Cover Crops and Manure Combined with Commercial Fertilizers Differently Affect Yield and Quality of Processing Tomato (Solanum lycopersicum L.) Organically Grown in Puglia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Cropping Details
2.2. Yield and Physical Analysis
2.3. Tocopherols and Carotenoids Determination
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rütting, T.; Aronsson, H.; Delin, S. Efficient use of nitrogen in agriculture. Nutr. Cycl. Agroecosyst. 2018, 110, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Sutton, M.A.; Howard, C.M.; Erisman, J.W.; Billen, G.; Bleeker, A.; Grennfelt, P.; van Grinsven, H.; Grizzetti, B. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Rahmann, G.; Ardakani, M.R.; Bàrberi, P.; Boehm, H.; Canali, S.; Chander, M.; David, W.; Dengel, L.; Erisman, J.W.; Galvis-Martinez, A.C.; et al. Organic Agriculture 3.0 is innovation with research. Org. Agric. 2017, 7, 169–197. [Google Scholar] [CrossRef] [Green Version]
- Wittwer, R.A.; Dorn, B.; Jossi, W.; Van Der Heijden, M.G.A. Cover crops support ecological intensification of arable cropping systems. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef]
- Thapa, B.; Pande, K.R.; Khanal, B.; Marahatta, S. Effect of Tillage, Residue Management and Cropping System on the Properties of Soil. Int. J. Appl. Sci. Biotechnol. 2018, 6, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Dabney, S.M.; Delgado, J.A.; Collins, F.; Meisinger, J.J.; Schomberg, H.H.; Liebig, M.A.; Kaspar, T.; Mitchell, J. Using cover crops and cropping systems for nitrogen management. In Advances in Nitrogen Management for Water Quality; Soil and Water conservation Society: Ankeny, IA, USA, 2010; pp. 230–281. [Google Scholar]
- De Baets, S.; Poesen, J.; Meersmans, J.; Serlet, L. Cover crops and their erosion-reducing effects during concentrated flow erosion. Catena 2011, 85, 237–244. [Google Scholar] [CrossRef]
- Kunz, C.; Sturm, D.J.; Varnholt, D.; Walker, F.; Gerhards, R. Allelopathic effects and weed suppressive ability of cover crops. Plant Soil Environ. 2016, 62, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Robačer, M.; Canali, S.; Kristensen, H.L.; Bavec, F.; Mlakar, S.G.; Jakop, M.; Bavec, M. Cover crops in organic field vegetable production. Sci. Hortic. 2016, 208, 104–110. [Google Scholar] [CrossRef]
- Brennan, E.B. Can we grow organic or conventional vegetables sustainably without cover crops? Horttechnology 2017, 27, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Fernandes Colombari, L.; Massami Imaizumi, V.; Felipe Guedes Baldini, L.; Pâmela Nunes Chaves, P.; Goto, R. Winter Cover Crops Sowing Systems for Planting Lettuce. Colloq. Agrar. 2018, 14, 169–178. [Google Scholar] [CrossRef]
- Mancinelli, R.; Muleo, R.; Marinari, S.; Radicetti, E. How soil ecological intensification by means of cover crops affects nitrogen use efficiency in pepper cultivation. Agriculture 2019, 9, 145. [Google Scholar] [CrossRef] [Green Version]
- Isik, D.; Kaya, E.; Ngouajio, M.; Mennan, H. Weed suppression in organic pepper (Capsicum annuum L.) with winter cover crops. Crop Prot. 2009, 28, 356–363. [Google Scholar] [CrossRef]
- Harber, A.; Rogers, G.; Tan, D.K.Y. The effect of cover crops on physical, chemical and microbial properties of a sandy loam soil and baby leaf spinach yield. In Proceedings of the 18th Australian Society of Agronomy Conference, Ballarat, Australia, 24–28 September 2017. [Google Scholar]
- Abdul-Baki, A.A.; Stommel, J.R.; Watada, A.E.; Teasdale, J.R.; Morse, R.D. Hairy vetch mulch favorably impacts yield of processing tomatoes. HortScience 1996, 31, 338–340. [Google Scholar] [CrossRef] [Green Version]
- Tringovska, I.; Yankova, V.; Markova, D. Effect of green manure cover crops on tomato greenhouse production—Ascitech. Agric. Sci. Technol. 2016, 8, 332–338. [Google Scholar]
- Belfry, K.D.; Trueman, C.; Vyn, R.J.; Loewen, S.A.; Van Eerd, L.L. Winter cover crops on processing tomato yield, quality, pest pressure, nitrogen availability, and profit margins. PLoS ONE 2017, 12, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Boateng, S.K.; Mensah, A.O.; Allotey, D. The effect of leguminous cover crops on growth and yield of tomato. Int. J. Hortic. Agric. Food Sci. 2019, 3, 283–287. [Google Scholar] [CrossRef]
- Campiglia, E.; Caporali, F.; Radicetti, E.; Mancinelli, R. Hairy vetch (Vicia villosa Roth.) cover crop residue management for improving weed control and yield in no-tillage tomato (Lycopersicon esculentum Mill.) production. Eur. J. Agron. 2010, 33, 94–102. [Google Scholar] [CrossRef]
- Farneselli, M.; Tosti, G.; Onofri, A.; Benincasa, P.; Guiducci, M.; Pannacci, E.; Tei, F. Effects of N sources and management strategies on crop growth, yield and potential N leaching in processing tomato. Eur. J. Agron. 2018, 98, 46–54. [Google Scholar] [CrossRef]
- Duncan, E.W.; Kleinman, P.J.A.; Beegle, D.B.; Dell, C.J. Nitrogen cycling trade-offs with broadcasting and injecting dairy manure. Nutr. Cycl. Agroecosyst. 2019, 114, 57–70. [Google Scholar] [CrossRef]
- McCrackin, M.L.; Gustafsson, B.G.; Hong, B.; Howarth, R.W.; Humborg, C.; Savchuk, O.P.; Svanbäck, A.; Swaney, D.P. Opportunities to reduce nutrient inputs to the Baltic Sea by improving manure use efficiency in agriculture. Reg. Environ. Chang. 2018, 18, 1843–1854. [Google Scholar] [CrossRef] [Green Version]
- Parham, J.A.; Deng, S.P.; Raun, W.R.; Johnson, G.V. Long-term cattle manure application in soil. I. Effect on soil phosphorus levels, microbial biomass C, and dehydrogenase and phosphatase activities. Biol. Fertil. Soils 2002, 35, 328–337. [Google Scholar] [CrossRef]
- Yang, R.; Mo, Y.; Liu, C.; Wang, Y.; Ma, J.; Zhang, Y.; Li, H.; Zhang, X. The Effects of Cattle Manure and Garlic Rotation on Soil under Continuous Cropping of Watermelon (Citrullus lanatus L.). PLoS ONE 2016, 11, e0156515. [Google Scholar] [CrossRef]
- Oliveira, A.; Santos, J.; Cavalcante, L.; Pereira, W.; Santos, M.; Oliveira, A.; Silva, N. Yield of sweet potato fertilized with cattle manure and biofertilizer. Hortic. Bras. 2010, 28, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Masarirambi, M.; Hlawe, M.; Oseni, O.; Sibiya, T. Effects of organic fertilizers on growth, yield, quality and sensory evaluation of red lettuce (Lactuca sativa L.) ‘Veneza Roxa.’. Agric. Biol. J. N. Am. 2010, 1, 1319–1324. [Google Scholar] [CrossRef]
- Maharjan, B.; Hergert, G.W. Composted Cattle Manure as a Nitrogen Source for Sugar Beet Production. Agron. J. 2019, 111, 917–923. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Wu, G.; Li, Y.; Li, C.; Liu, W.; Meng, J.; Liu, H.; Yu, X.; Jiang, G. Effects of cattle manure compost combined with chemical fertilizer on topsoil organic matter, bulk density and earthworm activity in a wheat-maize rotation system in Eastern China. Soil Tillage Res. 2016, 156, 140–147. [Google Scholar] [CrossRef]
- Moretti, M.; de Boni, A.; Roma, R.; Fracchiolla, M.; van Passel, S. Integrated assessment of agro-ecological systems: The case study of the “Alta Murgia” National park in Italy. Agric. Syst. 2016, 144, 144–155. [Google Scholar] [CrossRef] [Green Version]
- Sugihara, Y.; Ueno, H.; Hirata, T.; Araki, H. Uptake and distribution of nitrogen derived from hairy vetch used as a cover crop by tomato plant. J. Jpn. Soc. Hortic. Sci. 2013, 82, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Sadler, G.; Davis, J.; Dezman, D. Rapid Extraction of Lycopene and β-Carotene from Reconstituted Tomato Paste and Pink Grapefruit Homogenates. J. Food Sci. 1990, 55, 1460–1461. [Google Scholar] [CrossRef]
- Perkins-Veazie, P.; Collins, J.K.; Pair, S.D.; Roberts, W. Lycopene content differs among red-fleshed watermelon cultivars. J. Sci. Food Agric. 2001, 81, 983–987. [Google Scholar] [CrossRef]
- Durante, M.; Lenucci, M.S.; Marrese, P.P.; Rizzi, V.; De Caroli, M.; Piro, G.; Fini, P.; Russo, G.L.; Mita, G. α-Cyclodextrin encapsulation of supercritical CO2 extracted oleoresins from different plant matrices: A stability study. Food Chem. 2016, 199, 684–693. [Google Scholar] [CrossRef]
- Lenzi, A.; Antichi, D.; Bigongiali, F.; Mazzoncini, M.; Migliorini, P.; Tesi, R. Effect of different cover crops on organic tomato production. Renew. Agric. Food Syst. 2009, 24, 92–101. [Google Scholar] [CrossRef]
- Simonne, A.H.; Fuzeré, J.M.; Simonne, E.; Hochmuth, R.C.; Marshall, M.R. Effects of nitrogen rates on chemical composition of yellow grape tomato grown in a subtropical climate. J. Plant Nutr. 2007, 30, 927–935. [Google Scholar] [CrossRef]
- Sementi, I. DOBLER F1 (ISI 25033). Available online: https://www.isisementi.com/en/Prodotti/Ibridi-prismatici/123302/DOBLER-F1-ISI-25033-/ (accessed on 31 May 2021).
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Bilalis, D.; Krokida, M.; Roussis, I.; Papastylianou, P.; Travlos, I.; Cheimona, N.; Dede, A. Effects of organic and inorganic fertilization on yield and quality of processing tomato (Lycopersicon esculentum Mill.). Folia Hortic. 2018, 30, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Xyrafis, E.; Polyzos, N.; Antoniadis, V.; Fernandes, Â.; Barros, L.; Ferreira, I.C.F.R. The optimization of nitrogen fertilization regulates crop performance and quality of processing tomato (Solanum lycopersicum L. cv. heinz 3402). Agronomy 2020, 10, 715. [Google Scholar] [CrossRef]
- Renna, M.; D’Imperio, M.; Gonnella, M.; Durante, M.; Parente, A.; Mita, G.; Santamaria, P.; Serio, F. Morphological and chemical profile of three tomato (Solanum lycopersicum L.) landraces of a semi-arid mediterranean environment. Plants 2019, 8, 273. [Google Scholar] [CrossRef] [Green Version]
- Bruno, A.; Durante, M.; Marrese, P.P.; Migoni, D.; Laus, M.N.; Pace, E.; Pastore, D.; Mita, G.; Piro, G.; Lenucci, M.S. Shades of red: Comparative study on supercritical CO2 extraction of lycopene-rich oleoresins from gac, tomato and watermelon fruits and effect of the α-cyclodextrin clathrated extracts on cultured lung adenocarcinoma cells’ viability. J. Food Compos. Anal. 2018, 65, 23–32. [Google Scholar] [CrossRef]
- Durante, M.; Milano, F.; de Caroli, M.; Giotta, L.; Piro, G.; Mita, G.; Frigione, M.; Lenucci, M.S. Tomato oil encapsulation by α-, β-, and γ-Cyclodextrins: A comparative study on the formation of supramolecular structures, antioxidant activity, and carotenoid stability. Foods 2020, 9, 1553. [Google Scholar] [CrossRef]
- Riahi, A.; Hdider, C. Bioactive compounds and antioxidant activity of organically grown tomato (Solanum lycopersicum L.) cultivars as affected by fertilization. Sci. Hortic. 2013, 151, 90–96. [Google Scholar] [CrossRef]
- Toor, R.K.; Savage, G.P.; Heeb, A. Influence of different types of fertilisers on the major antioxidant components of tomatoes. J. Food Compos. Anal. 2006, 19, 20–27. [Google Scholar] [CrossRef]
- Serio, F.; Leo, L.; Parente, A.; Santamaria, P. Potassium nutrition increases the lycopene content of tomato fruit. J. Hortic. Sci. Biotechnol. 2007, 82, 941–945. [Google Scholar] [CrossRef]
- Bramley, P.M. Regulation of carotenoid formation during tomato fruit ripening and development. J. Exp. Bot. 2002, 53, 2107–2113. [Google Scholar] [CrossRef] [Green Version]
- Trudel, M.J.; Ozbun, J.L. Relationship between Chlorophylls and Carotenoids of Ripening Tomato Fruit as Influenced by Potassium Nutrition. J. Exp. Bot. 1970, 21, 881–886. [Google Scholar] [CrossRef]
- Fanasca, S.; Colla, G.; Maiani, G.; Venneria, E.; Rouphael, Y.; Azzini, E.; Saccardo, F. Changes in Antioxidant Content of Tomato Fruits in Response to Cultivar and Nutrient Solution Composition. J. Agric. Food Chem. 2006, 54, 4319–4325. [Google Scholar] [CrossRef] [PubMed]
Species | Dry Biomass (t ha−1) | Nitrogen Content (% on Dry Biomass) | Supplied Nitrogen (kg ha−1) |
---|---|---|---|
Raphanus sativus | 3.0 | 1.50 | 40 |
Vicia faba | 9.3 | 2.59 | 240 |
Triticum aestivum | 3.1 | 1.54 | 50 |
Cattle manure | - | 0.3 | 155 |
Regenor | - | 7.0 | 35 |
BI.OTTO | - | 8.0 | 40 |
Treatments | Yield (t ha−1) | Mean Fruits Weight (g) | Fruits Number (n Plant−1) | TSS (°Brix) | TA (g L−1) | pH | Dry Matter (g 100 g−1 FW) |
---|---|---|---|---|---|---|---|
Vi–Orf | 119.9 a | 72.8 a | 52.6 a | 3.7 | 5.4 | 4.5 | 4.5 |
Ra–Orf | 101.0 b | 62.8 b | 51.4 a | 3.7 | 5.4 | 4.5 | 4.6 |
Tr–Orf | 98.0 b | 63.1 b | 49. 9 a | 3.8 | 5.1 | 4.5 | 5.1 |
Orf | 97.4 b | 63.6 b | 49.1 a | 4.0 | 5.9 | 4.5 | 4.7 |
Ma–Orf | 102.3 b | 65.4 ab | 50.1 a | 3.4 | 5.8 | 4.4 | 4.5 |
Ctr | 66.4 c | 53.4 c | 39.7 b | 3.6 | 5.3 | 4.5 | 4.4 |
Significance | * | * | * | ns | ns | ns | ns |
Treatments | L | a * | b * | h° | C |
---|---|---|---|---|---|
Vi–Orf | 39.7 | 30.4 | 25.8 | 40.3 | 39.9 |
Ra–Orf | 40.2 | 31.2 | 26.3 | 40.1 | 40.8 |
Fr–Orf | 40.1 | 31.5 | 26.5 | 40.1 | 41.2 |
Orf | 40.2 | 30.6 | 25.6 | 39.9 | 39.8 |
Ma–Orf | 40.0 | 30.6 | 25.6 | 39.9 | 39.8 |
Ctr | 39.8 | 31.3 | 26.4 | 40.2 | 40.9 |
Significance | ns | ns | ns | ns | ns |
Tocopherols | Carotenoids | |||||
---|---|---|---|---|---|---|
Treatments | α-Tocopherol | β-Tocopherol | γ-Tocopherol | Lutein | β-Carotene | Lycopene |
Vi–Orf | 25.1 ab | 2.6 ab | 4.1 | 0.1 b | 0.6 a | 47.2 ab |
Ra–Orf | 17.8 c | 1.5 c | 3.1 | 0.2 a | 0.4 b | 20.0 c |
Tr–Orf | 14.3 c | 2.3 bc | 3.5 | 0.1 b | 0.6 a | 36.5 b |
Orf | 19.9 bc | 2.5 ab | 3.5 | 0.1 b | 0.6 a | 53.4 a |
Ma–Orf | 26.8 a | 3.4 a | 3.5 | 0.1 b | 0.5 b | 42.5 ab |
Ctr | 19.0 bc | 1.8 bc | 3.2 | 0.1 b | 0.6 a | 52.4 a |
Significance | * | * | ns | * | * | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fracchiolla, M.; Renna, M.; Durante, M.; Mita, G.; Serio, F.; Cazzato, E. Cover Crops and Manure Combined with Commercial Fertilizers Differently Affect Yield and Quality of Processing Tomato (Solanum lycopersicum L.) Organically Grown in Puglia. Agriculture 2021, 11, 757. https://doi.org/10.3390/agriculture11080757
Fracchiolla M, Renna M, Durante M, Mita G, Serio F, Cazzato E. Cover Crops and Manure Combined with Commercial Fertilizers Differently Affect Yield and Quality of Processing Tomato (Solanum lycopersicum L.) Organically Grown in Puglia. Agriculture. 2021; 11(8):757. https://doi.org/10.3390/agriculture11080757
Chicago/Turabian StyleFracchiolla, Mariano, Massimiliano Renna, Miriana Durante, Giovanni Mita, Francesco Serio, and Eugenio Cazzato. 2021. "Cover Crops and Manure Combined with Commercial Fertilizers Differently Affect Yield and Quality of Processing Tomato (Solanum lycopersicum L.) Organically Grown in Puglia" Agriculture 11, no. 8: 757. https://doi.org/10.3390/agriculture11080757
APA StyleFracchiolla, M., Renna, M., Durante, M., Mita, G., Serio, F., & Cazzato, E. (2021). Cover Crops and Manure Combined with Commercial Fertilizers Differently Affect Yield and Quality of Processing Tomato (Solanum lycopersicum L.) Organically Grown in Puglia. Agriculture, 11(8), 757. https://doi.org/10.3390/agriculture11080757