Salt-Tolerance in Castor Bean (Ricinus communis L.) Is Associated with Thicker Roots and Better Tissue K+/Na+ Distribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment 1 (March to June 2018)
2.2. Experiment 2 (February to July 2020)
2.3. Shoot Traits: Non-Invasive Measurements
2.4. Shoot and Root Traits: Destructive Measurements
2.5. Plant Na+ and K+ Concentrations and K+/Na+ Ratios
2.6. Statistical Analysis
3. Results
3.1. Experiment 1: Shoot and Root Traits
3.2. Experiment 1: Leaf Na+ and K+ Concentrations and K+/Na+ Ratios
3.3. Experiment 2: Phenology and Shoot and Root Traits
3.4. Experiment 2: Distribution of Na+ and K+ and K+/Na+ Ratios in the Leaves
4. Discussion
4.1. Salinity Effects on Phenology and Shoot-Related Traits
4.2. Salinity Affects Root-Related Traits
4.3. Distribution of K+ and Na+ in Alleviating Salt Stress
4.4. Genotypic Differences in Response to Salt Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hillel, D. Salinity Management for Sustainable Irrigation, Integrating Science, Environment, and Economics. Environmentally and Socially Sustainable Development: Rural Development; The World Bank: Washington, DC, USA, 2000. [Google Scholar]
- Metternicht, G.I.; Zinck, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- George, R.; Simons, J. Dryland salinity in Western Australia. Department of Primary Industries and Regional Development, Agriculture and Food. Government of Western Australia. 2019. Available online: http://www.agric.wa.gov.au/soil-salinity/dryland-salinity-western-australia-0 (accessed on 6 August 2020).
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Kordrostami, M.; Rabiei, B. Salinity Stress Tolerance in Plants: Physiological, Molecular, and Biotechnological Approaches. In Plant Abiotic Stress Tolerance; Hasanuzzaman, M., Hakeem, K., Nahar, K., Alharby, H., Eds.; Springer: Cham, Switzerland, 2019; pp. 101–127. [Google Scholar]
- Zörb, C.; Geilfus, C.-M.; Dietz, K.-J. Salinity and crop yield. Plant Biol. 2019, 21, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Ma, B.L.; Li, J.; Feng, C.; Lu, J.; Qin, P. Determining salinity threshold level for castor bean emergence and stand establishment. Crop Sci. 2010, 50, 2030–2036. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Ortuno, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Gupta, B.; Huang, B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genomics. 2014, 2014, 701596. [Google Scholar] [CrossRef]
- Metternicht, G. Assessing temporal and spatial changes of salinity using fuzzy logic, remote sensing and GIS Foundations of an expert system. Ecol. Model. 2001, 144, 163–179. [Google Scholar] [CrossRef]
- Choudhary, O.P.; Kharche, V.K. Soil salinity and sodicity. In Soil Science: An Introduction; Indian Society of Soil Science: New Delihi, India, 2018; pp. 353–384. [Google Scholar]
- Weiss, E.A. Oilseeds Crops, 2nd ed.; Blackwell Science: Oxford, UK, 2000. [Google Scholar]
- FAO. FAOSTAT; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Koutroubas, S.D.; Papakosta, D.K.; Doitsinis, A. Adaptation and yielding ability of castor plant (Ricinus communis L.) genotypes in a Mediterranean climate. Eur. J. Agron. 1999, 11, 227–237. [Google Scholar] [CrossRef]
- Zanovello, P.; Rosato, A.; Bronte, V.; Mandruzzato, S.; Cerundolo, V.; Collavo, D. Antitumour efficacy of lymphokine-activated killer cells loaded with ricin against experimentally induced lung metastases. Cancer Immunol. Immunother. 1992, 35, 27–32. [Google Scholar] [CrossRef]
- Jamil, M.; Hussain, S.S.; Qureshi, M.A.; Mehdi, S.M.; Nawaz, M.Q. Impact of sowing techniques and nitrogen fertilization on castor bean yield in salt-affected soils. J. Anim. Plant Sci. 2017, 27, 451–456. [Google Scholar]
- Jeschke, W.D.; Pate, J.S. Temporal patterns of uptake, flow and utilization of nitrate, reduced nitrogen and carbon in a leaf of salt-treated castor bean (Ricinus communis L.). J. Exp. Bot. 1992, 43, 393–402. [Google Scholar] [CrossRef]
- Babita, M.; Maheswari, M.; Rao, L.M.; Shanker, A.K.; Rao, D.G. Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) hybrids. Environ. Exp. Bot. 2010, 69, 243–249. [Google Scholar] [CrossRef]
- Lima, G.S.D.; Nobre, R.G.; Gheyri, H.R.; Soares, L.A.D.A.; Azevedo, C.A.V.D.; Lima, V.L.A.D. Salinity and cationic nature of irrigation water on castor bean cultivations. Rev. Bras. Eng. Agrícola E Ambient. 2018, 22, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Jeschke, W.D.; Wolf, O. Effect of NaCl salinity on growth, development, ion distribution, and ion translocation in castor bean (Ricinus communis L.). J. Plant Physiol. 1988, 132, 45–53. [Google Scholar] [CrossRef]
- Menon, K.; Ahmed, S.I.; Sood, N.; Rao, N.K. The potential of castor as a biodiesel feedstock crop for the Arabian Peninsula. In ICREGA’14-Renewable Energy: Generation and Applications; Hamdan, M., Hejase, H., Noura, H., Fardoun, A., Eds.; Springer: Cham, Switzerland, 2014; pp. 1–9. [Google Scholar]
- Pinheiro, H.A.; Silva, J.V.; Endres, L.; Ferreira, V.M.; Camara, C.D.A.; Cabral, F.F.; Oliveira, J.F.; Carvalho, L.W.T.D.; Santos, J.M.D.; Filho, B.G.D.S. Leaf gas exhchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L.) seedlings subjected to salt stress conditions. Ind. Crop. Prod. 2008, 27, 385–392. [Google Scholar] [CrossRef]
- Severino, L.S.; Auld, D.L.; Baldanzi, M.; Cândido, M.J.D.; Chen, G.; Crosby, W.; Tan, D.; He, X.; Lakshmamma, P.; Lavanya, C.; et al. Review on the challenges for increased production of castor. Agron. J. 2012, 104, 853–880. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.M.S.; Alves, A.N.; Ghey, H.R.; Beltrão, N.E.M.; Severino, L.S.; Soares, F.A.L. Growth and production of two cultivars of castor bean under saline stress. Rev. Bras. De Eng. Agrícola E Ambient. 2008, 12, 335–342, (In Portuguese with English abstract). [Google Scholar] [CrossRef] [Green Version]
- Isbell, R.F. A Classification System for Australian Soils (Third Approximation); Technical Report 2/1993; CSIRO: Townsville, Australia, 1993. [Google Scholar]
- Roshandel, P.; Flowers, T. The ionic effect of NaCl on physiology and gene expression in rice genotypes differing in salt tolerance. Plant Soil. 2009, 315, 35–147. [Google Scholar] [CrossRef]
- Shavrukov, Y. Salt stress or salt shock: Which genes are we studying? J. Exp. Bot. 2013, 64, 119–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, G.; Chen, Y.; Khan, F.; Feng, F.; Palta, J.A.; Siddique, K.H.M. Salinity and low phosphorus differentially affect shoot and root traits in two wheat cultivars with contrasting tolerance to salt. Agronomy 2018, 8, 155. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liang, L.; Liu, S.; An, T.; Fang, Y.; Xu, B.; Zhang, S.; Deng, X.; Palta, J.A.; Siddique, K.H.M.; et al. Maize genotypes with deep root systems tolerate salt stress better than those with shallow root systems during early growth. J. Agron. Crop Sci. 2020, 206, 711–721. [Google Scholar] [CrossRef]
- Pooniya, V.; Palta, J.A.; Chen, Y.; Delhaize, E.; Siddique, K.H.M. Impact of the TaMATE1B gene on above and below-ground growth of durum wheat grown on an acid and Al3+-toxic soil. Plant Soil. 2019, 447, 73–84. [Google Scholar] [CrossRef]
- Munns, R.; Wallace, P.A.; Teakle, N.L.; Colmer, T.D. Measuring Soluble Ion Concentrations (Na+, K+, Cl‒) in Salt-Treated Plants. In Plant Stress Tolerance: Methods and Protocols; Sunkar, R., Ed.; Humana Press: New York, NY, USA, 2010; Volume 639, pp. 371–382. [Google Scholar]
- Munns, R.; Tester, M. Mechanism of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Sá, F.V.D.S.; Paiva, E.P.D.; Mesquita, E.F.D.; Bertino, A.M.P.; Barbosa, M.A.; Souto, L.S. Tolerance of castor bean cultivars under salt stress. Rev. Bras. Eng. Agrícola E Ambient. 2016, 20, 557–563. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Zhou, G.; Zhu, G.; Jiao, X. Effects of calcium on emergence and seedling growth of castor bean under salinity stress. Curr. Sci. 2019, 116, 2028–2035. [Google Scholar] [CrossRef]
- Grieve, C.M.; Grattan, S.R.; Maas, E.V. Chapter 13 Plant Salt Tolerance. In ASCE Manual and Reports on Engineering Practice No. 71 Agricultural Salinity Assessment and Management, 2nd ed.; ASCE: Reston, VA, USA, 2012; pp. 405–459. [Google Scholar]
- Leila, R.; Dal Cortivo Cristian, V.T.; Leila, R. Effects of drought and salinity on maize phenology, morphology and productivity in a semi-arid environment. Ital. J. Agrometeorol. 2016, 3, 43–54. [Google Scholar]
- Kazan, K.; Lyons, R. The link between flowering time and stress tolerance. J. Exp. Bot. 2016, 67, 47–60. [Google Scholar] [CrossRef] [Green Version]
- McGhie, S.; Ryan, M. Salinity Indicator Plants. In Local Government Salinity Initiative—Booklet No. 8. Department of Infrastructure, Planning, and Natural Resources; Department of Infrastructure, Planning and Natural Resources: New South Wales, Australia, 2005. [Google Scholar]
- Lima, G.S.D.; Gheyi, H.R.; Nobre, R.G.; Xavier, D.A.; Soares, L.A.D.A.; Cavalcante, L.F.; Santos, J.B.D. Emergence, growth, and flowering of castor bean as a function of the cationic composition of irrigation water. J. Agric. Sci. 2016, 37, 651–664. [Google Scholar] [CrossRef] [Green Version]
- Allu, A.D.; Soja, A.M.; Wu, A.; Szymanski, J.; Balazadeh, S. Salt stress and senescence: Identification of cross-talk regulatory components. J. Exp. Bot. 2014, 65, 3993–4008. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.; Hussain, M.; Wakeel, A.; Siddique, K.H.M. Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 2015, 35, 461–481. [Google Scholar] [CrossRef] [Green Version]
- Jiao, X.; Zhi, W.; Liu, G.; Zhu, G.; Feng, G.; Nimir, N.E.A.; Ahmad, I.; Zhou, G. Responses of foreign GA3 application on seedling growth of castor bean (Ricinus communis L.) under salinity stress conditions. Agronomy 2019, 9, 274. [Google Scholar] [CrossRef] [Green Version]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Chapter 4 Water Balance of Plants. In Plant Physiology and Development, 6th ed.; Oxford University Press: Sunderland, MA, USA, 2014. [Google Scholar]
- Li, G.; Wan, S.; Zhou, J.; Yang, Z.; Qin, P. Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind. Crop. Prod. 2010, 31, 13–19. [Google Scholar] [CrossRef]
- Wilkinson, S.; Davies, W.J. ABA-based chemical signaling: The coordination of responses to stress in plants. Plant Cell. Environ. 2002, 25, 195–210. [Google Scholar] [CrossRef]
- Oleiwi, A.M.; Elsahookie, M.M.; Mohammed, L.I. Performance of castor bean selects in saline sodic soil. Int. J. Appl. Agric. Sci. 2016, 2, 64–68. [Google Scholar]
- Janmohammadi, M.; Abbasi, A.; Sabaghnia, N. Influence of NaCl treatments on growth and biochemical parameters of castor bean (Ricinus communis L.). Acta Agric. Slov. 2012, 99, 31–40. [Google Scholar] [CrossRef]
- Bernstein, N.; Kafkafi, U. Root growth under salinity stress. In Plant Roots: The Hidden Half, 3rd ed.; Waisel, Y., Eshel, A., Kafkafi, U., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2005. [Google Scholar]
- Presotto, R.A.; Alves, G.Z.; Nascimento, E.C.D.; Genuncio, G.D.C.; Zonta, E. Early development of castor beans grown under salinity conditions (varieties BRS Energia, MPA 34 and MPB 01). Rev. Caatinga. 2016, 29, 805–811. [Google Scholar] [CrossRef] [Green Version]
- Kreszies, T.; Eggels, S.; Kreszies, V.; Osthoff, A.; Shellakkutti, N.; Baldauf, J.A.; Zeisler-Diehl, V.V.; Hochholdinger, F.; Ranathunge, K.; Schreiber, L. Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity. Plant Cell Environ. 2019, 43, 344–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marschner, H. Mineral Nutrition of Higher Plants 2nd Edition, the Soil Root Interface (Rhizosphere) in Relation to Mineral Nutrition; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Grattan, S.R.; Grieve, C. Salinity-mineral nutrient relations in horticultural crops. Sci. Hortic. 1998, 78, 127–157. [Google Scholar] [CrossRef]
- Jeschke, W.D.; Pate, J.S.; Atkins, C.A. Effects of NaCl salinity on growth, ion transport and ion shortage in white lupins (Lupinus albus L. cv. Ultra). J. Plant Physiol. 1986, 124, 257–274. [Google Scholar] [CrossRef]
- Rodrigues, C.R.F.; Silva, E.N.; da Mata, R.; dos Anjos, D.C.; Hernandez, F.F.F.; Viégas, R.A. Physiological adjustment to salt stress in R. Communis seedlings is associated with a probable mechanism of osmotic adjustment and a reduction in water lost by transpiration. Ind. Crop. Prod. 2014, 54, 233–239. [Google Scholar] [CrossRef]
- Turner, N.C.; Colmer, T.D.; Quealy, J.; Pushpavalli, R.; Krishnamurthy, L.; Kaur, J.; Singh, G.; Siddique, K.H.M.; Vadez, V. Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant Soil 2013, 365, 347–361. [Google Scholar] [CrossRef]
- Hauser, F.; Horie, T.A. A conserved primary salt tolerance mechanism mediated by HKT transporters: A mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ. 2010, 33, 552–565. [Google Scholar] [CrossRef] [PubMed]
Main Effect | Net Photosynthetic Rate (μmol CO2·m−2·s−1) | Transpiration Rate (mmol H2O·m−2·s−1) | Stomatal Conductance (mol H2O·m−2·s−1) | Intercellular CO2 Concentration (μmol CO2 mol−1) | |
---|---|---|---|---|---|
Genotype | Forrestdale | 11.0 ab | 3.15 ab | 0.21 ab | 239 b |
Freo | 10.9 ab | 2.80 b | 0.18 b | 243 b | |
Wanneroo | 12.8 a | 3.76 ab | 0.25 ab | 258 ab | |
Wycombe | 10.6 ab | 3.30 ab | 0.23 ab | 254 ab | |
Zibo | 10.0 b | 4.09 a | 0.31 a | 284 a | |
Salinity | 0 mM | 14.7 a | 5.65 a | 0.44 a | 308 a |
50 mM | 13.9 a | 4.33 b | 0.30 b | 272 b | |
100 mM | 9.5 b | 2.38 c | 0.13 c | 234 c | |
150 mM | 6.1 c | 1.32 d | 0.06 c | 209 c | |
ANOVA | |||||
Genotype | * | * | * | ** | |
Salinity | ** | ** | ** | ** | |
Genotype × Salinity | ns | ns | ns | ns |
Genotype | Treatment (mM) | Time to Seedling Emergence (Days after Sowing) | Time to 50% Anthesis (Days after Sowing) | No. of Fully Expanded Leaves | Total Leaf Area (cm2) | Chlorophyll Content (mg m‒2) | Specific Root Length (m g‒1) | Average Root Diameter (mm) |
---|---|---|---|---|---|---|---|---|
Zibo | 0 | 8.0 a | 86.3 a | 8.0 a | 2419 a | 56.1 a | 3.6 a | 0.56 c |
100 | 8.0 a | 78.3 b | 8.7 a | 2162 ab | 54.2 a | 3.4 a | 0.65 b | |
200 | 7.3 a | 78.0 b | 6.0 b | 1404 b | 49.6 b | 3.3 a | 0.72 ab | |
Freo # | 0 | 9.0 a | – | 6.7 a | 2853 a | 54.8 a | 3.2 a | 0.63 b |
100 | 8.7 a | – | 7.7 a | 2631 a | 52.4 a | 3.0 a | 0.65 b | |
200 | 8.3 a | – | 5.7 b | 1231 b | 49.5 b | 3.5 a | 0.79 a | |
ANOVA | ||||||||
Genotype | ** | – | ns | ns | ns | ns | * | |
Salinity | ns | ** | ** | ** | * | ns | ** | |
Genotype × Salinity | ns | – | ns | ns | ns | ns | ns |
Genotype | Treatment (mM) | Na+ (μmol g−1 Dry Weight) | K+ (μmol g−1 Dry Weight) | K+/Na+ Ratio | |||
---|---|---|---|---|---|---|---|
Root | Other Parts | Root | Other Parts | Root | Other Parts | ||
Zibo | 0 | 52 b | 13.0 d | 497 a | 1205 a | 16.3 a | 178 b |
100 | 217 a | 69.6 c | 292 b | 877 b | 2.4 b | 22 c | |
200 | 265 a | 196.0 a | 300 b | 1039 ab | 2.0 b | 9 c | |
Freo | 0 | 61 b | 4.4 d | 505 a | 1190 a | 16.5 a | 225 a |
100 | 217 a | 104.0 c | 372 b | 1118 ab | 3.1 b | 19 c | |
200 | 317 a | 157.0 b | 305 b | 1021 ab | 1.7 b | 11 c | |
ANOVA | |||||||
Genotype | ns | ns | ns | ns | ns | ** | |
Salinity | ** | ** | ** | * | ** | ** | |
Genotype × Salinity | ns | ** | ns | ns | ns | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Suhono, G.B.F.; Li, Y.; Jiang, M.Y.; Chen, Y.; Siddique, K.H.M. Salt-Tolerance in Castor Bean (Ricinus communis L.) Is Associated with Thicker Roots and Better Tissue K+/Na+ Distribution. Agriculture 2021, 11, 821. https://doi.org/10.3390/agriculture11090821
Zheng J, Suhono GBF, Li Y, Jiang MY, Chen Y, Siddique KHM. Salt-Tolerance in Castor Bean (Ricinus communis L.) Is Associated with Thicker Roots and Better Tissue K+/Na+ Distribution. Agriculture. 2021; 11(9):821. https://doi.org/10.3390/agriculture11090821
Chicago/Turabian StyleZheng, Junlin, Gilang B. F. Suhono, Yinghao Li, Maggie Ying Jiang, Yinglong Chen, and Kadambot H. M. Siddique. 2021. "Salt-Tolerance in Castor Bean (Ricinus communis L.) Is Associated with Thicker Roots and Better Tissue K+/Na+ Distribution" Agriculture 11, no. 9: 821. https://doi.org/10.3390/agriculture11090821
APA StyleZheng, J., Suhono, G. B. F., Li, Y., Jiang, M. Y., Chen, Y., & Siddique, K. H. M. (2021). Salt-Tolerance in Castor Bean (Ricinus communis L.) Is Associated with Thicker Roots and Better Tissue K+/Na+ Distribution. Agriculture, 11(9), 821. https://doi.org/10.3390/agriculture11090821