ± 158.3 b | 1124.4 ± 87.6 a | 2279.4 ± 271.6 ab | −38.8 ± 209.5 a | 71.26 ± 2.5 a | ||
LAC | Songzaoxiang 1 | 3107.0 | 1516.0 | 1591.0 | 2124.0 | −983.0 | 69.75 | |
Yanggeng 239 | 2570.5 | 1321.0 | 1249.5 | 1947.5 | −623.0 | 70.10 | ||
Zaoxianggeng 1 | 2928.0 | 1440.5 | 1487.5 | 2097.5 | −830.5 | 70.50 | ||
Ning 4725 | 2692.5 | 1307.5 | 1385.0 | 1926.5 | −766.0 | 70.10 | ||
Mean | 2824.5 ± 207.6 a | 1396.3 ± 86.4 ab | 1428.3 ± 126.3 a | 2023.9 ± 87.7 b | −800.6 ± 129.3 b | 70.11 ± 0.3 a | ||
WN | NAC | Jingeng 818 | 2952.0 | 1904.0 | 1048.0 | 3078.0 | 126.0 | 71.35 |
Sugeng 815 | 2717.0 | 1219.5 | 1497.5 | 2188.5 | −528.5 | 75.58 | ||
Liangeng 7 | 2723.5 | 1556.5 | 1167.0 | 2753.0 | 29.5 | 69.73 | ||
Wuyungeng 27 | 2742.0 | 1676.0 | 1066.0 | 2890.0 | 148.0 | 70.08 | ||
Mean | 2783.6 ± 97.6 a | 1589.0 ± 247.2 a | 1194.6 ± 180.7 a | 2727.4 ± 331.8 a | −56.3 ± 276.3 a | 71.68 ± 2.3 a | ||
LAC | Songzaoxiang 1 | 3242.0 | 1565.5 | 1676.5 | 2221.5 | −1020.5 | 70.08 | |
Yanggeng 239 | 2765.5 | 1473.5 | 1292.0 | 2169.5 | −596.0 | 70.13 | ||
Zaoxianggeng 1 | 2709.0 | 1367.0 | 1342.0 | 2018.0 | −691.0 | 69.65 | ||
Ning 4725 | 2931.0 | 1473.0 | 1458.0 | 2125.0 | −806.0 | 70.40 | ||
Mean | 2911.9 ± 207.3 a | 1469.8 ± 70.3 ab | 1442.1 ± 148.1 a | 2133.5 ± 74.9 b | −778.4 ± 158.3 b | 70.06 ± 0.3 a |
Nitrogen Treatment (1) | Cultivar Type (2) | Cultivar | To (°C) | Tp (°C) | Tc (°C) | ΔHgel (J/g) | ΔHret (J/g) | %R |
---|---|---|---|---|---|---|---|---|
NF | NAC | Jingeng 818 | 60.55 | 65.40 | 73.10 | 11.02 | 2.27 | 20.59 |
Sugeng 815 | 66.15 | 71.75 | 78.40 | 12.43 | 2.33 | 18.75 | ||
Liangeng 7 | 61.50 | 66.90 | 74.80 | 11.50 | 1.69 | 14.66 | ||
Wuyungeng 27 | 61.90 | 66.45 | 73.50 | 10.92 | 1.13 | 10.31 | ||
Mean | 62.53 ± 2.15 a | 67.63 ± 2.44 a | 74.95 ± 2.09 a | 11.47 ± 0.60 a | 1.85 ± 0.49 a | 16.16 ± 3.96 a | ||
LAC | Songzaoxiang 1 | 63.95 | 68.15 | 74.10 | 12.49 | 1.46 | 11.69 | |
Yanggeng 239 | 63.45 | 68.20 | 74.80 | 11.72 | 1.17 | 10.00 | ||
Zaoxianggeng 1 | 63.10 | 67.90 | 75.00 | 11.69 | 1.30 | 11.16 | ||
Ning 4725 | 63.55 | 68.35 | 75.85 | 11.61 | 1.01 | 8.69 | ||
Mean | 63.51 ± 0.30 a | 68.15 ± 0.16 a | 74.94 ± 0.62 a | 11.88 ± 0.36 a | 1.24 ± 0.17 ab | 10.41 ± 1.15 ab | ||
WN | NAC | Jingeng 818 | 61.60 | 67.15 | 74.75 | 11.40 | 1.09 | 9.54 |
Sugeng 815 | 67.25 | 72.30 | 75.85 | 11.87 | 1.46 | 12.27 | ||
Liangeng 7 | 61.65 | 66.30 | 73.80 | 10.77 | 1.17 | 10.88 | ||
Wuyungeng 27 | 61.55 | 66.50 | 74.15 | 10.82 | 1.16 | 10.70 | ||
Mean | 63.01 ± 2.45 a | 68.06 ± 2.47 a | 74.64 ± 0.78 a | 11.21 ± 0.45 a | 1.22 ± 0.14 ab | 10.86 ± 0.97 ab | ||
LAC | Songzaoxiang 1 | 63.55 | 67.80 | 73.80 | 12.04 | 0.72 | 5.96 | |
Yanggeng 239 | 63.05 | 67.85 | 75.40 | 11.63 | 0.70 | 6.02 | ||
Zaoxianggeng 1 | 62.75 | 67.45 | 74.95 | 11.15 | 1.29 | 11.61 | ||
Ning 4725 | 63.55 | 68.30 | 75.55 | 11.95 | 1.03 | 8.64 | ||
Mean | 63.23 ± 0.34 a | 67.85 ± 0.30 a | 74.93 ± 0.69 a | 11.69 ± 0.35 a | 0.94 ± 0.25 b | 8.01 ± 2.32 b |
TO | TP | TC | ΔHgel | ΔHret | %R | PI | PWHM | PP | LD | RC | |
---|---|---|---|---|---|---|---|---|---|---|---|
AC | −0.261 | −0.175 | −0.186 | −0.587 * | −0.084 | −0.011 | −0.546 * | −0.041 | −0.499 * | 0.32 | −0.740 ** |
PA | 0.267 | 0.137 | 0.143 | 0.318 | −0.614 * | −0.656 ** | 0.709 ** | 0.494 | 0.216 | −0.121 | 0.208 |
HN | −0.292 | −0.171 | −0.188 | −0.316 | 0.640 ** | 0.683 ** | −0.725 ** | −0.486 | −0.24 | 0.131 | −0.188 |
SN | 0.256 | 0.12 | 0.107 | 0.32 | −0.590 * | −0.630 ** | 0.681 ** | 0.496 | 0.174 | −0.11 | 0.203 |
Nitrogen Treatment (1) | Cultivar Type (2) | Cultivar | SAXS Variable | Relative Crystallinity (%) | |||
---|---|---|---|---|---|---|---|
Peak Intensity (Count) | Peak Width at Half Maximum (Å−1) | Peak Position (Å−1) | Lamellar Distance (nm) | ||||
NF | NAC | Jingeng 818 | 108.28 | 0.019 | 0.067 | 9.38 | 30.4 |
Sugeng 815 | 120.56 | 0.017 | 0.069 | 9.13 | 32.3 | ||
Liangeng 7 | 130.55 | 0.019 | 0.068 | 9.24 | 33.9 | ||
Wuyungeng 27 | 124.30 | 0.019 | 0.068 | 9.24 | 30.4 | ||
Mean | 120.92 ± 8.12 b | 0.018 ± 0.00 a | 0.068 ± 0.00 a | 9.25 ± 0.09 a | 31.75 ± 1.46 a | ||
Songzaoxiang 1 | 150.34 | 0.018 | 0.068 | 9.19 | 33 | ||
Yanggeng 239 | 157.66 | 0.020 | 0.070 | 9.01 | 33.3 | ||
Zaoxianggeng 1 | 128.87 | 0.019 | 0.068 | 9.19 | 32.9 | ||
Ning 4725 | 152.40 | 0.018 | 0.069 | 9.38 | 31.5 | ||
Mean | 147.32 ± 10.98 a | 0.019 ± 0.00 a | 0.069 ± 0.00 a | 9.19 ± 0.13 a | 32.68 ± 0.69 a | ||
WN | NAC | Jingeng 818 | 123.24 | 0.018 | 0.068 | 9.23 | 29.7 |
Sugeng 815 | 129.48 | 0.018 | 0.068 | 9.19 | 31.6 | ||
Liangeng 7 | 98.61 | 0.019 | 0.068 | 9.21 | 30.5 | ||
Wuyungeng 27 | 118.06 | 0.019 | 0.068 | 9.28 | 29.2 | ||
Mean | 117.35 ± 11.55 b | 0.018 ± 0.00 a | 0.068 ± 0.00 a | 9.23 ± 0.03 a | 30.25 ± 0.91 a | ||
LAC | Songzaoxiang 1 | 146.48 | 0.020 | 0.068 | 9.21 | 32.1 | |
Yanggeng 239 | 153.79 | 0.020 | 0.068 | 9.21 | 32.5 | ||
Zaoxianggeng 1 | 132.39 | 0.020 | 0.068 | 9.23 | 31.0 | ||
Ning 4725 | 166.19 | 0.020 | 0.068 | 9.19 | 30.5 | ||
Mean | 149.71 ± 12.23 a | 0.020 ± 0.00 a | 0.068 ± 0.00 a | 9.21 ± 0.01 a | 31.53 ± 0.81 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Cong, S.; Zhang, H. Comparison of the Grain Quality and Starch Physicochemical Properties between Japonica Rice Cultivars with Different Contents of Amylose, as Affected by Nitrogen Fertilization. Agriculture 2021, 11, 616. https://doi.org/10.3390/agriculture11070616
Hu Y, Cong S, Zhang H. Comparison of the Grain Quality and Starch Physicochemical Properties between Japonica Rice Cultivars with Different Contents of Amylose, as Affected by Nitrogen Fertilization. Agriculture. 2021; 11(7):616. https://doi.org/10.3390/agriculture11070616
Chicago/Turabian StyleHu, Yajie, Shumin Cong, and Hongcheng Zhang. 2021. "Comparison of the Grain Quality and Starch Physicochemical Properties between Japonica Rice Cultivars with Different Contents of Amylose, as Affected by Nitrogen Fertilization" Agriculture 11, no. 7: 616. https://doi.org/10.3390/agriculture11070616
APA StyleHu, Y., Cong, S., & Zhang, H. (2021). Comparison of the Grain Quality and Starch Physicochemical Properties between Japonica Rice Cultivars with Different Contents of Amylose, as Affected by Nitrogen Fertilization. Agriculture, 11(7), 616. https://doi.org/10.3390/agriculture11070616